Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67969 , 7 pages
10.12677/ACM.2023.1361440

红细胞分布宽度对肺栓塞临床价值研究的进展

赵慧芳1,吕荣华2*

1青海大学研究生院,青海 西宁

2青海大学附属医院急诊内科,青海 西宁

收稿日期:2023年5月28日;录用日期:2023年6月23日;发布日期:2023年6月30日

摘要

肺栓塞(PE)是常见的心血管疾病之一,其漏诊率及致死率较高,近年来,许多研究发现红细胞分布宽度(RDW)与肺栓塞有一定的相关性,与肺栓塞的早期预测及病情严重程度相关。本文就RDW对PE患者的早期预测价值、严重程度相关性及可能机制进行综述。

关键词

红细胞分布宽度,肺栓塞,早期预测,严重程度

Advances in the Study of the Clinical Value of Red Blood Cell Distribution Width in Pulmonary Embolism

Huifang Zhao1, Ronghua Lyu2*

1Graduate School of Qinghai University, Xining Qinghai

2Department of Emergency Medicine, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: May 28th, 2023; accepted: Jun. 23rd, 2023; published: Jun. 30th, 2023

ABSTRACT

Pulmonary embolism (PE) is one of the common cardiovascular diseases with a high rate of missed diagnosis and mortality. In recent years, many studies have found a correlation between red blood cell distribution width (RDW) and pulmonary embolism, and it’s correlated with early prediction of pulmonary embolism and severity of disease. In this paper, we review the early predictive value, severity correlation and possible mechanisms of RDW in patients with PE.

Keywords:Red Blood Cell Distribution Width, Pulmonary Embolism, Early Prediction, Severity

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肺栓塞(pulmonary embolism, PE)是静脉血栓栓塞症(VTE)的一种形式。静脉血栓栓塞症(VTE),包括PE和深静脉血栓形成(DVT),也是心血管疾病死亡的主要。静脉血栓栓塞症(VTE)是第三大常见心血管疾病,每年发病率约为1/1000人,1年病死率高达25% [1] 。

在全球范围内,PE的年发病率为39~115/10万人 [2] 。在我国,住院患者中PE的比例从2007年的1.2/10万人上升至2016年的7.1/10万人 [3] 。目前临床上用于诊断PE的方法多样,如螺旋CT肺动脉造影、放射性核素肺通气/血流灌注扫描和CT肺动脉造影(computed tomography pulmonary angiography, CTPA)等方法为主,其诊断准确率虽高,但检查费用昂贵,属于有创检查。最常用的是CT肺动脉造影(computed tomography pulmonary angiography, CTPA) [4] [5] ,CTPA可直观显示肺动脉内血栓形态、部位及血管堵塞程度,诊断急性肺栓塞(acute pulmonary embolism, APE)的灵敏度、特异度均较高,是目前临床诊断PE的“金标准” [2] [6] 。其诊断准确率虽高,但临床实际工作中,肺栓塞起病多样,缺乏特异性症状和体征,临床漏诊和误诊率较高,在欧盟6个总人口达4.544亿主要国家中,每年超过37万人的死亡与VTE有关,34%的患者表现为突发致死性PTE,59%的患者直到死亡仍未确诊,只有7%的患者在死亡之前明确诊断为PTE [2] 。而且医师对PE的认识水平参差不齐、基层医院条件限制,且不适用于肾功能不全、对造影剂过敏和危急重症患者 [7] 。

