Advances in Physical Sciences
Vol. 07  No. 04 ( 2019 ), Article ID: 33065 , 12 pages
10.12677/APS.2019.74016

Effects of Simple Resistance Training on Body Composition of Female

—A Meta-Analysis

Jie Zeng, Li Peng

Physical Education College of Southwest University, Chongqing

Received: Oct. 25th, 2019; accepted: Nov. 14th, 2019; published: Nov. 21st, 2019

ABSTRACT

Resistance training (RT) is considered to be a way to increase muscle mass and loss fat. This study analyzed the effects of simple RT on female fat mass (FM), body fat percentage (BF%), fat-free mass (FFM) and muscle mass (MM), in order to clarify whether the role of simple RT is also applicable to female subjects in losing fat and increasing muscle mass. Method: The PubMed and Web of Science databases were searched, and the time was up to March 14, 2019. Two authors simultaneously screened articles, and twenty-three randomized controlled trials, with a total of 917 participants (483 in the resistance training group (RTG) and 434 in the control group (CG)) were included and their quality assessed. The Cochrane bias risk assessment tool was used to evaluate the quality of the documents, and the Reviewer Manager 5.3 software performs statistical processing on the data. Results: RT significantly reduced females’ FM (WMD: 1.17; 95% CI: 1.03, 1.30; P < 0.00001) and BF% (WMD: 0.54; 95% CI: 0.09, 0.98; P = 0.02). It also significantly increased their FFM at the same time (WMD: −0.81; 95% CI: −0.93, −0.69; P < 0.00001). But there was no statistically significant increase in their MM (WMD: −0.20; 95% CI: −0.59, 0.19; P = 0.32). Conclusion: The results of this study confirm that RT can effectively reduce females’ FM and BF%, and increase their FFM significantly. But it does not help MM growth for all females. Therefore, RT cannot be used as a training method for females to increase MM as the main purpose. However, it can be recommended for females as a means of developing body composition, including reducing their FM and increasing FFM.

Keywords:Resistance Training, Female, Body Composition, Meta-Analysis

单纯抗阻力训练对女性身体成分的干预效果

——Meta分析

曾洁,彭莉

西南大学体育学院,重庆

收稿日期:2019年10月25日;录用日期:2019年11月14日;发布日期:2019年11月21日

摘 要

抗阻力训练(RT)被认为是增肌减脂的运动方式,本研究通过分析单纯的RT对女性体脂量(FM)、体脂率(BF%)、去脂体重(FFM)和肌肉量(MM)的影响,以明确单纯RT的减脂增肌作用是否对女性受试者也适用。方法:搜索了PubMed和Web of Science数据库,时间结点至2019年3月14日。由两名作者同时进行文献筛选,纳入符合条件的23项研究,涉及917名女性受试者,包括单纯的抗阻力训练组(RTG) 483名和对照组(CG) 434名。运用Cochrane偏倚风险评估工具进行文献质量评价,Reviewer Manager 5.3软件对数据进行统计学处理。结果:RT能显著性降低女性的FM (WMD: 1.17; 95% CI: 1.03, 1.30; P < 0.00001)和BF% (WMD: 0.54; 95% CI: 0.09, 0.98; P = 0.02);同时也能明显增加女性的FFM (WMD: −0.81; 95% CI: −0.93, −0.69; P < 0.00001),但对女性MM的增长无明显作用(WMD: −0.20; 95% CI: −0.59, 0.19; P = 0.32)。结论:RT的确可以有效降低女性的FM和BF%、明显增加她们的FFM,但RT对女性的MM增长并无帮助。因此,RT不能作为女性以增长MM为主要目的的训练方式,但可以推荐给部分女性作为改善身体成分(包括减脂和增加FFM)的训练手段。

关键词 :抗阻力训练,女性,身体成分,Meta分析

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

RT是指身体克服阻力以达到肌肉增长和力量增加的过程 [1],它是全面身体锻炼不可缺少的一部分,长期以来被作为增长肌肉力量、体积、耐力和维持去脂体重的有效办法 [2]。研究发现,RT能延缓肌肉老化,改善速度、平衡性、协调性、弹跳力、柔韧性及其他运动方面的素质,提高基础代谢率、促进能量消耗和减少身体脂肪堆积,从而有效地预防和减少随年龄增长而容易出现的摔倒和骨折等现象 [3] [4]。与此同时,RT对慢性病患儿如囊性纤维化、脑瘫、肌肉萎缩症,白血病和肥胖症等许多临床病症也有健康益处 [5]。

