Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 82364 , 11 pages
10.12677/ACM.2024.143676

肝内胆管癌系统治疗与局部治疗的现状及进展

刘永林,金成兵

重庆医科大学附属第二医院肿瘤中心,重庆

收稿日期:2024年2月8日;录用日期:2024年3月2日;发布日期:2024年3月8日

摘要

肝内胆管癌是原发性肝癌的一种,发病率仅次于原发性肝细胞癌,其恶性程度高、预后差、早期临床症状不典型,多数患者确诊时已失去手术机会。对于中晚期肝内胆管癌的治疗通常以化疗为主,局部治疗手段有肝动脉化疗栓塞、放疗、射频消融治疗等。近年来,靶向及免疫治疗在各种实体肿瘤的应用愈加广泛,且取得了令人鼓舞的成绩。因此,随着各种治疗手段的不断进展,联合治疗似乎成为一种可行的治疗策略。本文就肝内胆管癌的系统治疗与局部治疗的现状及进展作如下综述。

关键词

肝内胆管癌,系统治疗,局部治疗,化疗,免疫治疗,靶向治疗,联合治疗

Current Status and Progress of Systemic and Local Therapy for Intrahepatic Cholangiocarcinoma

Yonglin Liu, Chengbing Jin

Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Feb. 8th, 2024; accepted: Mar. 2nd, 2024; published: Mar. 8th, 2024

ABSTRACT

Intrahepatic cholangiocarcinoma is a type of primary liver cancer, with an incidence rate second only to primary hepatocellular carcinoma. It has a high degree of malignancy, poor prognosis, and atypical early clinical symptoms. Most patients have lost the opportunity for surgery when diagnosed. The treatment for intermediate and advanced intrahepatic cholangiocarcinoma is usually chemotherapy, and local treatment methods include hepatic arterial chemoembolization, radiotherapy, radiofrequency ablation, etc. In recent years, targeted and immunotherapy have been increasingly used in various solid tumors and have achieved encouraging results. Therefore, as various treatments continue to advance, combination therapy appears to be a feasible treatment strategy. This article reviews the current status and progress of systemic treatment and local treatment of intrahepatic cholangiocarcinoma as follows.

Keywords:Intrahepatic Cholangiocarcinoma, Systemic Therapy, Local Therapy, Chemotherapy, Immunotherapy, Targeted Therapy, Combination Therapy

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肝内胆管癌(Intrahepatic Cholangiocarcinoma, ICC)是一种原发肝脏的恶性肿瘤,相对于肝细胞癌而言比较少见。占原发性肝癌的10%~15% [1] 。手术切除是ICC的首选治疗方法,且是目前唯一能根治ICC的有效手段。但因ICC起病隐匿,极易侵犯肝脏周围器官、组织和神经,发生淋巴结和肝外远处转移 [2] ,大部分患者确诊时通常已处于晚期,失去手术机会。且ICC极易复发与转移,即使行根治性肝切除术,ICC患者术后的五年生存率仅约30%,且术后复发率仍高达60%以上 [3] 。因此,临床上迫切需要ICC的有效辅助治疗方法。目前,ICC的辅助治疗方法多样,包括经肝动脉放疗栓塞、经肝动脉化疗栓塞、经皮射频消融和经皮微波消融、化疗、放疗、靶向和免疫治疗 [4] [5] [6] [7] [8] 。这些治疗方法近年来进展很多,本文就原发性肝内胆管癌的系统治疗与局部治疗的研究进展系统综述如下。

2. 肝内胆管癌的系统治疗

2.1. 手术治疗进展

根治性肝切除术是唯一能够使ICC患者长期生存的治疗方法 [9] ,但大部分患者确诊时已是晚期,仅有约20%的患者存在根治性的手术切除机会 [10] 。大多数情况下,ICC患者需要进行肝切除术(LR)才能完全切除肿瘤。对于单灶性ICC和多灶性ICC患者,美国癌症联合委员会(AJCC)将多灶性肿瘤与具有血管侵犯的单灶性肿瘤一起分类为T2期 [11] ,在这些患者中,与局部治疗相比,LR并没有改善总体生存率和无复发生存率 [12] 。然而,即使在成功进行肿瘤切除后,ICC的复发率仍高达42%至70%,因此,接受新辅助化疗,并计划在几个周期的全身治疗后重新评估可切除性似乎成为可行的方案 [13] 。

R0切除是影响ICC患者预后的重要因素,切缘阴性的预后明显好于切缘阳性病人 [14] 。对于无淋巴结转移的R0切除患者,>10 mm的宽切缘可延长患者生存期,减少术后复发的风险 [15] 。为了达到R0切除目的,必要时可联合血管切除。Farges等 [16] 的一项多中心研究发现,ICC一旦发生淋巴结转移,区域淋巴结转移对ICC肝切除术预后具有更加显著影响。且对于N0期患者,R1切除是导致预后较差的独立危险因素。ICC术中是否行淋巴结清扫仍存在争议,淋巴结清扫因患者年龄,解剖诊断,清扫的彻底性质和病理学检查方法的差异而不同 [17] 。美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)和国际肝脏癌症协会(Interational Liver Cancer Association, ILCA)指南推荐至少清扫6个淋巴结 [18] 。更合理的淋巴结清扫数目仍需更多前瞻性的临床研究。

辅助治疗方面,鉴于ICC相较原发性肝细胞癌(HCC)少见,很少有研究专门探讨辅助化疗在可切除ICC中的作用,而大多数化疗研究仍然收集所有类型的胆道恶性肿瘤。此外,尚无研究评估LT后辅助治疗对ICC的有效性。尽管现有证据不足,但BILCAP试验表明,辅助卡培他滨与胆道恶性肿瘤患者的符合方案的总生存期增加相关 [19] 。

对于局部晚期ICC,原位LT联合新辅助和辅助治疗比根治性胆管切除术和部分肝切除术联合辅助治疗提供更好的RFS。LT联合新辅助和辅助治疗比单独LT或单独辅助治疗具有更好的生存率 [20] 。Primrose等的试验中的84名ICC患者亚组中,43名患者接受卡培他滨治疗,41名患者设置为观察组。60个月随访结束时,卡培他滨组56%的ICC患者存活,而观察组存活率为41%,该试验有效印证了ICC患者术后可予以卡培他滨辅助治疗 [21] 。

综上所述,肝切除术是目前唯一能够为ICC患者提供长期生存的治疗方法。虽然多数患者发现时已失去手术机会,然而,肿瘤降期的新策略增强了ICC的可切除性。术后辅助治疗同样可以提高ICC患者的总生存率和无病生存率。