因此,通过简单的血液常规检查,对疾病早期预测及病情严重程度的评估更有临床意义,红细胞分布宽度(RDW)是血常规的参数之一,是红细胞异质性的定量测量 [8] ,反映外周血红细胞体积异质性,其正常范围是11.5%~14.5%。RDW值低于参考值无临床意义,但高于参考值表示红细胞大小不均,反映红细胞稳态的失调,包括红细胞异质性增加 [9] 。一项研究提示RDW均值的界值15.65%与Rhodes等人分析的预测死亡的基线RDW的界值15.7%相似,RDW > 16.2%反映了死亡升高趋势,当RDW > 17.7%提示显著更高的死亡风险 [10] 。完整的血细胞计数通常在医院环境中获得,其中包括RDW。大多数情况下,高RDW水平与低氧、氧化应激、贫血、血液病、癌症、肾脏疾病及术后患者等有关 [11] 。最近,RDW水平也被认为是一个炎性标志,高RDW水平与CRP和ESR相关 [12] ,右室(RV)功能障碍 [13] ,以及左心室充盈压增加 [14] 。RDW还被发现与心血管疾病、慢性心力衰竭(CHF)、重症监护病房、感染性休克以及最近的VTE和PE患者的不良预后密切相关 [15] [16] 。红细胞异质性和异常增多是血栓前状态的重要因素,如PE和DVT,因为它们影响著名的Virchow血瘀症、内皮损伤和高凝状态 [17] 。本文将对RDW与PE患者的早期预测价值、严重程度相关性及可能机制进行综述。

2. RDW对PE的早期预测

近来多项研究表明,较高的RDW值与急性PE显著相关 [18] [19] 。一项研究发现,以RDW > 18.9%为界值预测急性PE的特异度为93.4% (敏感度20.7%) [20] 。此外,在第一次发生深静脉血栓事件的患者中,高RDW已被证明与PE风险的增加独立相关(p < 0.001) [21] 。

Giuseppe Lippi等人 [22] 在2014年对意大利帕尔马大学医院急诊科(ED)诊断为静脉血栓的431名患者为研究人群,其中包括浅静脉血栓形成、深静脉血栓形成(DVT)和/或肺血栓(PE)病例。对照人群包括接受常规实验室检测的967名的门诊患者。静脉血栓形成患者的RDW值与对照组相比显著升高,从浅血栓形成患者、孤立DVT患者到PE患者,RDW值呈递增趋势。RDW在ED入院时表现出显著的诊断性能,分别在浅静脉血栓、DVT和PE的曲线下面积(AUC)分别为0.65 (95% CI, 0.62~0.68; p < 0.001)、0.63 (95% CI, 0.59~0.68; p < 0.001)和0.70 (95% CI, 0.65~0.75; p < 0.001)。提示RDW值的增加被发现是隔离的DVT和PE的一个重要的危险因素。

Bucciarelli等人 [1] 对2007~2013年间730例首次客观确诊的VTE患者(300例无缘性VTE和430例诱发性VTE)和352例健康对照进行病例对照研究。在VTE后至少三个月,采血进行血栓形成检查和完整的血细胞计数,包括RDW。结果提示RDW > 90%百分位数(N 14.6%)的个体发生静脉血栓栓塞症的风险是RDW ≤ 90%百分位数的个体的2.5倍。无缘性和激发性VTE的风险相似,但肺栓塞患者(调整后的优势比3.19 [95% CI: 1.68~6.09])略高于单纯深静脉血栓患者(2.29 [95% CI: 1.22~4.30])。

使用RDW作为PE的客观预测指标可以帮助预测发生肺栓塞可能性,临床医生通过RDW指标选择进行“金标准”的诊断测试,如放射性核素肺通气/血流灌注扫描和CT肺动脉造影。经过验证和修订的日内瓦评分系统预测PE经常因为包含主观变量而受到批评 [23] [24] 。另一方面,PE排除标准只使用客观标准,但其使用受到限制,且基层医生常常忽视RDW这个指标,并且因为PE的临床概率较低,其特异性为97%,敏感性为22%,也常受到其他疾病的干扰,如贫血、炎症、癌症等相关疾病。所以RDW可增加预测PE诊断的客观标准。

3. RDW与PE的严重程度

目前临床对PE严重程度进行危险分层,是欧洲心脏病学会提出的方法首先是指使用肺栓塞严重程度指数(PESI)或简化PESI (sPESI)进行风分层及肺动脉阻塞指数(PAOI),这是由CT测量的 [25] 。