通过查阅文献发现,目前运动干预女性身体成分的研究中,更多采用的是有氧运动或综合干预方式。现有的meta分析文献中,较多的是分析有氧训练、振动训练结合RT [6] 、或是RT结合肌酸、牛奶等作为补充剂 [7] [8] 的综合干预方式。已有的RT对人体身体成分影响的meta分析中,研究对象较多是疾病患者,如:II型糖尿病患者 [9] 、慢性阻塞性肺疾病患者 [10] 或乳腺癌患者 [11] 等,再或是单独的青少年儿童 [12] 、老年人 [13] 或绝经后女性 [14] 等人群。另外,在结果指标选取上,多为肌肉力量 [15] 、体重、体脂肪量、体脂率、去脂体重、肌肉量、或骨密度 [16] 等指标中的一个或两个指标进行的分析。因此,本研究采用meta分析法 [17] 聚焦于运动干预对女性身体成分的影响,将运动干预手段确定为单纯的RT,以排除其他干预方式的影响;将研究的对象确定为排除其他疾病(超重或肥胖除外)的所有女性,以扩大样本数量;又同时选取了体脂肪量(FM)、体脂率(BF%)、去脂体重(FFM)和肌肉量(MM)四个结局指标,以更全面的反映身体成分,研究的目的在于明确RT的减脂增肌作用是否对女性适用,以帮助有不同锻炼需求的女性能找寻到更适合自身的锻炼方式。

2. 方法

2.1. 检索策略

以关键词在PubMed和Web of science两大数据库进行检索,时间结点至2019年3月14日。检索公式为:1) PubMed:((“resistance training”[Title/Abstract] OR“resistance exercise”[Title/Abstract]) AND (“body composition”[Title/Abstract] OR“BMI”[Title/Abstract] OR“body fat percentage”[Title/Abstract] OR“muscle mass”[Title/Abstract] OR“muscle strength”[Title/Abstract]));2) Web of science:TI = ((“resistance training”OR“resistance exercise”) AND (“body composition”OR“BMI”OR“body fat percentage”OR“muscle mass”OR“muscle strength”))。

2.2. 文献纳入与排除标准

文献纳入标准包括:1) 研究对象仅为女性。2) 实验组为RT干预,对照组不进行任何干预。3) 实验的结果指标包含FM、BF%、FFM、MM中之一,且数据表现形式为Mean ± SD或Mean ± SE。4) 纳入文献的实验设计为随机对照试验。

文献排除标准包括:1) 重复发表。2) 干预方式与RT无关。3) 对照组有干预(如摄入补充剂、运动或饮食不同)。4) 无所需结果指标及其数据。5) 非随机对照试验RCT (如前后对照试验、文献综述或meta分析、个案研究及动物实验等)。6) 研究对象有其余疾病(除超重或肥胖外)。

2.3. 信息提取

两名研究人员从纳入文献中提取信息,包括研究设计、受试者人口统计学(样本量、年龄和特征)、身体成分指标(FM、BF%、FFM和MM)及其数据(Mean ± SD或Mean ± SE)和RT的干预信息(运动总时间、频率、组数、重复次数和负荷)。

2.4. 文献质量评估数据处理

采用Cochrane偏倚风险评估工具 [17] 作为质量评估工具,包括7个项目:1) 随机序列的产生(选择偏倚)、2) 分配隐藏(选择偏倚)、3) 参与人员和试验人员的施盲(执行偏倚)、4) 效应指标盲检(观察偏倚)、5) 试验结果数据的完整性(失访偏倚)、6) 试验结果的选择性报告(报告偏倚)、7) 其他偏倚。以随机序列的产生为例,评估标准在Cochrane手册中有详细描述。以评估试验研究对随机序列是否存在产生“低风险偏移(Low risk of bias)”或“高风险偏移(High risk of bias)”或“不确定风险偏移(Unclear risk of bias)”。如果文献描述了合理的随机序列产生方法,诸如“参考随机数字表格”,“应用计算机随机数字生成器”,“投掷硬币”,“洗牌或信封”,“投掷骰子”,“抽签”或“最小化”,则该项目被评为“Low risk of bias”;如果文献中描述的随机序列的产生方法具有非随机因素,例如“以奇数甚至生产日期随机序列”,“直接以参与者喜好进行分配”,或“直接以干预措施的有效性进行分配”,则该项目评估为“High risk of bias”;如果它没有提供足够的信息来评估“Low risk of bias”或“High risk of bias”,则评估该项目为“Unclear risk of bias”。质量评估仅用于衡量科学证据的强度,但并不用于确定文献的纳入或排除。

2.5. 数据处理

根据Cochrane偏倚风险评估工具 [17] 提供的公式:

1) S E = S D n

2) Mean差值 = Meanfinal − Meanbaseline;