2.2. 全身化疗进展

由于大多数ICC患者在确诊时已无法进行根治性切除手术,因此对于全身化疗仍是大多数不存在化疗禁忌患者的首选治疗方法。既往认为,卡培他滨 + 顺铂(XP方案)被证明是晚期胆道癌患者的一线治疗方案 [22] [23] 。

根据ABC-02临床试验 [24] ,吉西他滨和顺铂(GC方案)同样获得了阳性结果。该III期研究纳入了410名患有局部晚期或转移性胆管癌、胆囊癌或壶腹癌的患者。接受顺铂和吉西他滨治疗的患者的中位OS为11.7个月,而吉西他滨队列中的患者的中位OS为8.1个月(P < 0.001)。顺铂加吉西他滨队列和吉西他滨队列的无进展生存期(PFS)分别为8个月和5个月(P < 0.001)。

除此之外,西南肿瘤学组(SWOG) 1815和S1815 II期和III期临床试验(NCT03768414)评估了白蛋白结合型紫杉醇在ICC治疗中的作用。具体来说,SWOG 1815 II期临床试验评估了吉西他滨、顺铂和白蛋白结合型紫杉醇在62名晚期BTC患者(63%为ICC)中的使用情况。添加白蛋白结合型紫杉醇的部分缓解率PR为45%,疾病控制率DCR为84%。患者的中位OS为19.2个月,PFS为11.8个月,两者均较对照组有所改善 [25] 。

近期发表的一项多中心III期临床研究 [26] 对比了mFOLFOX方案联合积极症状控制(Active Symptom Control, ASC)及ASC作为BTC二线治疗方案的效果,结果证明对比于单纯ASC,mFOLFOX联合ASC方案能有效提高GC方案治疗后进展的BTC患者的6个月及12个月生存率。因此,mFOLFOX方案被推荐为BTC的二线化疗方案。

为了改善可切除ICC患者的预后,增加手术成功率,减少复发,ICC的新辅助治疗成为近年来备受关注的研究方向。其主要适用于具有术后复发高危因素的可切除肿瘤患者,术后复发的高危因素主要包括非R0切除、较高的肿瘤分期(T2期及其以上)以及淋巴结转移等。Mason等 [27] 的研究显示,在T2/T3期或淋巴结受累的ICC患者中,与单纯手术相比,新辅助治疗联合手术能提高患者的5年生存率(29.9%比37.2%,P < 0.001)。

Choi等 [28] 的研究结果显示新辅助化疗并不会增加ICC患者术后30 d内并发症的发生率,也不会增加住院时长。一项多中心回顾性研究纳入了1057例行手术切除的ICC患者,其中62例接受新辅助化疗(18例接受肝动脉化疗,44例接受全身化疗),研究结果发现与无化疗组相比,新辅助化疗组的中位生存时间虽得到了一定改善,但差异无统计学意义(46.9个月比29.4个月,P = 0.136),这可能是由于新辅助化疗患者的占比以及新辅助化疗的总体利用率较低导致 [29] 。

Sutton等 [30] 回顾性分析了52例行肝切除术(LR)的ICC患者,其中10例术前接受了吉西他滨联合铂类治疗,结果显示该化疗方案能够改善患者术后远期生存(风险比(HR) = 0.16,P = 0.010)。

虽然以上研究显示新辅助对于有术后复发高危因素的ICC患者有一定益处,但由于ICC发病率较低,且目前研究多为小样本量回顾性研究,仍缺乏有力证据支撑其有效性。

2.3. 靶向治疗进展

分子靶向治疗对ICC这一高度异质性的疾病具有较明显的治疗效果。目前取得迅速研究进展的治疗靶点包括表皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)、血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)及其VEGF受体(VEGF Receptor, VEGFR)、异柠檬酸脱氢酶(Isocitrate Dehydrogenase, IDH)、成纤维细胞生长因子受体(Fibroblast Growth Factor Receptor, FGFR)。其中,EGFR和VEGF/VEGFR,其表达更常见于肝内胆管癌患者。有II期临床试验表明,EGFR抑制剂西妥昔单(cetuximab)联合化疗在晚期胆道肿瘤中显现出疗效 [31] 。

有学者对血管内皮生长因子抑制剂进行了研究。ABC-03 II期临床试验(NCT00939848)在晚期胆道肿瘤患者中评估了顺铂和吉西他滨(GC方案)联合VEGFR1-3抑制剂西地尼布(cediranib)的疗效和安全性 [32] 。虽然主要终点mPFS未达到统计学意义,但联合使用西地尼布提高了ORR (44% vs. 19%, P = 0.004)。

II期临床试验(NCT02162914) [33] 在晚期胆道肿瘤中评估了VEGFR抑制剂瑞戈非尼(regorafenib)的疗效。与支持治疗组相比,瑞戈非尼组的主要终点mPFS有明显提高(3.0 vs. 1.5个月,P = 0.004)。

FGFR2和IDH1基因突变几乎仅见于肝内胆管癌,部分针对上述靶点的药物取得了显著的临床疗效,并且通过了适应证的审批。在ICC患者中,最常见的分别是IDH-1突变和FGFR-2融合,分别发生在15%~20%和10%~15%的患者中 [34] 。FGFR-2不仅可以延缓癌细胞的细胞生长和集落形成,还可以增强吉西他滨对细胞迁移和侵袭的抑制作用 [35] 。一项评估FGFR抑制剂培美替尼(Pemigatinib)在既往接受过治疗的局部晚期或转移性CCA患者中的II期研究表明,FGFR融合患者的中位PFS为6.9个月,OS为21.1个月 [36] 。另有FOENIX-CCA2 2期实验 [37] 评估了FGFR抑制剂福巴替尼(futibatinib)在103名既往接受过治疗、具有FGFR2基因畸变的局部晚期或转移性iCCA患者中的使用情况。该研究表明,中位PFS为9个月,中位OS为21.7个,疾病控制率为83%,客观缓解率为42%。

