Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 81470 , 8 pages
10.12677/ACM.2024.142525

活化性CD8+ T细胞在不明原因儿童急性肝衰竭中的研究进展

冉小姗1,刘小乖2,詹学1*

1重庆医科大学附属儿童医院消化科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆

2西安市儿童医院感染科,陕西 西安

收稿日期:2024年1月27日;录用日期:2024年2月21日;发布日期:2024年2月28日

摘要

儿童急性肝衰竭(PALF)是一种起病急骤,进展迅速,累及多个系统的临床综合征,目前仍有30%~50%患者尚无法明确病因,称为不明原因儿童急性肝衰竭(iPALF)。虽然这类患者发病机制尚不明确,但越来越多的证据表明,免疫失调在其中起到了极为重要的作用,近年来有研究发现肝脏组织记忆CD8+ T淋巴细胞(CD8+ TRM)与iPALF的发生发展密切相关。本文综述了活化性CD8+ T细胞及其相关炎症通路在iPALF中的作用机制,以期为iPALF患者的临床诊疗,预后判断及治疗方法提供新思路。

关键词

儿童急性肝衰竭,病因,诊断不明,组织驻留记忆T细胞,免疫失调

Research Progress of Activated CD8+ T Cells in Indeterminate Pediatric Acute Liver Failure

Xiaoshan Ran1, Xiaoguai Liu2, Xue Zhan1*

1Department of Gastroenterology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing

2Infection Department, Xi’an Children’s Hospital, Xi’an Shaanxi

Received: Jan. 27th, 2024; accepted: Feb. 21st, 2024; published: Feb. 28th, 2024

ABSTRACT

Pediatric acute liver failure (PALF) is a clinical syndrome with rapid onset, rapid progression, and multiple systems. In up to 30%~50% of cases of pediatric acute liver failure no known etiology and pathogenesis can be found, and are referred to as indeterminate pediatric acute liver failure (iPALF). Although the pathogenesis in these patients is not well understood, there is growing evidence that immune dysregulation is extremely important in it. In recent years, it has been found that Tissue-resident memory T cells (CD8+ TRM) are closely associated with the development of iPALF. The mechanism of activated CD8+ T cells and their related inflammatory pathways and immune pathways were reviewed, in order to provide new ideas for clinical diagnosis and treatment, prognosis and therapeutic approaches for patients with iPALF.

Keywords:Pediatric Acute Liver Failure, Etiology, Indeterminate Diagnosis, Tissue-Resident Memory T Cells, Immune Dysregulation

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

儿童急性肝衰竭(pediatric acute liver failure, PALF)是一种既往未发现肝脏疾病,且在短时间内出现急性肝细胞损伤或死亡,导致肝脏功能迅速丧失,并累及多个系统的临床综合征,该病可最终导致多器官功能衰竭,通常起病急骤,进展迅速,常危及生命 [1] 。PALF的病因复杂多样,包括感染、遗传代谢性疾病、免疫性疾病、药物或毒物、血管性疾病及血液肿瘤性疾病等,但目前仍有大约30%~50%的PALF病例尚未发现肝损害的明确病因 [2] 。迄今为止,虽然这类患者发病机制尚不明确,但越来越多的证据支持这一假设:iPALF的肝损伤机制是由免疫介导的促炎因子和抗炎因子之间的不平衡所造成的 [3] [4] 。为了对该类患者进行更为合理的诊断和治疗,有学者假设这些免疫失调的iPALF患者具有独特的肝脏病理特征,并试图通过在肝脏组织学上找到一种炎症细胞浸润类型,以期将iPALF与自身免疫性肝炎(autoimmune hepatitis, AIH)和/或诊断明确的PALF病例区分开来。有研究发现,iPLAF患者的肝组织标本拥有“CD8+ T细胞”浸润的密集簇这一特征 [5] [6] [7] ,甚至提出“活化性CD8+ T细胞肝炎”这一名称 [7] 。本文就免疫失调在iPALF中的作用机制,活化性CD8+ T细胞的相关炎症通路及临床应用价值的相关性研究进展作一综述。