Zhou等人 [26] 在2014~2016年间共纳入309例PE患者。30 d死亡率为14.9% (46/309)。入院时RDW平均值为13.9% ± 0.6% (10.7%~21.9%)。高RDW组30 d死亡率高于RDW正常组(12.5% vs 23.5%, χ2 = 5)。RDW预测30天死亡率的曲线下面积为0.6646 (95% CI, 0.5585~0.7518)。这一临界点为16%。RDW和sPESI的约登指数分别为0.400和0.453。当加入RDW时,修正后的PESI具有最高的预测精度,约登指数为0.499。提示RDW是预测PE患者30天死亡率的一个简单而有用的指标。

根据吴晓飞等人 [27] 的一项研究,共收集846例肺栓塞患者,其中预后571人存活,293人死亡,根据数据回归分析显示,RDW ≥ 15.14%是1年死亡率独立危险因素,其敏感度0.614,特异度0.707,将RDW加入到sPESI中作为一个新预测指标时,其显示的1年死亡率的曲线下面积(AUC)值为0.752。提示RDW值是入住重症监护室的肺栓塞患者1年死亡率的独立预测因子。

多项研究表明,当RDW被加入到sPESI中时,预测的准确性很高,大面积PE患者的RDW显著高于非大面积PE患者(p < 0.0001),确定RDW的最佳界值为14.55%,敏感性为92.1%,特异性为55.2% [18] 。

另一个衡量肺栓塞严重程度的指标是肺动脉阻塞指数(PAOI),这是由CT测量的,表明了诊断为PE的患者的闭塞程度 [28] 。

一项研究在将PAOI值分为轻度(<40%)、中度(40%~60%)和重度(>60%)后,显示RDW随着PAOI值的增加而增加(p < 0.0001),非大规模和大面积PE患者在PAOI在统计学上的显着差异(p < 0.0001) [18] 。此外,Zorlu等人 [29] 在2008年~2010年期间纳入165例确诊为急性PE的患者。影响RDW的疾病排除外,共有136名连续的急性PE患者接受评估。根据受试者–操作特征曲线分析,RDW预测早期死亡率的最佳临界值为 > 14.6%,敏感性为95.2%,特异性为53%。只有入院时RDW > 14.6%和休克的存在与急性PE早期死亡的风险增加相关。Sunnetcioglu等人 [30] 研究中发现RDW在PE患者中较高,并且RDW与血栓定位有显著的相关性。平均RDW在有局限性血栓的患者中显著升高,结果表明,RDW可以在临床环境下将有局限性血栓的患者与其他动脉分支血栓的患者区分开来。RDW可以客观地判断主肺动脉内存在大量PE、PAOI和/或PE时的整体PE严重程度。对严重程度进行分类可以帮助临床医生在急性情况下确定适当的患者监测 [31] 。

4. RDW的病理生理及机制

红细胞生成主要产生于骨髓。红细胞的主要生理作用是将气体(O2,CO2)从肺输送到组织,并维持全身的酸/碱平衡。但最近的临床和实验证据表明,红细胞参与一氧化氮(NO)代谢和血液流变学的控制,以及红细胞分泌功能(即通过释放生物活性分子,包括NO、NO代谢物和ATP),直接参与组织保护和心血管动态平衡的调节 [32] 。在人类中,红细胞的寿命为120天。在正常情况下,每天合成约1%的红细胞,但在急性或慢性应激期间,红细胞生成可大幅增加 [33] 。典型的成熟红细胞呈圆盘状,直径在6~8 μm之间,总体积在80~100 fL之间,也称为MCV。

红细胞增多及异质性增加血液粘度和迫使血小板朝向血管壁,在凝血中起到血栓前作用。红细胞的异质性可能对病理生理有很大的影响 [34] 。此外,红细胞积极参与凝血酶的生成。与血小板不同,红细胞通过甲硫咪唑凝血酶途径产生凝血酶,这在血栓形成和稳定方面有影响 [35] 。在人群中的红细胞压积变化与静脉血栓栓塞症有关 [36] 。因此,更多地关注红细胞异质性可能是合理的,并可能揭示静脉血栓栓塞症的新机制和风险因素。