IDH1突变抑制剂艾伏尼布(AG-120)已于2021年8个月被美国FDA批准用于治疗晚期或转移性胆管癌。多中心随机双盲III期临床试验ClarIDHy (NCT02989857)招募了185例IDH1突变的晚期胆管癌患者,分为艾伏尼布组(124例,肝内胆管癌111例)和安慰剂组(61例,肝内胆管癌58例)。研究的主要终点为中位PFS期,揭示艾伏尼布组的抗肿瘤效应明显优于安慰剂组(2.7 vs. 1.4个月,风险比为0.37,单侧检验P < 0.0001),总体表现出艾伏尼布良好的疗效和耐受性 [38] 。目前热休克蛋白90 (HSP90抑制剂) Ganetespib与FGFR抑制剂英菲格拉替尼(Truseltiq)联用表现出明显优于单药的抗肿瘤效应 [39] 。此外,在肝内胆管癌患者中也检测到与ROS1相关的ALK基因融合(EML4-ALK) [40] 。II期临床试验(NCT04644315)正在晚期实体瘤患者(包括肝内胆管癌)中评估ALK抑制剂阿来替尼(alectinib)的疗效和安全性。随着HSP90抑制剂等药物临床研究的展开,逐步揭示其具有逆转肝内胆管癌耐药的前景,将会在临床前研究及临床更进一步验证其疗效和安全性。

2.4. 免疫治疗进展

近年来,以程序性死亡蛋白-1 (PD-1)/程序性死亡蛋白配体-1 (PD-L1)抑制剂为代表的免疫检查点抑制剂在多种肿瘤中取得较好疗效,目前已发现约30%的ICC者中存在PD-L1表达 [41] ,但ICC的免疫治疗应答率低,免疫检查点抑制剂单一疗法的疗效在胆管癌中仍有提升空间 [42] ,充分研究ICC中肿瘤–免疫相互作用的机制是解决现有免疫治疗问题的一个重要切入点。于是目前ICC免疫治疗方案更倾向于采用联合治疗的方案,已有相关研究验证了免疫检查点抑制剂(ICIs)的联合治疗(放疗、化疗、免疫与抑制治疗策略)是一种有效的抗肿瘤治疗方案。

一项韩国的多队列、单中心II期临床研究 [43] 采用吉西他滨和顺铂(GC方案)联合免疫检查点抑制剂度伐利尤单抗(durvalumab)联合或不联合曲美木单抗(tremelimumab)治疗晚期不可切除或复发胆管癌病人,结果提示度伐利尤单抗联合GC方案可取得中位PFS 11.0个月,中位OS 18.1个月的较好疗效,并证实了化疗联合免疫检查点抑制剂作为一线治疗方案的安全性和有效性 [44] 。基于此研究结果,在TOPAZ-1 (NCT03875235) [45] 的研究也验证了这一点,度伐利尤单抗联合化疗与单独化疗相比,死亡风险降低了20% (风险比[HR] 0.80;95% 置信区间[CI] 0.66~0.97;p = 0.021)。接受度伐利尤单抗联合化疗的患者中约四分之一(25%)在两年后仍然存活,而这一比例在接受单独化疗的患者中仅为十分之一(10%)。

最近,Shi [46] 等报道了仑伐替尼联合特瑞普利肿瘤和GEMOX (吉西他滨 + 奥)沙利铂(三联治疗)一线治疗晚期和不可切除ICC的II期临床试验数据,结果显示,三联治疗疗效优异,(客观缓解率,ORR)达80%,疾病控制率(疾病控制)率,DCR)达到93.3%,为晚期ICC提供了一种有效的治疗选择。

Lin等 [47] 对来自207例ICC样本的45个肿瘤区域进行了基因组和免疫表型的分析,发现ICC的免疫浸润存在明显的肿瘤内异质性,研究显示免疫浸润程度会影响肿瘤微环境特征:高免疫浸润区的肿瘤新抗原负荷和趋化因子表达水平较高,低免疫浸润区的细胞周期和氧化磷酸化等信号通路显著上调。提示免疫治疗需要更精确化的治疗策略才能达到更好的治疗效果。

当前关于ICC的免疫治疗及免疫联合治疗方案多为小样本及个案报道,缺乏大样本、高质量的前瞻性随机对照研究以证实。而如何选择不同种类的免疫检查点抑制剂、免疫检查点抑制剂的疗程、采用何种联合治疗方式、免疫检查点抑制是否可以作为ICC术后的常规辅助治疗仍存在争议。

3. 肝内胆管癌的局部治疗

3.1. 放射治疗进展

随着放疗技术的不断发展,放疗在ICC治疗中体现出越来越重要的地位 [48] 。放疗作为传统治疗手段,其在局部治疗中的地位已被重新认识。立体定向放疗、质子束放疗等因其高剂量、高精度、创伤小的特点,在ICC的局部治疗方面具有广阔前景。放疗可明显改善不可切除ICC病人的生存期,但由于ICC解剖位置较深,单独放疗难以达到理想的降期转化效果,多与化疗等方法联合应用。有近期研究表明,放疗与靶向药物、ICIs和化疗等治疗手段相结合的联合治疗策略,已在多种恶性肿瘤的治疗中显示出良好疗效 [49] 。

一项回顾性研究评价了体外放疗在不可切除ICC中的作用 [50] 。研究纳入84名患者,其中,与未放疗的患者相比,接受放疗的患者OS (分别为9.5个月vs. 5.1个月)。放疗的完全缓解率和部分缓解率分别为8.6%和28.5%。19例伴有黄疸的患者放疗后,完全缓解率为26.8%,部分缓解率为31.6%。该研究表明,体外放疗对不能切除的ICC患者,可改善预后,缓解黄疸症状,并验证了体外放疗治疗ICC的可行性。

除此之外,有相关试验评价了立体定向放射治疗(Stereotactic Body Radiation Therapy, SBRT)治疗后ICC的OS和局部控制情况,一项对31例患者(ECC, N = 25, ICC, N = 6)的回顾性分析显示,中位OS为15.7个月,疾病进展中位时间为16.8个月,1年局部控制率为78%,2年局部控制率为47% [51] 。

另一项回顾性研究纳入37例、43个病灶(ICC, N = 17; ECC, N = 26)的患者,根据与危险器官(OAR)的距离,进行3种治疗方案的SBRT治疗,研究显示,从SBRT开始算起,中位OS为14个月;从确诊算起,中位OS为22个月,中位无进展存活时间为9个月 [52] 。另外,选择性内放疗(SIRT)也表现出良好的治疗效果,2021年,Yu等 [53] 比较了EBRT (外照射放疗)和SIRT在治疗ICC时的有效性与安全性。结果表明,在未接受抗肿瘤治疗的ICC患者中,SIRT治疗后降期转化率和生存时间显著优于EBRT。除了EBRT与SBRT外,Hong等人正在进行的III期试验评估了高剂量低分割质子束放疗法在无法切除的HCC和ICC中的作用 [54] 。该研究表明,高剂量低分割质子治疗具有良好的局部控制率,虽然对于放疗能否改善生存结果尚不明确。