3) S D = S D b a s e l i n e 2 + S D f i n a l 2 2 R S D b a s e l i n e S D f i n a l (若未报告相关值则默认R取0.5),计算得出每个结果变量干预前后净变化差值的平均数和标准差作为主要效应量参数。运用Reviewer Manager 5.3对纳入文献进行meta分析。当I2 < 50%,P > 0.10,可认为同质,选用固定效应模型;当I2 ≥ 50%,P < 0.10,可认为异质,选择随机效应模型。如果P < 0.10且无法判断异质性的来源,则对结果指标采用描述性分析。由于本研究数据为连续型数据,为防止研究者预估之外的偏倚与异质性出现,采用随机效应模型计算文献间加权均数差WMD (Weight Mean Difference)、Z值和95%可信区间CI值表示合并效应值。另外,用Reviewer Manager绘制森林图时,系统默认的研究事件为“不利因素”,其横坐标左侧为干预,右侧为对照。但本研究为RT,属于“有利因素”,故将横坐标左侧设为CG,右侧为RTG。P < 0.05表示有显著性差异,P < 0.01表示有非常显著性差异。

3. 研究结果

3.1. 文献筛选和纳入文献信息

图1显示了文献筛选的流程。在通过关键词搜索数据库后共获得文献1064篇,去除重复的60篇文献,再通过阅读标题及摘要后排除935篇文献。排除的主要原因包括:不是随机对照试验;CG也有干预;研究对象含有男性或是有疾病(除超重或肥胖外)等。对剩余69篇文章的全文进行了审核,有46篇因不符合研究纳入标准而被排除在外,排除的主要原因是无所需结果指标数据。最终23篇文献被纳入进行评价分析(基本信息见表1):被试者年龄上范围跨度较大,最低至12岁,最高至77岁;在样本量上文献的实验组/对照组人数也较为平均;在结果指标的纳入上较多文献有FM、BF%、FFM、MM的四个指标中其中2~3个,只有少量文献只有其中一个。所有文献均说明了RT的具体负荷构成,即干预总时间、频率、组数、重复次数,除有四篇文献未提及RT的强度外,其余文献均有说明(见表2),负荷且均符合ACSM推荐的运动方案:全身主要肌群的参与、每周2~3次、每次至少1组、每组8~10次的重复RT、中老年和身体虚弱者采用10~15次重复 [18]。

Figure 1. Flow chart of articles screening (n = number of articles)

图1. 文献筛选流程图(n = 文献数量)

Figure 2. Evaluation results of bias risks of articles

图2. 文献偏倚风险的评估结果

纳入的23篇文献的质量评价结果如图2所示:86.95%的RCT的随机序列的产生评价为“低风险偏倚(Low risk of bias)”,8.7%的评价为“不确定风险偏移(Unclear risk of bias)”,4.35%的评价为“高风险偏移(High risk of bias)”;13.04%的分配隐藏评价为“低风险偏倚(Low risk of bias)”,73.92%的评价为“不确定风险偏移(Unclear risk of bias)”,13.04%的评价为“高风险偏移(High risk of bias)”;13.04%的RCT的参与人员和试验人员的施盲的评价为“低风险偏倚(Low risk of bias)”,86.96%的评价为“不确定风险偏移(Unclear risk of bias)”;13.04%的RCT效应指标盲检评估的评价为“低风险偏倚(Low risk of bias)”,86.96%的评价为“不确定风险偏移(Unclear risk of bias)”;73.91%的RCT的试验结果数据的完整性评价为“低风险偏倚(Low risk of bias)”,4.35%的评价为“不确定风险偏移(Unclear risk of bias)”,21.74%的评价为“高风险偏移(High risk of bias)”;试验结果的选择性报告全部评价为“不确定风险偏移(Unclear risk of bias)”;其他偏倚全部评价为“低风险偏倚(Low risk of bias)”。纳入分析的文献存在一定的偏倚性,但文献总体质量处于中等偏上。除Cunha, P. M.等 [22] 、Liao, C. D.等 [28] 和Rustaden, A. M.等 [37] 三篇文献明确写到有使用双盲以外,其余文献在参与人员和试验人员的施盲评估上大部分未提及盲法的使用情况,这可能因为RT不易进行盲法,因此均在该项给出“不确定风险偏移(Unclear risk of bias)”。

Table 1. Basic information of included research articles

表1. 纳入研究文献基本信息

注:RTG,抗阻训练组;CG,对照组;Y,是;N,否;B,同时都有;FM,体脂量;BF%,体脂百分比;FFM,去脂体重;MM,肌肉量。

Table 2. Total time, frequency, number of sets, repetitions and intensity of exercise intervention