2. 免疫失调在iPALF中的作用机制

肝脏富含多种免疫细胞,先天性免疫细胞包括巨噬细胞、Kupffer细胞(KCs)、中性粒细胞、自然杀伤细胞(NK)和树突状细胞(DC)等;适应性免疫细胞包括B淋巴细胞、T淋巴细胞、调节性T淋巴细胞(Treg)、辅助性T淋巴细胞(Th)等,均参与肝脏特异性的免疫调节,肝脏还包括许多肝脏特异性抗原呈递细胞(antigen-presenting cells, APC),如肝窦内皮细胞和肝星状细胞,它们有助于肝脏的免疫耐受 [8] 。

先天免疫系统通过识别独特的微生物分子模式即病原体相关分子模式(pathogen-associated molecular patterns, PAMPs),对入侵的病原体作出反应,而PAMPs通过模式识别受体(pattern recognition receptors, PRR)被识别,这个过程被称为结构特征识别。在没有感染的情况下,ALF出现大面积的肝细胞凋亡和坏死可诱发损伤相关分子模式(damage-associated molecular patterns, DAMPs) [9] ,其中包括坏死细胞释放的分子和细胞外基质分解的产物,而高迁移率族蛋白B1 (HMGB-1)是最具特征的DAMP之一 [10] 。肝损伤时,诱导肝细胞中的氧化应激和直接线粒体损伤,进而释放可被巨噬细胞识别的DAMPs,激活了许多肝脏驻留的KCs受体(主要为Toll样受体,如TLR4受体和TLR9受体以及其他潜在的受体),这些受体与DAMPs结合,除了作用于多种促炎蛋白上调的NF-κB途径之外,还激活KCs,从而介导对损伤的初始反应 [11] ,而被激活的KCs分泌的促炎因子(如TNF-α,IL-1β,IL-6等)、活性氧类和趋化因子(如CCL2和CCL5等)会放大促炎信号,并增加骨髓源性细胞(主要是中性粒细胞和单核细胞)进入肝脏,从而增强炎性过程 [12] ,最终导致全身炎症反应综合征(systemic inflammatory response syndrome, SIRS)。与此同时,抗炎细胞因子和介质(例如IL-10,SLPI等)也从KCs释放,因此产生了代偿性抗炎反应综合征(compensatory anti-inflammatory response syndrome, CARS) [13] ,SIRS和CARS被认为对ALF中的免疫细胞(如单核细胞和巨噬细胞)的效应功能发挥调节作用,从而导致免疫失调和对微生物病原体的免疫应答缺陷 [14] ,主要缺陷包括由于人类白细胞DR抗原表达降低引起针对微生物的促炎细胞因子应答减少和抗原呈递能力受损,导致机体处于获得性免疫抑制状态 [15] ,从而增加感染的易感性及患者的死亡率 [15] [16] 。

此外,有研究发现iPALF患者的肝组织中巨噬细胞活化增加 [7] ,另一项研究发现KCs在机体感染后出现数量的绝对减少 [17] ,但其损失机制目前尚不明确,一项关于非酒精性脂肪性肝炎的研究认为KCs的耗竭是因为慢性炎症的消耗 [18] ,而另一项研究认为KCs在肝脏损伤后抑制炎症并维持体内平衡 [19] 。这些研究的相互矛盾可能是因为巨噬细胞功能的可塑性 [20] [21] ,以及其亚型的不均一性。经典观点认为巨噬细胞亚型分为分泌促炎因子的M1型和下调炎症反应的M2型,但最近有研究使用单细胞RNA测序揭示了不同于经典理论的具有独特功能途径的不同的肝内单核细胞/巨噬细胞群 [22] 。巨噬细胞在肝损伤过程中的作用机制还需更多的研究。