SBRT的优势在于无创、短疗程内可实现局部控制,从而提高患者治疗的依从性,对于高龄及无法手术的患者有着较好的治疗前景。由于放疗部位接近胃、肠等腹部器官,危及器官的剂量限制也是需要综合考虑的因素,以避免治疗带来过度毒性影响患者的实际获益。

Sumiyoshi等 [55] 对15例不可切除晚期ICC病人实施放疗联合系统化疗,其中11例可降期转化,9例到达R0切除,中位0S达37个月,5年生存率达23.6%。研究证实,放疗可增加PD-LI抗原的暴簬,进而提高PD-1抗体引发的免疫治疗效应 [56] 。

同样有部分小样本研究显示,放疗联合PD-1抗体治疗对于晚期ICC病人及术后复发病人均能达到良好的应答率,有效控制肝内原发病灶和淋巴结转移,使肿瘤获得部分或完全缓解。尤其是针对部分低MSI、低TMB和PD-L1阴性等免疫治疗不敏感的病人,联合治疗可显著提高转化降期概率 [57] [58] 。

3.2. 介入治疗进展

随着介入技术的发展与创新,介入治疗在肝脏恶性肿瘤的作用受到广泛关注。目前介入治疗主要有以下方法:经肝动脉介入技术包括肝动脉灌注化疗(Hepatic Arterial Infusion Chemotherapy, HAI)、经导管动脉化疗栓塞(Tran-Scatheter Arterial Chemoembolization, TACE)及经动脉放疗栓塞(Transarterial Radioembolization, TARE)等。有最新研究表明,HAI联合系统化疗对比单纯HAI和系统化疗,可以显著延长病人的PFS和OS,部分病人成功降期并实施RO切除 [59] 。

Cercek等 [60] 开展的II期临床试验评估了38名不可切除的ICC患者采用肝动脉灌注化疗(HAI)氟尿苷联合吉西他滨和奥沙利铂全身给药的情况,主要观察终点为(6个月PFS:80%)。研究结果显示,患者中位总生存期OS为25.0个月,客观缓解率ORR为58%,疾病控制率DCR为84%,有约10.5%的病人达到降期切除标准。Zhou等 [61] 回顾性纳入了88名接受了经动脉化疗栓塞术(DEB-TACE)联合微球(CSM)治疗的不可切除ICC患者。其中58例(65.9%)患者部分缓解(PR),19例(21.6%)患者疾病稳定(SD),11例(12.5%)患者疾病进展(PD)治疗后一个月,没有完全缓解(CR)。中位PFS和OS分别为3.0个月和9.0个月。该研究结果表明,DEB-TACE联合CSM介入治疗对于不可切除的ICC患者是一种安全有效的治疗方法。确定了包括全身/局部治疗在内的后续治疗是一个独立的有利预后因素,胆管扩张、广泛肝内肿瘤负荷和肝外转移是与生存不良相关的三个预后因素。

近年来,多项研究证实90Y放射性栓塞对于延缓ICC疾病进展有显著作用。一项针对45例不可切除ICC病人的研究中,90Y放射性栓塞联合吉西他滨 + 铂类使部分病人实现转化降期,其中8例接受手术治疗,术后生存期达15.6个月 [62] 。

Edeline等 [63] 开展的一项多中心I期临床试验证实,未经化疗或动脉内治疗的不可切除ICC病人接受90Y选择性放疗栓塞联合顺铂和吉西他滨治疗,疾病控制率达98%,中位PFS达14个月,中位0S为22个月,约20%的病人实现转化降期并实施RO手术切除。

3.3. 消融治疗进展

射频消融(Radiofrequency Ablation, RFA)是一种新的微创治疗方法,对于多种疾病有较好疗效。对于消化系统恶性肿瘤,RFA已被验证可用于治疗胆管癌以及胰腺癌等疾病 [64] [65] 。Wu等 [66] 的研究中共纳入505例ICC患者,其中86例行RFA治疗,419例行放化疗。通过使用倾向评分匹配法(每组84例),射频组五年总生存率17.6%,放化疗组3.8% (P < 0.001),研究结论说明在肿瘤 < 5 cm、没有血管侵犯的ICC患者中,RFA与放化疗相比有更好的生存率。

在Mizandani等 [67] 研究了133例不可手术切除的胆管及胰管恶性梗阻的患者,其中,130例患者成功完成RFA,患者均能耐受RFA,另有3例没有完成RFA是因导丝插入失败而未能成功。127例胆管内RFA的患者胆道恢复通畅,在临床上持续获得改善;6例胰管内消融的患者中,无相关并发症的发生,其中5例患者在后续的随访中未发现胰管的梗阻,只有1例因肿瘤的生长而发生支架内梗阻。在Wu等 [68] 研究中,试验组(RFA联合支架置入)的支架通畅中位时间是241 d,而对照组(单独支架置入)的通畅时间为137 d,对照组明显低于试验组(P = 0.001)。治疗后试验组癌症治疗功能评价系统之肝胆量表(The Functional Assessment of Cancer Therapy-Hepatobiliary, FACT-Hep)分数明显高于对照组(P = 0.003)。因此,对于不可切除的胆管癌患者,RFA联合支架植入术安全有效,且可明显减轻黄疸,改善患者生活质量。

有动物研究表明,RFA可能会刺激身体的抗肿瘤免疫,在随后的抗肿瘤中发挥协同效应。RFA产生的大量细胞碎片,导致树突状细胞浸润增加,可诱导肿瘤特异性T细胞应答 [69] 。另一种可能触发抗肿瘤免疫反应的机制是热休克蛋白(Heat Shock Protein, HSP)的诱导表达。过高的温度可增强癌细胞的免疫原性,同时也可促进HSP的表达。有文献报道,RFA之后,肿瘤特异性细胞毒性T细胞被激活并伴随着CD8*T细胞肿瘤特异性细胞溶解作用的显著提高,这为联合靶免治疗的基础提供了理论依据。

对于无法手术切除的肝内胆管癌患者,RFA作为一种安全有效的姑息性治疗方案,可以极大地缓解胆道压力,减少并发症,改善患者生活质量,延长患者生存时间。但RFA所带来的免疫增强效应对于联合使用靶向药物和免疫检查点抑制剂的临床效果还需进一步验证。

4. 展望

ICC病因复杂、恶性程度高、预后差。如何有效开展系统与局部治疗相结合,一直是当前临床治疗ICC患者的关键。随着ICC发病机制的深入研究、影像及介入技术的进步、新型抗肿瘤药物的研发,在治疗手段上有了跨越式进步,联合治疗将会是发挥协调增敏效果、提高疗效的有效途径。近年来靶向治疗和免疫治疗进展迅速。两种单药疗效有限,但两者联合治疗可增强肿瘤细胞免疫原性、重塑肿瘤免疫微环境,从作用机制上形成协同与互补,体现出“1 + 1 > 2”的增效结果。常见的联合治疗方案包括系统化疗联合放疗、系统化疗联合靶向治疗、放疗联合免疫治疗、化疗联合靶向及免疫治疗的三联疗法均得到了令人振奋的治疗效果。