4.1. 低氧血症

低氧血症引起氧分压降低,氧分压降低导致促红细胞生成素增加,促红细胞生成素是调节红细胞生成和成熟的因素之一,从而导致RDW升高 [37] 。低氧状况就是这样一种危险因素,它会扰乱内皮细胞的完整性,导致抗凝血剂和促凝血蛋白之间的不平衡 [38] 。

短暂的氧缺乏通过上调红细胞的产生来刺激携氧能力的增加。作为对氧分压(PaO2)降低的反应,肾皮质通过低氧诱导转录因子将促红细胞生成素(EPO)分泌到循环中 [39] 。长期缺氧可导致骨髓红系造血代偿增加,血液中红细胞增多,其异质性也增加,最终导致RDW增加。

4.2. 炎症和氧化应激

炎性细胞因子可通过两种途径调节红细胞生成:第一,通过抑制肾脏和肝脏的EPO基因转录;第二,通过抑制骨髓的红系细胞成熟。炎症刺激增加红细胞活性和未成熟红细胞的产生,从而引起RDW浓度较高 [40] 。

氧化应激可以改变红细胞的形态,会导致红细胞膜破坏和红细胞脆性增加,使红细胞生成减少和缩短其寿命,导致RDW增高,通过诱导红细胞与内皮细胞黏附和降低红细胞的变形能力,从而提高血管阻力,增加了血栓形成的机会 [41] 。

炎症和氧化应激可使红细胞异质性增加,红细胞异质性增加可使RDW增加,增加血液黏滞度,使血液流速更加缓慢,同时炎症也会刺激纤维蛋白原增加,其可使红细胞聚集,引发聚集增加、粘度增加和流量进一步减少的恶性循环,从而导致血栓形成的风险增加 [42] 。此外,炎症和氧化应激也延长血细胞与血管壁的接触时间,通过增加血小板和激活纤维蛋白而触发血栓形成 [34] 。

4.3. 其他原因

肺栓塞好发生于老年、癌症、术后的人,这些患者,存在营养不良及贫血的状况,营养不良和贫血加剧了红细胞生成,红细胞异质性出现,导致RDW升高,血液粘稠度增加,考虑与凝血相关,具体机制不详。

炎症时是神经内分泌系统被激活,分泌血管紧张素II和去甲肾上腺素,可促进促红细胞生成素生成,引起RDW升高,血液粘稠度增加,加速血栓形成 [43] 。

高原区域的人,本身处于低氧环境中,低氧刺激诱导红细胞增多,其异质性增加,RDW增加,此外,高原性红细胞增多症使血液粘稠度增加,血流动力学改变,导致血栓形成风险大大增加 [44] 。

5. 小结

综上所述,RDW与肺栓塞呈正相关,可以早期预测肺栓塞及肺栓塞的严重程度,相关研究也提供相关数据证实了这一点,并且RDW费用低廉、容易获得,联合sPES可以用于基层医院去预判肺栓塞及其严重程度,但RDW受很多相关疾病的影响,如血液系统的疾病、癌症、孕妇等特殊人群,所以在收集相关数据时需要排除相关人群。虽然目前很多研究都提示RDW与肺栓塞有一定相关性,但相关的机制尚不清楚,还需我们去逐步探索。

文章引用

赵慧芳,吕荣华. 红细胞分布宽度对肺栓塞临床价值研究的进展
Advances in the Study of the Clinical Value of Red Blood Cell Distribution Width in Pulmonary Embolism[J]. 临床医学进展, 2023, 13(06): 10291-10297. https://doi.org/10.12677/ACM.2023.1361440

参考文献

  1. 1. Bucciarelli, P., Maino, A., Felicetta, I., Abbattista, M., Passamonti, S.M., Artoni, A. and Martinelli, I. (2015) Association between Red Cell Distribution Width and Risk of Venous Thromboembolism. Thrombosis Research, 136, 590-594. https://doi.org/10.1016/j.thromres.2015.07.020