3. 活化性CD8+ T细胞的相关炎症通路

在经典的观点中,淋巴细胞通常被视为循环的免疫细胞,幼稚的T细胞受APC提供的同源抗原的刺激,经过克隆扩增并分化为效应部T细胞,迁移到感染部位 [23] 。与经典观点相反,最近的研究表明,人体的屏障部位(如皮肤、肺、小肠和肝脏)存在组织驻留淋巴细胞(非循环淋巴细胞),它们不会参与循环 [24] 。组织记忆CD8+ T淋巴细胞属于组织驻留淋巴细胞中的一个重要亚群驻留在肝脏中。当病原体进入肝脏时,活化性CD8+ TRM可以通过直接裂解靶细胞作为第一道防线,还可以利用组织驻留的优势分泌多种趋化因子和细胞因子,产生快速有效的保护性免疫反应 [25] 。

3.1. 肝CD8+ TRM细胞的分化

肝CD8+ TRM的分化和发育可由多种细胞因子介导,包括IL-2、IL-15、IL-10和TGF-β等 [8] 。PAMPs和DAMPs激活巨噬细胞/单核细胞后,诱导Th1活化,产生IL-2和IFN-γ等促炎因子,从而促进肝脏CD8+ TRM分化。Th1活化的CD8+ T在肝脏CD8+ TRM的免疫通路中起着中心作用 [26] 。有研究发现,在iPALF患者的外周血中IL-2受体的水平升高 [5] [7] ,同时肝CD8+ TRM可自分泌IL-2 [27] [28] ,后者可能对病原体记忆反应的持续性和CD8+ TRM的继发性群体扩增很重要 [27] 。有研究表明,肝脏中CD8+ TRM中IL-15受体表达上调 [29] ,IL-15敲除小鼠可阻止CD8+ TRM的发育 [30] ,因此,IL-15对肝CD8+ TRM的形成至关重要。IL-10可以诱导与APC表面结合的TGF-β的释放 [31] ,而TGF-β与人类肝脏中CD8+ TRM驻留显著相关 [32] ,活化的TGF-β可以诱导CD8+ TRM表达CD103 [33] ,依次暴露于IL-15和TGF-β可有效诱导新生CD69+ CD103+ CD8+ TRM [27] 。这些研究表明,IL-10,IL-15和TGF-β在肝脏中的表达促进了CD103+ CD8+ TRM在人体中的发育和存活。

3.2. 肝CD8+ TRM细胞的表面标记物

肝CD8+ TRM的维持和效应功能需要持续的趋化因子刺激 [34] 。趋化因子受体CXCR3和CXCR6在肝内CD8+ TRM表面组成性表达已被广泛报道 [27] [35] 。CXCR3受体可以与CXCL9,CXCL10和CXCL11结合,并可能在活化的CD8+ T细胞肝炎炎症网络中起关键的T细胞化学引诱剂的作用 [36] 。CXCR6与肝窦内皮细胞分泌的CXCL16有助于维持CD8+ TRM在肝脏中驻留 [37] 。另有研究发现,iPALF患者中肝CD8+ TRM浸润增多,以及IFN-γ诱导的趋化因子CXCL9,CXCL10和CXCL11的基因表达增加 [26] 。

肝CD8+ TRM通常表达一些有助于自身定位与维持的粘附分子(包括CD69、CD103、CD49a)。其中CD69可以通过下调鞘氨醇1磷酸受体(S1PR1)介导的组织排出 [38] ,限制TRM细胞从肝脏进入血液和淋巴管。CD103是E-钙粘蛋白的受体,它们之间的相互作用可能参与肝TRM细胞的定位、粘附和保留 [28] ,此外,CD103可定义人类肝脏中TRM细胞的两个不同功能亚群,CD69+ CD103+亚群被认为是人类肝脏中抗原特异性自身反应性细胞毒性T细胞,表现出比CD69+ CD103 CD8+ TRM更强大的效应功能 [39] [40] 。用抗体阻断CD49a以及CD49a的基因缺失导致可TRM细胞减少 [41] ,因此,CD49a可能促进TRM细胞的存活、保留或增殖。此外,CD49a亦可定义TRM细胞的不同功能亚群。在皮肤中,CD49a+ CD8+ TRM产生大量IFN-g、穿孔素和颗粒酶B,而CD49a CD8+ TRM更倾向于产生IL-17 [42] ,然而,基于肝CD8+ TRM细胞CD49a表达的效应器功能偏差尚未得到全面的研究。