随着精准医学的发展,ICC的诊疗也趋于个体化、精准化。二代测序技术的发展,基于基因表达和突变、蛋白质组学等技术构建的分子分型进一步加深了人们对肿瘤异质性的理解。国内外学者提出多种ICC的分子分型,如基于肿瘤微环境的分子分型、基于C1/C2信号通路的分子分型及基于单核苷酸多态性和整合分析的“炎症型”与“增殖型”分子分型 [70] [71] [72] 。将分子分型与病理有机结合,指导精准治疗决策,对于提高病人生存具有重要的临床意义。多学科团队综合诊疗(Multi-Disciplinary Team, MDT)在ICC治疗中的应用也在陆续开展中,但尚未见高证据级别的研究报道。但已有部分研究显示MDT可提高初始不可切除肝癌、肠癌肝转移等病人的成功率,使其生存获益 [73] [74] 。各学科之间取长补短,建立长期有效的沟通机制,开展全程有序的管理模式,才能有效保证MDT治疗质量。

值得指出的是,许多ICC联合治疗的相关研究多为小样本的回顾性研究,这种策略应用时间短,缺乏高证据级别研究支持,吉西他滨联合铂类等一线系统化疗方案效率不高、疗效尚不稳定。基于基因测序的精准靶向、免疫治疗有效率相对较高,但有意义的基因突变发生率低,需要筛选获益人群。新辅助与辅助治疗领域研究的兴起让人们看到了新的曙光,但也有许多亟须解决的问题。一方面,系统与局部治疗的时机、剂量、持续时间、治疗策略组合等仍需要找到最优解;另一方面,肿瘤与化疗、放疗、免疫、靶向治疗相互作用的底层机制仍有许多值得探索的地方。此外,肿瘤转化后是否需行手术切除,尤其对于系统治疗效果可观的人群,是否还有接受手术治疗的必要,是ICC治疗面临的另一个难题。因此,面对ICC联合治疗的诸多难题,许多研究也相继提出解决途径,其中合理的病人选择和有效的治疗方案是实现手术根治切除的关键。开展多模式联合治疗,发挥药物间的协同效应;建立基于分子分型的精准转化,实现ICC的个体化治疗,有望为更多不可切除的ICC病人创造手术机会,给病人长期生存带来曙光。

文章引用

刘永林,金成兵. 肝内胆管癌系统治疗与局部治疗的现状及进展
Current Status and Progress of Systemic and Local Therapy for Intrahepatic Cholangiocarcinoma[J]. 临床医学进展, 2024, 14(03): 131-141. https://doi.org/10.12677/ACM.2024.143676

参考文献

  1. 1. Kelley, R.K., Bridgewater, J., Gores, G.J. and Zhu, A.X. (2020) Systemic Therapies for Intrahepatic Cholangiocarcinoma. Journal of Hepatology, 72, 353-363. https://doi.org/10.1016/j.jhep.2019.10.009

  2. 2. Esnaola, N.F., Meyer, J.E., Karachristos, A., et al. (2016) Evaluation and Management of Intrahepatic and Extrahepatic Cholangiocarcinoma. Cancer, 122, 1349-1369. https://doi.org/10.1002/cncr.29692

  3. 3. Lamarca, A., Edeline, J., McNamara, M.G., et al. (2020) Current Standards and Future Perspectives in Adjuvant Treatment for Biliary Tract Cancers. Cancer Treatment Reviews, 84, Article ID: 101936. https://doi.org/10.1016/j.ctrv.2019.101936

  4. 4. Mosconi, C., Solaini, L., Vara, G., et al. (2021) Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma—A Systemic Review and Meta-Analysis. CardioVascular and Interventional Radiology, 44, 728-738. https://doi.org/10.1007/s00270-021-02800-w

  5. 5. Judith, W, Grace, C.-R., Megan, D., et al. (2023) Yttrium-90 Transarterial Radioembolization for Chemotherapy-Refractory Intrahepatic Cholangiocarcinoma: A Prospective, Observational Study. JVIR, 30, 1185-1192. https://doi.org/10.1016/j.jvir.2019.03.018

  6. 6. Yang, J., Wang, J., Zhou, H., et al. (2018) Efficacy and Safety of Endoscopic Radiofrequency Ablation for Unresectable Extrahepatic Cholangiocarcinoma: A Randomized Trial. Endoscopy, 50, 751-760. https://doi.org/10.1055/s-0043-124870

  7. 7. Oh, D.Y., He, A.R., Qin, S., et al. (2022) Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evidence 1, EVIDoa2200015. https://doi.org/10.1056/EVIDoa2200015

  8. 8. Yang, J., Zhu, F., Wang, H., Rong, L., Wu, P., Li, Z., et al. (2022) The Efficacy and Safety of Immune Checkpoint Inhibitor Based Combination Therapy in Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Cancer Manag Res, 14, 1399-1411.

  9. 9. Mazzaferro, V., Gorgen, A., Roayaie, S., Droz Dit Busset, M. and Sapisochin, G. (2020) Liver Resection and Transplantation for Intrahepatic Cholangiocarcinoma. Journal of Hepatology, 72, 364-377. https://doi.org/10.1016/j.jhep.2019.11.020

  10. 10. Chun, Y.S. and Javle, M. (2017) Systemic and Adjuvant Therapies for Intrahepatic Cholangiocarcinoma. Cancer Control, 24, 1-7. https://doi.org/10.1177/1073274817729241

  11. 11. Amin, M.B., Greene, F.L., Edge, S.B., et al. (2017) The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-Based to a More “Personalized” Approach to Cancer Staging. CA: A Cancer Journal for Clinicians, 67, 93-99. https://doi.org/10.3322/caac.21388

  12. 12. Wright, G.P., Perkins, S., Jones, H., et al. (2018) Surgical Resection Does Not Improve Survival in Multifocal Intrahepatic Cholangiocarcinoma: A Comparison of Surgical Resection with Intra-Arterial Therapies. Annals of Surgical Oncology, 25, 83-90. https://doi.org/10.1245/s10434-017-6110-1

  13. 13. Primrose, J.N., Fox, R.P., Palmer, D.H., et al. (2019) Capecitabine Compared with Observation in Resected Biliary Tract Cancer (BILCAP): A Randomised, Controlled, Multicentre, Phase 3 Study. The Lancet Oncology, 20, 663-673.