表2. 运动干预总时间、频率、组数、重复次数及强度

3.2. Meta分析结果

RT影响所有纳入文献中的女性身体成分的Meta分析结果见图3。有17篇文献报告了RT对女性FM影响的结果,共涉及715名参与者(RTG 381名和CG 334名);异质性检验结果Chi2 = 24.43,df = 1.6 (P = 0.08),I2 = 35%,文献间不存在异质性;RTG的女性FM明显低于CG女性的FM (WMD:1.17;95%CI:1.03,1.30;总效应值Z = 16.40;P < 0.00001)。共有16篇文献报告了RT对女性BF%影响的结果,共涉及682名参与者(RTG 365名和CG 327名);异质性检验结果Chi2 = 8.76,df = 14 (P = 0.85),I2 = 0%,文献间不存在异质性;与CG相比,RTG女性的BF%显著性低于CG (WMD:0.54;95%CI:0.09,0.98;总效应值Z = 2.34;P = 0.02)。共有12篇报告了RT对女性FFM影响的结果,涉及536名参与者(RTG282名和CG254名);异质性检验结果Chi2 = 8.99,df = 11 (P = 0.62),I2 = 0% ,文献间不存在异质性;与CG相比,RT能非常明显地增加女性的FFM (WMD:−0.81;95%CI:−0.93,−0.69;总效应值Z = 13.44;P < 0.00001)。仅有5篇文献报告了RT对女性MM的影响,共涉及192名参与者(RTG100名和CG92名);异质性检验结果Chi2 = 2.69,df = 4 (P = 0.61),I2 = 0%,文献间不存在异质性;与CG相比,RT对增加女性的MM无显著性差异(WMD:−0.20;95%CI:−0.59,0.19;总效应值Z = 0.99;P = 0.32)。

Figure 3. Forest graph of the effect of RT on the FM, BF%, FFM and MM of female

图3. RT对女性FM、BF%、FFM、MM影响的森林图

4. 讨论与分析

本研究电子检索了PubMed和Web of science两大数据库,搜素到相关文献共1157篇,而最终纳入Meta分析的文章仅23篇,约占搜索总文献的1.98%。剔除的文献将从实验设计、结局指标及研究对象等方面进行分析。在实验设计上,CG有干预的占比约30.33%,搜索到较多文献中其CG有摄入亮氨酸、肌酸或使用苹果、牛奶蛋白等作为补充剂;或是CG也有运动或饮食上与RTG有不同的干预。因此目前单独研究抗阻力训练对身体成分的影响且要求对照组为无干预的文献较少。在阅读了162篇全文的基础上,剔除了约28.4%无相关结局指标数据的文献。由于本次分析的纳入及排除标准较多且严苛,为了避免纳入文献过少,则对结局指标的选择上有FM、BF%、FFM或MM之一即可。在研究对象上,本文只选取了女性被试者,并扩大了年龄范围以研究RT对所有年龄段女性的增肌减脂作用。另也剔除了患有其它疾病(除肥胖外)约13.49%的文献,这是为了避免除肥胖以外的其余疾病,如:糖尿病、高血脂、冠心病等对meta分析结果产生影响。

本研究发现,RT对降低女性的FM和BF%有明显的效果。FM是体重的组成部分,主要是反映人体内脂肪含量的多少,是判定肥胖最重要的指标之一 [42];BF%是指脂肪重量在人体总体重中所占的比例,它排除了肌肉、骨骼发达,浮肿等情况造成的体重超出正常值的现象 [43]。本研究结果与大多数RT对照试验研究结果一致,都表明RT对降低受试者BF%效果显著,如:Willis, L. H.等 [44] 对44名久坐肥胖成年人进行了为期8个月的RT (3天/周,3组/天,8~12次重复/组),结果显示RT前后BF%有显著性差异;Straight, C. R.等 [45] 也对超重和肥胖的95名老年人执行了为期8周的RT (2天/周,3组/天,8~12次重复/组),结果显示RT后受试者的BF%显著性降低。Padilha, C. S.等 [46] 对14篇关于RT影响癌症患者的FFM和FM的文献进行了Meta分析,发现RT对于接受术前和术后治疗的癌症患者的FFM增加和FM降低均有效;Collins, H.等 [47] 的meta分析发现RT对降低8~16岁青少年的BF%有显著性影响。