  2. 2. Konstantinides, S.V., Meyer, G., Becattini, C., Bueno, H., Geersing, G.J., Harjola, V.P., Huisman, M.V., Humbert, M., Jennings, C.S., Jiménez, D., Kucher, N., Lang, I.M., Lankeit, M., Lorusso, R., Mazzolai, L., Meneveau, N., Ní Áinle, F., Prandoni, P., Pruszczyk, P., Righini, M., Torbicki, A., Van Belle, E. and Zamorano, J.L. (2020) 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmo-nary Embolism Developed in Collaboration with the European Respiratory Society (ERS). European Heart Journal, 41, 543-603. https://doi.org/10.1093/eurheartj/ehz405

  3. 3. Zhang, Z., Lei, J., Shao, X., Dong, F., Wang, J., Wang, D., Wu, S., Xie, W., Wan, J., Chen, H., Ji, Y., Yi, Q., Xu, X., Yang, Y., Zhai, Z. and Wang, C. (2019) China Venous Thromboembolism Study Group. Trends in Hospitalization and In-Hospital Mortality from VTE, 2007 to 2016, in China. Chest, 155, 342-353. https://doi.org/10.1016/j.chest.2018.10.040

  4. 4. Pulmonary Embolism. Nature Reviews Disease Primers, 4, Article No. 18031. https://doi.org/10.1038/nrdp.2018.31

  5. 5. Dalen, J.E. and Alpert, J.S. (2020) Diagnosis and Treatment of Pulmonary Embolism: What Have We Learned in the Last 50 Years? The American Journal of Medicine, 133, 404-406. https://doi.org/10.1016/j.amjmed.2019.08.049

  6. 6. 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组. 肺血栓栓塞症诊治与预防指南[J]. 中华医学杂志, 2018, 98(14): 1060-1087.

  7. 7. 王少飞, 陈文丽, 李金玲, 杨林瀛, 贾睿奕, 庞桂芬. Wells评分联合校正的D-二聚体对肺癌合并急性肺栓塞的预测价值[J]. 河北医学, 2021, 27(12): 2023-2027.

  8. 8. Simel, D.L., DeLong, E.R., Feussner, J.R., Weinberg, J.B. and Crawford, J. (1988) Erythrocyte An-isocytosis: Visual Inspection of Blood Films vs Automated Analysis of Red Blood Cell Distribution Width. Archives of Internal Medicine, 148, 822-824. https://doi.org/10.1001/archinte.148.4.822

  9. 9. Montagnana, M., Cervellin, G., Meschi, T. and Lippi, G. (2011) The Role of Red Blood Cell Distribution Width in Cardiovascular and Thrombotic Dis-orders. Clinical Chemistry and Laboratory Medicine, 50, 635-641. https://doi.org/10.1515/cclm.2011.831

  10. 10. Smukowska-Gorynia, A., Tomaszewska, I., Malaczynska-Rajpold, K., Marcinkowska, J., Komosa, A., Janus, M., Olasinska-Wisniewska, A., Slawek, S., Araszkiewicz, A., Jankiewicz, S. and Mularek-Kubzdela, T. (2018) Red Blood Cells Distribution Width as a Potential Prognostic Biomarker in Patients with Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. Heart, Lung and Circulation, 27, 842-848. https://doi.org/10.1016/j.hlc.2017.08.007

  11. 11. Patel, K.V., Mohanty, J.G., Kanapuru, B., Hesdorffer, C., Ershler, W.B. and Rifkind, J.M. (2013) Association of the Red Cell Distribution Width with Red Blood Cell Deformability. In: Welch, W.J., Palm, F., Bruley, D.F. and Harrison, D.K., Eds., Oxygen Transport to Tissue XXXIV. Advances in Experi-mental Medicine and Biology, Vol. 765, Springer, New York, 211-216. https://doi.org/10.1007/978-1-4614-4989-8_29