  14. 14. Kupietzky, A. and Ariche, A. (2022) Surgical Aspects of Intrahepatic Cholangiocarcinoma. Cancers, 14, Article No. 6265. https://doi.org/10.3390/cancers14246265

  15. 15. 潘奇, 王鲁. 肝内胆管细胞癌手术难点和范围[J]. 中国实用外科杂志, 2016, 36(6): 706-708.

  16. 16. Farges, O., Fuks, D., Boleslawski, E., et al. (2011) Influence of Surgical Margins on Outcome in Patients with Intrahepatic Cholangiocarcinoma: A Multicenter Study by the AFC-IHCC-2009 Study Group. Annals of Surgery, 254, 824-830. https://doi.org/10.1097/SLA.0b013e318236c21d

  17. 17. Shimada, K., Sano, T., Nara, S., et al. (2009) Therapeutic Value of Lymph Node Dissection during Hepatectomy in Patients with Intrahepatic Cholangiocellular Carcinoma with Negative Lymph Node Involvement. Surgery, 145, 411-416. https://doi.org/10.1016/j.surg.2008.11.010

  18. 18. Eliza, W.B., Jordan, M.C., Timothy, M.P., et al. (2021) Surgical Treatment of Intrahepatic Cholangiocarcinoma: Current and Emerging Principles. Journal of Clinical Medicine, 10, Article No. 104. https://doi.org/10.3390/jcm10010104

  19. 19. Edeline, J., Benabdelghani, M., Bertaut, A., et al. (2019) Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. Journal of Clinical Oncology, 37, 658-667. https://doi.org/10.1200/JCO.18.00050

  20. 20. Hong, J.C., Jones, C.M., Duffy, J.P., et al. (2011) Comparative Analysis of Resection and Liver Transplantation for Intrahepatic and Hilar Cholangiocarcinoma: A 24-Year Experience in a Single Center. Archives of Surgery, 146, 683-689. https://doi.org/10.1001/archsurg.2011.116

  21. 21. Primrose, J.N., Fox, R.P., Palmer, D.H., et al. (2019) Capecitabine Compared with Observation in Resected Biliary Tract Cancer (BILCAP): A Randomised, Controlled, Multicentre, Phase 3 Study [Published Correction Appears in Lancet Oncol. 2019 Apr 2]. The Lancet Oncology, 20, 663-673.

  22. 22. Kim, T.W., Chang, H.M., Kang, H.J., et al. (2003) Phase II Study of Capecitabine plus Cisplatin as First-Line Chemotherapy in Advanced Biliary Cancer. Annals of Oncology, 14, 1115-1120. https://doi.org/10.1093/annonc/mdg281

  23. 23. Hong, Y.S., Lee, J., Lee, S.C., Hwang, I.G., Choi, S.H., Heo, J.S., Park, J.O., Park, Y.S., Lim, H.Y. and Kang, W.K. (2007) Phase II Study of Capecitabine and Cisplatin in Previously Untreated Advanced Biliary Tract Cancer. Cancer Chemotherapy and Pharmacology, 8, 321-328. https://doi.org/10.1007/s00280-006-0380-9

  24. 24. Valle, J., Wasan, H., Palmer, D.H., et al. (2010) Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. The New England Journal of Medicine, 362, 1273-1281. https://doi.org/10.1056/NEJMoa0908721

  25. 25. Shroff, R.T., Javle, M.M., Xiao, L., et al. (2019) Gemcitabine, Cisplatin, and Nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncology, 5, 824-830. https://doi.org/10.1001/jamaoncol.2019.0270

  26. 26. Lamarca, A., Palmer, D.H., Wasan, H.S., et al. (2021) Second-Line FOLFOX Chemotherapy versus Active Symptom Control for Advanced Biliary Tract Cancer (ABC-06): A Phase 3, Open-Label, Randomised, Controlled Trial. The Lancet Oncology, 22, 690-701. https://doi.org/10.1016/S1470-2045(21)00027-9

  27. 27. Mason, M.C., Massarweh, N.N., Tzeng, C.D., et al. (2021) Time to Rethink Upfront Surgery for Resectable Intrahepatic Cholangiocarcinoma? Implications from the Neoadjuvant Experience. Annals of Surgical Oncology, 28, 6725-6735. https://doi.org/10.1245/s10434-020-09536-w

  28. 28. Choi, W.J., Ivanics, T., Claasen, M., et al. (2022) Is It Safe to Administer Neoadjuvant Chemotherapy to Patients Undergoing Hepatectomy for Intrahepatic Cholangiocarcinoma? ACS-NSQIP Propensity-Matched Analysis. HPB (Oxford), 24, 1535-1542. https://doi.org/10.1016/j.hpb.2022.03.010

  29. 29. Buettner, S., Koerkamp, B.G., Ejaz, A., et al. (2017) The Effect of Preoperative Chemotherapy Treatment in Surgically Treated Intrahepatic Cholangiocarcinoma Patients—A Multi-Institutional Analysis. Journal of Surgical Oncology, 115, 312-318. https://doi.org/10.1002/jso.24524

  30. 30. Sutton, T.L., Billingsley, K.G., Walker, B.S., et al. (2021) Neoadjuvant Chemotherapy Is Associated with Improved Survival in Patients Undergoing Hepatic Resection for Intrahepatic Cholangiocarcinoma. The American Journal of Surgery, 221, 1182-1187. https://doi.org/10.1016/j.amjsurg.2021.02.029

  31. 31. Chen, J.S., Hsu, C., Chiang, N.J., et al. (2015) A KRAS Mutation Statusstratified Randomized Phase II Trial of Gemcitabine and Oxaliplatin Alone or in Combination with Cetuximab in Advanced Biliary Tract Cancer. Annals of Oncology, 26, 943-994. https://doi.org/10.1093/annonc/mdv035

  32. 32. Valle, J.W., Wasan, H., Lopes, A., et al. (2015) Cediranib or Placebo in Combination with Cisplatin and Gemcitabine Chemotherapy for Patients with Advanced Biliary Tract Cancer (ABC-03): A Randomised Phase 2 Trial. The Lancet Oncology, 16, 967-978. https://doi.org/10.1016/S1470-2045(15)00139-4

  33. 33. Demols, A., Borbath, I., Van Den Eynde, M., et al. (2020) Regorafenib after Failure of Gemcitabine and Platinum-Based Chemotherapy for Locally Advanced/Metastatic Biliary Tumors: REACHIN, a Randomized, Double-Blind, Phase II Trial. Annals of Oncology, 31, 1169-1177. https://doi.org/10.1016/j.annonc.2020.05.018