RT也能明显增加女性的FFM,但对其MM的增加效果不明显。FFM指除脂肪以外的身体其他成分的重量,骨骼、肌肉是其主要部分 [48];MM为骨骼肌的质量 [49]。本研究结果发现RT无助于女性MM的提升,那么FFM的增加更可能出现在骨骼质量的增加上,已有研究发现RT有助于保持妇女腰椎的骨矿密度,保持和增加绝经后妇女股骨和桡骨的骨矿密度 [16]。因本研究中纳入关于FFM的文献中,绝经后女性对象就有6篇(占该指标文献总数的50%),因此本研究中RTG的女性FFM增加很可能是绝经后女性骨量增加的结果。有单个研究证实,9周高负荷RT后,女性肌肉增长量低于男性 [50],说明RT增长肌肉的效果还存在性别差异;另外在本研究的被纳入文献中,有MM结果指标的文献仅有5篇,涉及的参与者也只有192名,样本量的不足也可能会降低结果的精确性 [51];鉴于50岁以后久坐不动的个体骨骼肌萎缩的发生率过高,相比青年人,运动锻炼更不易使其MM明显增加 [13],而本研究中纳入的关于绝经后女性对象MM的文献共3篇(占该指标文献总数的75%)。因此,年龄、性别和样本量大小等因素,都可能是RT不能有效提升女性MM的原因。另有研究显示,RT的机制似乎可以在不增加MM的情况下提高肌肉力量 [52]。而大多数研究结果证明,RT对增加FFM和肌肉力量有显著性效果 [6] [7] [8] [9] [53],但并未提到其增加MM的作用,也许RT的“增肌”效果更多是指肌肉力量而非MM的增加。

本研究的局限性在于:纳入文献中提到研究对象在进行RT干预时均不改变其饮食习惯,因此饮食的不统一性可能会导致研究分析结果有一定的误差;另外在运动干预的总时间上为6~60周不等,干预的频率,强度等也有一定的差异,所以各项结果指标也会因训练时间的不同而出现效果上的差异。

5. 结论

本研究结果证实单纯的RT可以有效降低女性的FM和BF%、明显增加她们的FFM,但RT不能促使女性MM的增长。因此,单纯的RT不能作为女性以增长MM为主要目的的训练方式。

致谢

感谢彭莉导师对该篇文章的设计研究、数据的收集和分析做出帮助,并同意同意手稿的结果和结论。并感谢Detlef H. Rost博士、任重宇博士、罗时博士、黄莉对本文初稿的有益反馈。

文章引用

曾 洁,彭 莉. 单纯抗阻力训练对女性身体成分的干预效果——Meta分析
Effects of Simple Resistance Training on Body Composition of Female—A Meta-Analysis[J]. 体育科学进展, 2019, 07(04): 116-127. https://doi.org/10.12677/APS.2019.74016

参考文献

  1. 1. Feigenbaum, M.S. and Pollock, M.L. (1999) Prescription of Resistance Training for Health and Disease. Medicine & Science in Sports & Exercise, 31, 38-45. https://doi.org/10.1097/00005768-199901000-00008

  2. 2. Pollock, M.L., Gaesser, G.A., Despres, J.P., et al. (1997) Proposed Revision of ACSM Position Stand, the Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness in Healthy Adults 1563. Medicine & Science in Sports & Exercise, 29, 276.https://doi.org/10.1097/00005768-199705001-01562

  3. 3. Häkkinen, K., Kraemer, W.J., Newton, R.U., et al. (2010) Changes in Electromyographic Activity, Muscle Fibre and Force Production Characteristics during Heavy Re-sistance/Power Strength Training in Middle-Aged and Older Men and Women. Acta Physiologica Scandinavica, 171, 51-62. https://doi.org/10.1046/j.1365-201X.2001.00781.x

  4. 4. Scaglioni, G., Ferri, A., Minetti, A.E., et al. (2002) Plantar Flexor Activation Capacity and H Reflex in Older Adults: Adaptations to Strength Training. Journal of Applied Physiology, 92, 2292-2302.https://doi.org/10.1152/japplphysiol.00367.2001

  5. 5. Falk, B. (2016) Muscle Strength and Resistance Training in Youth-Do They Affect Cardiovascular Health? Pediatric Exercise Science, 28, 11-15. https://doi.org/10.1123/pes.2016-0005

  6. 6. Lai, C.C., Tu, Y.-K., Wang, T.-G., Huang, Y.-T. and Chien, K.-L. (2018) Effects of Resistance Training, Endurance Training and Whole-Body Vibration on Lean Body Mass, Muscle Strength and Physical Performance in Older People: A Systematic Review and Network Meta-Analysis. Age and Ageing, 47, 367-373.https://doi.org/10.1093/ageing/afy009

  7. 7. Hidayat, K., Chen, G.C., Wang, Y., et al. (2018) Effects of Milk Proteins Supplementation in Older Adults Undergoing Resistance Training: A Meta-Analysis of Randomized Control Trials. Journal of Nutrition Health & Aging, 22, 237-245. https://doi.org/10.1007/s12603-017-0899-y