  12. 12. Lippi, G., Targher, G., Montagnana, M., Salvagno, G.L., Zop-pini, G. and Guidi, G.C. (2009) Relation between Red Blood Cell Distribution Width and Inflammatory Biomarkers in a Large Cohort of Unselected Outpatients. Archives of Pathology & Laboratory Medicine, 133, 628-632. https://doi.org/10.5858/133.4.628

  13. 13. Sincer, I., Zorlu, A., Yilmaz, M.B., Dogan, O.T., Ege, M.R., Amioglu, G., Aydin, G., Ardic, I. and Tandogan, I. (2012) Relationship between Red Cell Distribution Width and Right Ventricular Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Heart Lung, 41, 238-243. https://doi.org/10.1016/j.hrtlng.2011.07.011

  14. 14. Oh, J., Kang, S.M., Hong, N., Choi, J.W., Lee, S.H., Park, S., Shin, M.J., Jang, Y. and Chung, N. (2009) Relation between Red Cell Distribution Width with Echocardiographic Pa-rameters in Patients with Acute Heart Failure. Journal of Cardiac Failure, 15, 517-522. https://doi.org/10.1016/j.cardfail.2009.01.002

  15. 15. Tonelli, M., Sacks, F., Arnold, M., Moye, L., Davis, B. and Pfeffer, M. (2008) Relation between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People with Coronary Disease. Circulation, 117, 163-168. https://doi.org/10.1161/CIRCULATIONAHA.107.727545

  16. 16. Gong, Y., Long, X., Jin, J., Yang, X., Fu, J., Huang, F., Huang, J., Guo, Q. and Wang, J. (2017) Elevation of Red Cell Distribution Width during Hospitalization Pre-dicts Mortality in Patients with Sepsis. Chinese Critical Care Medicine, 29, 481-485.

  17. 17. Watson, T., Shantsila, E. and Lip, G.Y. (2009) Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet, 373, 155-166. https://doi.org/10.1016/S0140-6736(09)60040-4

  18. 18. Günay, E., Sarinc Ulasli, S., Kacar, E., Halici, B., Unlu, E., Tünay, K., Ozkececi, G., Koken, T. and Unlu, M. (2014) Can Platelet Indices Predict Obstruction Level of Pulmonary Vascular Bed in Patients with Acute Pulmonary Embolism? The Clinical Respiratory Journal, 8, 33-40. https://doi.org/10.1111/crj.12031

  19. 19. Akgedik, R., Karamanli, H., Kurt, A.B. and Günaydın, Z.Y. (2018) Useful-ness of Admission Red Blood Cell Distribution Width as a Predictor of Severity of Acute Pulmonary Embolism. The Clinical Respiratory Journal, 12, 786-794. https://doi.org/10.1111/crj.12595

  20. 20. Celik, A., Ozcan, I.T., Gündes, A., Topuz, M., Pektas, I., Yesil, E., Ayhan, S., Kose, A., Camsari, A. and Cin, V.G. (2015) Usefulness of Admission Hematologic Parameters as Diagnostic Tools in Acute Pulmonary Embolism. The Kaohsiung Journal of Medical Sciences, 31, 145-149. https://doi.org/10.1016/j.kjms.2014.12.004

  21. 21. Zöller, B., Melander, O., Svensson, P. and Engström, G. (2014) Red Cell Distribution Width and Risk for Venous Thromboembolism: A Population-Based Cohort Study. Thrombosis Research, 133, 334-339. https://doi.org/10.1016/j.thromres.2013.12.013

  22. 22. Lippi, G., Buonocore, R. and Cervellin, G. (2016) Value of Red Blood Cell Distribution Width on Emergency Department Admission in Patients with Venous Thrombosis. The American Journal of Cardiology, 117, 670-675. https://doi.org/10.1016/j.amjcard.2015.11.024