  34. 34. Lamarca, A., Edeline, J. and Goyal, L. (2022) How I Treat Biliary Tract Cancer. ESMO Open, 7, Article ID: 100378. https://doi.org/10.1016/j.esmoop.2021.100378

  35. 35. Jaidee, R., Kukongviriyapan, V., Senggunprai, L., et al. (2022) Inhibition of FGFR2 Enhances Chemosensitivity to Gemcitabine in Cholangiocarcinoma through the AKT/MTOR and EMT Signaling Pathways. Life Sciences, 296, Article ID: 120427. https://doi.org/10.1016/j.lfs.2022.120427

  36. 36. Abou-Alfa, G.K., Sahai, V., Hollebecque, A., et al. (2020) Pemigatinib for Previously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-Label, Phase 2 Study. The Lancet Oncology, 21, 671-684. https://doi.org/10.1016/S1470-2045(20)30109-1

  37. 37. Goyal, L., Meric-Bernstam, F., Hollebecque, A., et al. (2023) Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. The New England Journal of Medicine, 388, 228-239. https://doi.org/10.1056/NEJMoa2206834

  38. 38. Abou-Alfa, G.K., Macarulla, T., Javle, M.M., et al. (2020) Ivosidenib in IDH1-Mutant, Chemotherapy-Refractory Cholangiocarcinoma (ClarIDHy): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study [Published Correction Appears in Lancet Oncol. 2020 Oct; 21(10): E462]. The Lancet Oncology, 21, 796-807. https://doi.org/10.1016/S1470-2045(20)30157-1

  39. 39. Lamberti, D., Cristinziano, G., Porru, M., et al. (2019) HSP90 Inhibition Drives Degradation of FGFR2 Fusion Proteins: Implications for Treatment of Cholangiocarcinoma [Published Correction Appears in Hepatology. 2019 Feb; 69(2): 925]. Hepatology, 69, 131-142. https://doi.org/10.1002/hep.30127

  40. 40. Nakamura, H., Arai, Y., Totoki, Y., Shirota, T., Elzawahry, A., et al. (2015) Genomic Spectra of Biliary Tract Cancer. Nature Genetics, 47, 1003-1010. https://doi.org/10.1038/ng.3375

  41. 41. Lu, J.C., Zeng, H.Y., Sun, Q.M., et al. (2019) Distinct PD-L1/PD-1 Profiles and Clinical Implications in Intrahepatic Cholangiocarcinoma Patients with Different Risk Factors. Theranostics, 9, 4678-4687. https://doi.org/10.7150/thno.36276

  42. 42. Kim, R.D., Chung, V., Alese, O.B., et al. (2020) A Phase 2 Mul-ti-Institutional Study of Nivolumab for Patients with Advanced Refractory Biliary Tract Cancer. JAMA Oncology, 6, 888-894. https://doi.org/10.1001/jamaoncol.2020.0930

  43. 43. Oh, D.Y., Chen, L.T., He, A.R., et al. (2019) A Phase III, Randomized, Double-Blind, Placebo-Controlled, International Study of Durvalumab in Combination with Gemcitabine plus Cisplatin for Patients with Advanced Biliary Tract Cancers: TOPAZ-1. Annals of Oncology, 30, V319. https://doi.org/10.1093/annonc/mdz247.157

  44. 44. Oh, D.Y., Lee, K.H., Lee, D.W., et al. (2022) Gemcitabine and Cisplatin plus Durvalumab with or without Tremelimumab in Chemotherapy-Naive Patients with Advanced Biliary Tract Cancer: An Open Label, Single Centre, Phase 2 Study. The Lancet Gastroenterology and Hepatology, 7, 522-532. https://doi.org/10.1016/S2468-1253(22)00043-7

  45. 45. Oh, D.-Y., et al. (2022) Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evidence, 1, 1-11. https://doi.org/10.1056/EVIDoa2200015

  46. 46. Shi, G.M., Huang, X.Y., Wu, D., et al. (2023) Toripalimab Com-bined with Lenvatinib and GEMOX Is Apromising Regimen as First-Line Treatment for Advanced Intrahepatic Cholangiocarcinoma: A Single-Center, Single-Arm, Phase 2 Study. Signal Transduction and Targeted Therapy, 8, Ar-ticle No. 106. https://doi.org/10.1038/s41392-023-01317-7

  47. 47. Lin, Y., Peng, L., Dong, L., et al. (2022) Geospa-tial Immune Heterogeneity Reflects the Diverse Tumor-Immune Interactions in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 12, 2350-2371. https://doi.org/10.1158/2159-8290.CD-21-1640

  48. 48. Wang, N., Huang, A., Kuang, B., et al. (2022) Progress in Radiotherapy for Cholangiocarcinoma. Frontiers in Oncology, 12, Article ID: 868034. https://doi.org/10.3389/fonc.2022.868034

  49. 49. Herrera, F.G., Bourhis, J. and Coukos, G. (2017) Radiotherapy Combination Opportunities Leveraging Immunity for the Next Oncology Practice. CA: A Cancer Journal for Clinicians, 67, 65-85. https://doi.org/10.3322/caac.21358

  50. 50. Chen, Y.X., Zeng, Z.C., Tang, Z.Y., et al. (2010) Determining the Role of External Beam Radiotherapy in Unresectable Intrahepatic Cholangiocarcinoma: A Retrospective Analysis of 84 Patients. BMC Cancer, 10, Article No. 492. https://doi.org/10.1186/1471-2407-10-492

  51. 51. Sandler, K.A., Veruttipong, D., Agopian, V.G., et al. (2016) Ste-reotactic Body Radiotherapy (SBRT) for Locally Advanced Extrahepatic and Intrahepatic Cholangiocarcinoma. Advances in Radiation Oncology, 1, 237-243. https://doi.org/10.1016/j.adro.2016.10.008

  52. 52. Gkika, E., Hallauer, L., Kirste, S., et al. (2017) Stereotactic Body Radiotherapy (SBRT) for Locally Advanced Intrahepatic and Extrahepatic Cholangiocarcinoma. BMC Cancer, 17, Article No. 781. https://doi.org/10.1186/s12885-017-3788-1

  53. 53. Yu, Q., Liu, C., Pillai, A., et al. (2021) Twenty Years of Radiation Therapy of Unresectable Intrahepatic Cholangiocarinoma: Internal or External? A Systematic Review and Meta-Analysis. Liver Cancer, 10, 433-450. https://doi.org/10.1159/000516880