此外,有研究表明,在肝活化性CD8+ TRM浸润的iPALF患者中,NLRP1 (编码炎性体蛋白)和IRAK3 (编码参与Toll样受体和IL-1R免疫信号转导变异途径的蛋白质)表达上调 [26] ,但需要更多的数据来确定特定的细胞间信号传导途径,以及确定哪些免疫途径可能是特定PALF亚群所独有的;此研究也发现了iPALF中细胞毒性T细胞活化和增殖的抗原驱动机制,CD8染色浓度适中的患者免疫抑制受体(CTLA4和TIGIT)基因表达上调。这些表面标志物的表达增加可能是继发于CD8+ T活化和试图控制过度活跃的炎症过程,或者可能与继发于慢性抗原暴露的T细胞耗竭有关。显著的IFN-γ应答可能导致HLA-I类基因表达上调,并相应增加抗原递呈和CD8+ T活化,有研究发现了iPALF患者肝组织中T细胞克隆性增加 [7] [43] ,表明T细胞对抗原和克隆扩增有反应。但还需进一步的研究来确定这种抗原的性质是来自病原体还是自身,并探索HLA-I类限制性免疫在活化性CD8+ T细胞肝炎中的作用。当出现急慢性肝损伤时,CXCL12的表达也随之增加,并且参与肝窦细胞的骨髓祖细胞的募集用于肝脏再生 [44] [45] 。有研究发现,iPALF的患者经常出现骨髓抑制,甚至可能发展为再生障碍性贫血,这表明骨髓来源的祖细胞的丧失可能是肝衰疾病机制中的关键步骤 [6] 。祖细胞对于促进肝脏再生和弥补严重的肝损伤是至关重要的,然而,特定的祖细胞亚群在iPALF中的作用仍然不明确。

4. 临床应用价值

有研究发现iPALF的肝组织标本的特征是穿孔素+ CD103+ CD8+ T浸润的密集簇 [7] ,该研究发现8例患者中有6例(75%)可溶性IL-2R水平升高,这是淋巴细胞活化的血清标志物。此外,iPALF的CD8+ T的表面标记物CD103大部分为阳性,而在诊断明确的PALF病例中未见到。并且CD8+ T几乎均匀表达穿孔素,其效应功能更符合活化性CD8+ TRM表型而非Treg表型。因此,该研究认为可以将其作为一种新的生物标志物,将其与自身免疫性肝炎(AIH)和/或诊断明确的PALF病例区分开来。但该研究的局限性在于其他疾病如急性病毒性肝炎、噬血细胞综合症和巨噬细胞活化综合征也可出现肝组织高密度CD8+ T浸润,因此需结合患者的临床表现、血清学和组织病理学特征综合判断。

Patel等报道了7例肝炎相关性再生障碍性贫血(aplastic anemia, AA)患儿通过IHC染色发现CD8+ T为主的肝小叶浸润。其中三名患者接受了免疫抑制治疗,经随访,症状有所改善,肝活检显示CD8+ T显著减少 [6] 。这些发现支持CD8+ T参与介导肝细胞损伤的假设,并且疾病的恢复与肝内CD8+ T数量减少有关。也有研究发现,通过外周血流式细胞术检测出CD4/CD8值降低是iPALF免疫失调表型以及那些更可能发展AA的iPALF患者的额外生物标志物 [5] [46] 。但此类患者仍需要进一步的研究去确定其是否可以在疾病进行到骨髓衰竭之前早期识别和治疗。