  23. 23. Calisir, C., Yavas, U.S., Ozkan, I.R., Alatas, F., Cevik, A., Ergun, N. and Sahin, F. (2009) Performance of the Wells and Revised Geneva Scores for Predicting Pulmonary Embo-lism. European Journal of Emergency Medicine, 16, 49-52. https://doi.org/10.1097/MEJ.0b013e328304ae6d

  24. 24. Girardi, A.M., Bettiol, R.S., Garcia, T.S., Ribeiro, G.L.H., Rodrigues, É.M., Gazzana, M.B. and Rech, T.H. (2020) Wells and Geneva Scores Are Not Reliable Predictors of Pul-monary Embolism in Critically Ill Patients: A Retrospective Study. Journal of Intensive Care Medicine, 35, 1112-1117. https://doi.org/10.1177/0885066618816280

  25. 25. Roy, P.-M., Penaloza, A., Hugli, O., Klok, F.A., Arnoux, A., Elias, A., Couturaud, F., Joly, L.M., Lopez, R., Faber, L.M., Daoud-Elias, M., Planquette, B., Bokobza, J., Viglino, D., Schmidt, J., Juchet, H., Mahe, I., Mulder, F., Bartiaux, M., Cren, R., Moumneh, T., Quere, I., Falvo, N., Montaclair, K., Douillet, D., Steinier, C., Hendriks, S.V., Benhamou, Y., Szwebel, T.A., Pernod, G., Dublanchet, N., Lapebie, F.X., Ja-vaud, N., Ghuysen, A., Sebbane, M., Chatellier, G., Meyer, G., Jimenez, D., Huisman, M.V. and Sanchez, O. (2021) Triaging Acute Pulmonary Embolism for Home Treatment by Hestia or Simplified PESI Criteria: The HOME-PE Ran-domized Trial. European Heart Journal, 42, 3146-3157. https://doi.org/10.1093/eurheartj/ehab373

  26. 26. Zhou, X.-Y., Chen, H.-L. and Ni, S.-S. (2017) Red Cell Distribution Width in Predicting 30-Day Mortality in Patients with Pulmonary Embolism. Journal of Critical Care, 37, 197-201. https://doi.org/10.1016/j.jcrc.2016.09.024

  27. 27. 吴晓飞, 陆叶. 红细胞分布宽度是入住重症监护室的肺栓塞患者长期预后的独立预测因子[J]. 中国急救复苏与灾害医学杂志, 2022, 17(1): 102-106.

  28. 28. Inönü, H., Acu, B., Pazarlı, A.C., Doruk, S., Erkorkmaz, Ü. and Altunkaş, A. (2012) The Value of the Computed Tomographic Obstruction Index in the Identification of Massive Pulmonary Throm-boembolism. Diagnostic and Interventional Radiology, 18, 255-260. https://doi.org/10.4261/1305-3825.DIR.4597-11.4

  29. 29. Zorlu, A., Bektasoglu, G., Guven, F.M., Dogan, O.T., Gucuk, E., Ege, M.R., Altay, H., Cinar, Z., Tandogan, I. and Yilmaz, M.B. (2012) Usefulness of Admission Red Cell Distribution Width as a Predictor of Early Mortality in Patients with Acute Pulmonary Embolism. The American Journal of Cardiology, 109, 128-134. https://doi.org/10.1016/j.amjcard.2011.08.015

  30. 30. Sunnetcioglu, A., Sertogullarindan, B., Ozbay, B., Asker, S. and Ekin, S. (2015) Assessments of the Associations of Thrombus Localization with Accompanying Disorders, Risk Factors, D-Dimer Levels, and the Red Cell Distribution Width in Pulmonary Embolism. Clinics, 70, 441-445. https://doi.org/10.6061/clinics/2015(06)10

  31. 31. Hammons, L., Filopei, J., Steiger, D. and Bondarsky, E. (2019) A Narrative Review of Red Blood Cell Distribution Width as a Marker for Pulmonary Embolism. Journal of Thrombosis and Thrombolysis, 48, 638-647. https://doi.org/10.1007/s11239-019-01906-w