  54. 54. Hong, T.S., Wo, J.Y., Yeap, B.Y., et al. (2016) Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients with Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Journal of Clinical Oncology, 34, 460-468. https://doi.org/10.1200/JCO.2015.64.2710

  55. 55. Sumiyoshi, T., Shima, Y., Okabayashi, T., et al. (2018) Chemoradio-Therapy for Initially Unresectable Locally Advanced Cholangiocarcinoma. World Journal of Surgery, 42, 2910-2918. https://doi.org/10.1007/s00268-018-4558-1

  56. 56. Chen, C., Liu, Y. and Cui, B. (2021) Effect of Radi-otherapy on T Cell and PD-1/PD-L1 Blocking Therapy in Tumor Microenvironment. Human Vaccines & Immunotherapeutics, 17, 1555-1567. https://doi.org/10.1080/21645515.2020.1840254

  57. 57. Liu, X., Yao, J., Song, L., et al. (2019) Local and Abscopal Responses in Advanced Intrahepatic Cholangiocarcinoma with Low TMB, MSS, PMMR and Negative PD-L1 Expres-sion Following Combined Therapy of SBRT with PD-1 Blockade. The Journal for ImmunoTherapy of Cancer, 7, Arti-cle No. 204. https://doi.org/10.1186/s40425-019-0692-z

  58. 58. Liu, Z.L., Liu, X., Peng, H., et al. (2020) Anti-PD-1 Immunotherapy and Radiotherapy for Stage IV Intrahepatic Cholangiocar-Cinoma: A Case Report. Frontiers in Medicine (Lausanne), 7, Article No. 368. https://doi.org/10.3389/fmed.2020.00368

  59. 59. Massani, M., Bonariol, L. and Stecca, T. (2021) Hepatic Arterial Infusion Chemotherapy for Unresectable Intrahepatic Cholan-Giocarcinoma, a Comprehensive Review. Journal of Clinical Medicine, 10, Article No. 2552. https://doi.org/10.3390/jcm10122552

  60. 60. Cercek, A., Boerner, T., Tan, B.R., et al. (2020) Assessment of Hepatic Arterial Infusion of Flouridine in Combination with Systemic Gemcitabine and Oxaliplatin in Patients with Un-Resectable Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncology, 6, 60-67. https://doi.org/10.1001/jamaoncol.2019.3718

  61. 61. Zhou, T.Y., Zhou, G.H., Zhang, Y.L., et al. (2020) Drug-Eluting Beads Transarterial Chemoembolization with CalliSpheres Microspheres for Treatment of Unresectable Intrahepatic Cholan-Giocarcinoma. Journal of Cancer, 11, 4534-4541. https://doi.org/10.7150/jca.39410

  62. 62. Rayar, M., Sulpice, L., Edeline, J., et al. (2015) Intra-Arterial Yttrium-90 Radioembolization Combined with Systemic Chemotherapy Is a Promising Method for Downstaging Unresectable Huge Intrahepatic Cholangiocarcinoma to Surgical Treatment. Annals of Surgical Oncology, 22, 3102-3108. https://doi.org/10.1245/s10434-014-4365-3

  63. 63. Edeline, J., Touchefeu, Y., Guiu, B., et al. (2020) Radioembolization plus Chemotherapy for First-Line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncology, 6, 51-59. https://doi.org/10.1001/jamaoncol.2019.3702

  64. 64. Rustagi, T. and Jamidar, P.A. (2014) Intraductal Radiofrequency Ablation for Management of Malignant Biliary Obstruction. Digestive Diseases and Sciences, 59, 2635-2641. https://doi.org/10.1007/s10620-014-3237-9

  65. 65. Figueroa-Barojas, P., Bakhru, M.R., Habib, N.A., et al. (2013) Safety and Efficacy of Radiofrequency Ablation in the Management of Unresectable Bile Duct and Panereatie Cancer: A Novel Palliation Technique. Journal of Oncology, 2013, Article ID: 910897. https://doi.org/10.1155/2013/910897

  66. 66. Wu, L., Tsilimigras, D.I., Farooq, A., et al. (2019) Potential Survival Benefit of Radiofrequency Ablation for Small Solitary Intrahepatic Cholangiocarcinoma in Nonsurgically Managed Patients: A Population-Based Analysis. Journal of Surgical Oncology, 120, 1358-1364. https://doi.org/10.1002/jso.25736

  67. 67. Mizandari, M., Kumar, J., Pai, M., et al. (2018) Interventional Radiofre-quency Ablation: A Promising Therapeutic Modality in the Management of Malignant Biliary and Pancreatic Duct Ob-struction. Journal of Cancer, 9, 629-637. https://doi.org/10.7150/jca.23280

  68. 68. Wu, T.T., Li, W.M., Li, H.C., et al. (2017) Percutaneous Intraductal Ra-diofrequency Ablation for Extrahepatic Distal Cholangiocarcinoma: A Method for Prolonging Stent Patency and Achieving Better Functional Status and Quality of Life. CardioVascular and Interventional Radiology, 40, 260-269. https://doi.org/10.1007/s00270-016-1483-2

  69. 69. Jin, Y., Zhao, Q., Fan, C., et al. (2023) Influence of Peripheral T-Cell Subsets of Radiofrequency Ablation of Tumors from Different Origins. Asian Journal of Surgery. https://doi.org/10.1016/j.asjsur.2023.12.089

  70. 70. Job, S., Rapoud, D., Dos Santos, A., et al. (2020) Identification of Four Immune Subtypes Characterized by Distinct Composition and Functions of Tumor Microenvironment in In-tra-Hepatic Cholangiocarcinoma. Hepatology, 72, 965-981. https://doi.org/10.1002/hep.31092

  71. 71. Chaisaingmongkol, J., Budhu, A., Dang, H., et al. (2017) Common Mo-lecular Subtypes among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Cell, 32, 57-70.E3. https://doi.org/10.1016/j.ccell.2017.05.009

  72. 72. Sia, D., Hoshida, Y., Villanueva, A., et al. (2013) Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroen-terology, 144, 829-840. https://doi.org/10.1053/j.gastro.2013.01.001

  73. 73. Chow, F.C. and Chok, K.S. (2019) Colorectal Liver Metastases: An Update on Multidisciplinary Approach. World Journal of Hepatology, 11, 150-172. https://doi.org/10.4254/wjh.v11.i2.150

  74. 74. Charriere, B., Muscari, F., Maulat, C., et al. (2017) Outcomes of Pa-tients with Hepatocellular Carcinoma Are Determined in Multidisciplinary Team Meetings. Journal of Surgical Oncology, 115, 330-336. https://doi.org/10.1002/jso.24500

期刊菜单