有单中心回顾性研究表明,静脉注射类固醇可以提高成人ALF的自发存活率 [47] [48] 。类固醇可以促进巨噬细胞的抗炎/消退反应,因此在肝衰竭的早期阶段使用类固醇可能是有益的 [49] ,但类固醇在ACLF的后期阶段可能是有害的,因为在抗炎因子普遍存在的情况下,类固醇可能会有增加感染的倾向 [15] ,因此需要进行前瞻性对照临床试验研究以评估使用类固醇的风险和益处。短期和长期输注人血清白蛋白(human serum albumin, HSA)可以降低ACLF患者的炎症因子循环水平 [50] ,限制过度的全身性炎症却不会诱发免疫抑制,从而防止器官衰竭。一项多中心性的随机研究证实了HSA在这些患者中的治疗作用,其中长期预防性使用HSA可以有效降低再入院率,并延长患者生存期 [51] 。血浆IL-4水平可以作为接受HSA治疗后全身炎症改善程度的良好标记物 [52] ,该研究发现接受HSA治疗后第5天血浆IL-4水平的增加与3个月存活率的增加有关。

在活化性CD8+ T的炎症通路中,包括IFN-γ和Th1驱动途径,也存在潜在治疗靶点。肝细胞与KCs凋亡的早期是通过DAMP/PAMP与PRR和NF-κB信号通路传导以及NLRP3炎性活化相互作用,因此这些可成为免疫疗法的明确靶点,抑制TLR2,TLR3和TLR4已被证明可改善对乙酰氨基酚(Paracetamol, APAP)肝损伤小鼠模型的肝脏毒性 [53] 。另一个策略是针对释放的DAMP,如HMGB-1和组蛋白。有研究表明HMGB-1是PALF炎症因子网络的关键调节器 [54] ,评估患者炎症因子网络可为探索一种新的干预治疗方法提供可能性 [55] 。在APAP诱导的ALF小鼠模型中,HMGB-1中和抗体可改善损伤和减少细菌易位 [56] 。另一种DAMP组蛋白通过TLR2/TLR4和炎性小体活化引发炎症,针对性的抗组蛋白治疗可减少促炎细胞因子的产生,降低ALF的严重程度 [57] 。在ALF早期检测到的循环抗炎细胞因子水平升高,如IL-10,提示预后不良 [58] ,因此需要在疾病早期进行干预。针对趋化因子或受体的单克隆抗体和阻止趋化因子结合的受体拮抗剂可阻断趋化因子–趋化因子受体之间的信号传导 [59] ,从而降低肝脏的炎症水平,如CCR2/CCR5抑制剂减少了小鼠APAP诱导的ALF中的单核细胞浸润和肝损伤指数 [60] 。

iPALF发病机制以及活化性CD8+ T的炎症通路均极其复杂,目前尚不明确,需要进一步研究来确定特定的细胞间信号传导途径,以及确定哪些免疫途径可能是iPALF所独有的,以期寻找更多的潜在治疗靶点以及更好的预测患者预后的指标。

综上所述,iPALF属于危重症,常起病急,进展快且预后差,虽然发病机制尚不明确,但免疫介导的肝损伤与之密切相关,SIRS和CARS在其中起着重要作用。肝组织中活化性CD8+ T可作为其独特的肝脏病理特征,其中IFN-γ和Th1驱动途径可能是肝脏活化性CD8+ T的炎症通路之一,多种复杂的细胞因子与趋化因子也参与其中,还需要进一步研究来确定iPALF所独有的炎症通路及免疫途径。有关iPALF作用机制的研究对病因诊断,预后判断以及临床治疗手段的完善都有着重要意义。

基金项目

西安市儿童医院院级项目,编号:2021C04。

文章引用

冉小姗,刘小乖,詹 学. 活化性CD8+ T细胞在不明原因儿童急性肝衰竭中的研究进展
Research Progress of Activated CD8+ T Cells in Indeterminate Pediatric Acute Liver Failure[J]. 临床医学进展, 2024, 14(02): 3764-3771. https://doi.org/10.12677/ACM.2024.142525

参考文献

  1. 1. 谢新宝, 王建设. 重视儿童急性肝衰竭的诊治[J]. 临床肝胆病杂志, 2022, 38(2): 257-259.