  8. 8. Chilibeck, P.D., Kaviani, M., Candow, D.G. and Zello, G.A. (2017) Effect of Creatine Supplementation during Resistance Training on Lean Tissue Mass and Muscular Strength in Older Adults: A Meta-Analysis. Open Access Journal of Sports Medicine, 2017, 213-226. https://doi.org/10.2147/OAJSM.S123529

  9. 9. Lee, J.H., Kim, D.H. and Kim, C.K. (2017) Resistance Training for Glycemic Control, Muscular Strength, and Lean Body Mass in Old Type 2 Diabetic Patients: A Meta-Analysis. Diabetes Therapy, 8, 459-473.https://doi.org/10.1007/s13300-017-0258-3

  10. 10. Liao, W.H., Chen, J.W., Chen, X., et al. (2015) Impact of Resistance Training in Subjects with COPD: A Systematic Review and Meta-Analysis. Respiratory Care, 60, 1130-1145. https://doi.org/10.4187/respcare.03598

  11. 11. Cheema, B.S., Kilbreath, S.L., Fahey, P.P., Delaney, G.P. and Atlantis, E. (2014) Safety and Efficacy of Progressive Resistance Training in Breast Cancer: A Systematic Review and Meta-Analysis. Breast Cancer Research & Treatment, 148, 249-268. https://doi.org/10.1007/s10549-014-3162-9

  12. 12. Behringer, M., Vom, H.A., Yue, Z. and Mester, J. (2010) Effects of Resistance Training in Children and Adolescents: A Meta-Analysis. Pediatrics, 126, 1199-210. https://doi.org/10.1542/peds.2010-0445

  13. 13. Peterson, M.D., Sen, A. and Gordon, P.M. (2011) Influence of Re-sistance Exercise on Lean Body Mass in Aging Adults: A Meta-Analysis. Medicine & Science in Sports & Exercise, 43, 249-258.https://doi.org/10.1249/MSS.0b013e3181eb6265

  14. 14. Kelley, G.A. and Kelley, K.S. (2004) Efficacy of Resistance Exercise on Lumbar Spine and Femoral Neck Bone Mineral Density in Premenopausal Women: A Me-ta-Analysis of Individual Patient Data. Journal of Women’s Health, 13, 293-300. https://doi.org/10.1089/154099904323016455

  15. 15. Peterson, M.D., Rhea, M.R., Sen, A. and Gordon, P.M. (2010) Resistance Exercise for Muscular Strength in Older Adults: A Meta-Analysis. Ageing Research Reviews, 9, 226-237. https://doi.org/10.1016/j.arr.2010.03.004

  16. 16. 何成奇, 丁明甫. 抗阻力训练和妇女骨矿密度对照实验的Meta分析[J]. 中国组织工程研究, 2002, 6(3): 318-320.

  17. 17. Higgins Julian, P., Altman, A., Sterne, J., et al. (2011) As-sessing Risk of Bias in Included Studies. In: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series, John Wiley & Sons, Ltd., New York.

  18. 18. Kraemer, W.J., Adams, K., Cafarelli, E., et al. (2009) American College of Sports Medicine position Stand. Progression Models in Resistance Training for Healthy Adults. Medicine & Science in Sports & Exercise, 41, 687-708.https://doi.org/10.1249/MSS.0b013e3181915670

  19. 19. Bonganha, V., Modeneze, D.M., Madruga, V.A. and Vilarta, R. (2012) Effects of Resistance Training (RT) on Body Composition, Muscle Strength and Quality of Life (QoL) in Postmenopausal Life. Archives of Gerontology & Geriatrics, 54, 361-365. https://doi.org/10.1016/j.archger.2011.04.006

  20. 20. Colado, J.C., Garciamasso, X., Rogers, M.E., et al. (2012) Effects of Aquatic and Dry Land Resistance Training Devices on Body Composition and Physical Capacity in Post-menopausal Women. Journal of Human Kinetics, 32, 185-195. https://doi.org/10.2478/v10078-012-0035-3

  21. 21. Colado, J.C. and Triplett, N.T. (2008) Effects of a Short-Term Resistance Program Using Elastic Bands versus Weight Machines for Sedentary Middle-Aged Women. Journal of Strength & Conditioning Research, 22, 1441-1448.https://doi.org/10.1519/JSC.0b013e31817ae67a

  22. 22. Cunha, P.M., Ribeiro, A.S., Tomeleri, C.M., et al. (2017) The Effects of Resistance Training Volume on Osteosarcopenic Obesity in Older Women. Journal of Sports Sciences, 2017, 1-8.