  32. 32. Papadopoulos, C., Spourita, E., Tentes, I., Steiropoulos, P. and Anagnostopoulos, K. (2022) Red Blood Cell Malfunction in COVID-19: Molecular Mechanisms and Therapeutic Tar-gets. Viral Immunology, 35, 649-652. https://doi.org/10.1089/vim.2021.0212

  33. 33. Hattangadi, S.M., Wong, P., Zhang, L., Flygare, J. and Lodish, H.F. (2011) From Stem Cell to Red Cell: Regulation of Erythropoiesis at Multiple Levels by Multiple Proteins, RNAs, and Chromatin Modifications. Blood, 118, 6258-6268. https://doi.org/10.1182/blood-2011-07-356006

  34. 34. Gersh, K.C., Nagaswami, C. and Weisel, J.W. (2009) Fibrin Network Structure and Clot Mechanical Properties Are Altered by Incorporation of Erythrocytes. Thrombosis and Hae-mostasis, 102, 1169-1175. https://doi.org/10.1160/TH09-03-0199

  35. 35. Whelihan, M.F. and Mann, K.G. (2013) The Role of the Red Cell Membrane in Thrombin Generation. Thrombosis Research, 131, 377-382. https://doi.org/10.1016/j.thromres.2013.01.023

  36. 36. Braekkan, S.K., Mathiesen, E.B., Njølstad, I., Wilsgaard, T. and Hansen, J.B. (2010) Hematocrit and Risk of Venous Thromboembolism in a General Population. The Tromsø Study. Haematologica, 95, 270-275. https://doi.org/10.3324/haematol.2009.008417

  37. 37. Gupta, N., Zhao, Y.-Y. and Evans, C.E. (2019) The Stimula-tion of Thrombosis by Hypoxia. Thrombosis Research, 181, 77-83. https://doi.org/10.1016/j.thromres.2019.07.013

  38. 38. Sadia, K., Ashraf, M.Z. and Mishra, A. (2021) Therapeutic Role of Sirtuins Targeting Unfolded Protein Response, Coagulation, and Inflammation in Hypoxia-Induced Thrombosis. Frontiers in Physiology, 12, Article 733453. https://doi.org/10.3389/fphys.2021.733453

  39. 39. Yčas, J.W., Horrow, J.C. and Horne, B.D. (2015) Persistent In-crease in Red Cell Size Distribution Width after Acute Diseases: A Biomarker of Hypoxemia? Clinica Chimica Acta, 448, 107-117. https://doi.org/10.1016/j.cca.2015.05.021

  40. 40. Pierce, C.N. and Larson, D.F. (2005) Inflammatory Cyto-kine Inhibition of Erythropoiesis in Patients Implanted with a Mechanical Circulatory Assist Device. Perfusion, 20, 83-90. https://doi.org/10.1191/0267659105pf793oa

  41. 41. Ghaffari, S. (2008) Oxidative Stress in the Regulation of Normal and Neoplastic Hematopoiesis. Antioxidants & Redox Signaling, 10, 1923-1940. https://doi.org/10.1089/ars.2008.2142

  42. 42. Di Lorenzo, B., Pau, M.C., Zinellu, E., Mangoni, A.A., Paliogiannis, P., Pirina, P., Fois, A.G., Carru, C. and Zinellu, A. (2023) Association between Red Blood Cell Distribution Width and Ob-structive Sleep Apnea Syndrome: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12, Article No. 3302. https://doi.org/10.3390/jcm12093302

  43. 43. Durmaz, D.Y. and Güneş, A. (2020) Is There a Relationship be-tween Hematological Parameters and Duration of Respiratory Events in Severe OSA. The Aging Male, 23, 125-131. https://doi.org/10.1080/13685538.2019.1652813

  44. 44. 边惠萍. 高原红细胞增多并发肺动脉栓塞的临床分析[J]. 高原医学杂志, 2008, 18(3): 19-20.

  45. NOTES

    *通讯作者。

期刊菜单