  23. 23. Cecilie, F., Palmer, I.J., Bemben, M.G., et al. (2009) Whole-Body Vibration Augments Resistance Training Effects on Body Composition in Postmenopausal Women. Maturitas, 63, 79-83. https://doi.org/10.1016/j.maturitas.2009.03.013

  24. 24. Franklin, N.C., Robinson, A.T., Bian, J.T., et al. (2015) Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women. Metabolic Syndrome and Related Disorders, 13, 227-234. https://doi.org/10.1089/met.2014.0135

  25. 25. Kerksick, C.M., Wismann-Bunn, J., Fogt, D., et al. (2010) Changes in Weight Loss, Body Composition and Cardiovascular Disease Risk after Altering Macronutrient Distribution during a Regular Exercise Program in Obese Women. Nutrition Journal, 9, 59. https://doi.org/10.1186/1475-2891-9-59

  26. 26. Klimentidis, Y.C., Bea, J.W., Lohman, T., et al. (2015) High Genetic Risk Individuals Benefit Less from Resistance Exercise Intervention. International Journal of Obesity, 39, 1371-1375. https://doi.org/10.1038/ijo.2015.78

  27. 27. Lee, S., Deldin, A.R., White, D., et al. (2013) Aerobic Exercise But Not Resistance Exercise Reduces Intrahepatic Lipid Content and Visceral Fat and Improves Insulin Sensitivity in Obese Adolescent Girls. American Journal of Physiology-Endocrinology and Metabolism, 305, E1222-E1229. https://doi.org/10.1152/ajpendo.00285.2013

  28. 28. Liao, C.D., Tsauo, J.Y., Lin, L.F., et al. (2017) Effects of Elastic Resistance Exercise on Body Composition and Physical Capacity in Older Women with Sarcopenic Obesity: A Consort-Compliant Prospective Randomized Controlled Trial. Medicine, 96, e7115. https://doi.org/10.1097/MD.0000000000007115

  29. 29. Nichols, D.L., Sanborn, C.F. and Love, A.M. (2001) Re-sistance Training and Bone Mineral Density in Adolescent Females. The Journal of Pediatrics, 139, 494-500. https://doi.org/10.1067/mpd.2001.116698

  30. 30. Olson, T.P., Dengel, D.R. and Leon, A.S. (2006) Moderate Re-sistance Training and Vascular Health in Overweight Women. Medicine & Science in Sports & Exercise, 38, 1558-1564. https://doi.org/10.1249/01.mss.0000227540.58916.0e

  31. 31. Phillips, M.D., Patrizi, R.M., Cheek, D.J., et al. (2012) Resistance Training Reduces Subclinical Inflammation in Obese, Postmenopausal Women. Medicine & Science in Sports & Exercise, 44, 2099-2110. https://doi.org/10.1249/MSS.0b013e3182644984

  32. 32. Poehlman, E.T., Denino, W.F., Beckett, T., et al. (2002) Effects of Endurance and Resistance Training on Total Daily Energy Expenditure in Young Women: A Controlled Randomized Trial. The Journal of Clinical Endocrinology & Metabolism, 87, 1004-1009. https://doi.org/10.1210/jcem.87.3.8282

  33. 33. Poehlman, E.T., Dvorak, R.V., Denino, W.F., et al. (2000) Effects of Resistance Training and Endurance Training on Insulin Sensitivity in Nonobese, Young Women: A Controlled Randomized Trial. The Journal of Clinical Endocrinology & Metabolism, 85, 2463-2468. https://doi.org/10.1210/jc.85.7.2463

  34. 34. Prabhakaran, B., Dowling, E.A., Branch, J.D., Swain, D.P. and Leutholtz, B.C. (1999) Effect of 14 Weeks of Resistance Training on Lipid Profile and Body Fat Percentage in Premenopausal Women. British Journal of Sports Medicine, 33, 190-195. https://doi.org/10.1136/bjsm.33.3.190

  35. 35. Rana, S.R., Chleboun, G.S., Gilders, R.M., et al. (2008) Comparison of Early Phase Adaptations for Traditional Strength and Endurance, and Low Velocity Resistance Training Programs in College-Aged Women. Journal of Strength and Conditioning Research, 22, 119-127. https://doi.org/10.1519/JSC.0b013e31815f30e7

  36. 36. Raso, V., Benard, G., Da Silva, D., Alberto, J. and Natale, V. (2007) Effect of Resistance Training on Immunological Parameters of Healthy Elderly Women. Medicine & Science in Sports & Exercise, 39, 2152-2159.https://doi.org/10.1249/mss.0b013e318156e9fa

  37. 37. Rustaden, A.M., Haakstad, L.A., Paulsen, G. and Bø, K. (2017) Effects of Body Pump and Resistance Training with and without a Personal Trainer on Muscle Strength and Body Composition in Overweight and Obese Women—A Randomised Controlled Trial. Obesity Research & Clinical Practice, 11, 728-739. https://doi.org/10.1016/j.orcp.2017.03.003

  38. 38. Socha, M., Frączak, P., Jonak, W. and Sobiech, K.A. (2016) Effect of Resistance Training with Elements of Stretching on Body Composition and Quality of Life in Postmenopausal Women. Przegla̜d Menopauzalny/Menopause Review, 15, 26-31. https://doi.org/10.5114/pm.2016.58770

  39. 39. Teixeira, P.J.P., Going, S.B.S., Houtkooper, L.B.L., et al. (2003) Resistance Training in Postmenopausal Women with and without Hormone Therapy. Medicine & Science in Sports & Exercise, 35, 555-562.https://doi.org/10.1249/01.MSS.0000058437.17262.11

  40. 40. Tomeleri, C.M., Ribeiro, A.S., Souza, M.F., et al. (2016) Resistance Training Improves Inflammatory Level, Lipid and Glycemic Profiles in Obese Older Women: A Randomized Controlled Trial. Experimental Gerontology, 84, 80-87.https://doi.org/10.1016/j.exger.2016.09.005

  41. 41. Verschueren, S.M., Roelants, M., Delecluse, C., et al. (2010) Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study. Journal of Bone & Mineral Research, 19, 352-359. https://doi.org/10.1359/JBMR.0301245

  42. 42. Zhao, L.J., Jiang, H., Papasian, C.J., et al. (2010) Correlation of Obesity and Osteoporosis: Effect of Fat Mass on the Determination of Osteoporosis. Journal of Bone and Mineral Re-search, 23, 17-29. https://doi.org/10.1359/jbmr.070813

  43. 43. USM Corps (2015) Body Fat Percentage.

  44. 44. Willis, L.H., Slentz, C.A., et al. (2012) Effects of Aerobic and/or Resistance Training on Body Mass and Fat Mass in Overweight or Obese Adults. Journal of Applied Physiology, 113, 1831-1837. https://doi.org/10.1152/japplphysiol.01370.2011

  45. 45. Straight, C.R., Dorfman, L.R., Cottell, K.E., et al. (2012) Effects of Resistance Training and Dietary Changes on Physical Function and Body Composition in Overweight and Obese Older Adults. Journal of Physical Activity & Health, 9, 875-883. https://doi.org/10.1123/jpah.9.6.875

  46. 46. Padilha, C.S., Marinello, P.C., Galvão, D.A., et al. (2017) Evaluation of Resistance Training to Improve Muscular Strength and Body Composition in Cancer Patients Undergoing Neoadjuvant and Adjuvant Therapy: A Meta-Analysis. Journal of Cancer Survivorship, 11, 339-349. https://doi.org/10.1007/s11764-016-0592-x

  47. 47. Collins, H., Fawkner, S., Booth, J.N. and Duncan, A. (2018) The Effect of Resistance Training Interventions on Weight Status in Youth: A Meta-Analysis. Sports Medicine-Open, 4, 41. https://doi.org/10.1186/s40798-018-0154-z

  48. 48. Mooren, F. (2012) Encyclopedia of Exercise Medicine in Health and Disease. Springer, Berlin Heidelberg.

  49. 49. Newman, A.B., Kupelian, V., Visser, M., et al. (2006) Strength, But Not Muscle Mass, Is Associated With Mortality in the Health, Aging and Body Composition Study Cohort. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61, 72-77. https://doi.org/10.1093/gerona/61.1.72

  50. 50. Ivey, F.M., Roth, S.M., Ferrell, R.E., et al. (2000) Effects of Age, Gender, and Myostatin Genotype on the Hypertrophic Response to Heavy Resistance Strength Training. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55, M641-M648. https://doi.org/10.1093/gerona/55.11.M641

  51. 51. Murad, M.H., Montori, V.M., Ioannidis, J.P.A., et al. (2014) How to Read a Systematic Review and Meta-Analysis and Apply the Results to Patient Care. JAMA: The Journal of the American Medical Association, 312, 171-179.https://doi.org/10.1001/jama.2014.5559

  52. 52. Marco, B. and Abreu, E.L. (2012) Sarcopenia: Pharmacology of Today and Tomorrow. Journal of Pharmacology & Experimental Therapeutics, 343, 540-546. https://doi.org/10.1124/jpet.112.191759

  53. 53. Candow, D.G., Forbes, S.C., Little, J.P., et al. (2012) Effect of Nutritional Interventions and Resistance Exercise on Aging Muscle Mass and Strength. Biogerontology, 13, 345-358. https://doi.org/10.1007/s10522-012-9385-4

期刊菜单