  2. 2. Narkewicz, M.R., Horslen, S., Hardison, R.M., et al. (2018) A Learning Collaborative Approach Increases Specificity of Diagnosis of Acute Liver Failure in Pediatric Patients. Clinical Gastroenterology and Hepatology, 16, 1801-1810.e3.

  3. 3. Zamora, R., Vodovotz, Y., Mi, Q., et al. (2017) Data-Driven Modeling for Precision Medicine in Pediatric Acute Liver Failure. Molecular Medicine, 22, 821-829. https://doi.org/10.2119/molmed.2016.00183

  4. 4. Alonso, E.M., Horslen, S.P., Behrens, E.M., et al. (2017) Pediatric Acute Liver Failure of Undetermined Cause: A Research Workshop. Hepatology, 65, 1026-1037. https://doi.org/10.1002/hep.28944

  5. 5. McKenzie, R.B., Berquist, W.E., Nadeau, K.C., et al. (2014) Novel Protocol Including Liver Biopsy to Identify and Treat CD8+ T-Cell Predominant Acute Hepatitis and Liver Failure. Pediatric Transplantation, 18, 503-509. https://doi.org/10.1111/petr.12296

  6. 6. Patel, K.R., Bertuch, A., Sasa, G.S., et al. (2017) Features of Hepatitis in Hepatitis-Associated Aplastic Anemia: Clinical and Histopathologic Study. Journal of Pediatric Gastroenterology and Nutrition, 64, e7-e12. https://doi.org/10.1097/MPG.0000000000001271

  7. 7. Chapin, C.A., Burn, T., Meijome, T., et al. (2018) Indeter-minate Pediatric Acute Liver Failure Is Uniquely Characterized by a CD103+CD8+ T-Cell Infiltrate. Hepatology, 68, 1087-1100. https://doi.org/10.1002/hep.29901

  8. 8. Li, Y., You, Z., Tang, R., et al. (2022) Tissue-Resident Memory T Cells in Chronic Liver Diseases: Phenotype, Development and Function. Frontiers in Immunology, 13, Arti-cle 967055. https://doi.org/10.3389/fimmu.2022.967055

  9. 9. Bianchi, M.E. (2007) DAMPs, PAMPs and Alarm-ins: All We Need to Know about Danger. Journal of Leukocyte Biology, 81, 1-5. https://doi.org/10.1189/jlb.0306164

  10. 10. Triantafyllou, E., Woollard, K.J., McPhail, M., et al. (2018) The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Frontiers in Immunology, 9, Article 2948. https://doi.org/10.3389/fimmu.2018.02948

  11. 11. Woolbright, B.L. and Jaeschke, H. (2017) The Impact of Sterile In-flammation in Acute Liver Injury. Journal of Clinical and Translational Research, 3, 170-188. https://doi.org/10.18053/jctres.03.2017S1.003

  12. 12. Heymann, F. and Tacke, F. (2016) Immunology in the Liv-er—From Homeostasis to Disease. Nature Reviews Gastroenterology & Hepatology, 13, 88-110. https://doi.org/10.1038/nrgastro.2015.200

  13. 13. Xue, J., Schmidt, S.V., Sander, J., et al. (2014) Transcrip-tome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation. Immunity, 40, 274-288. https://doi.org/10.1016/j.immuni.2014.01.006

  14. 14. Garcia-Martinez, I., Santoro, N., Chen, Y., et al. (2016) Hepatocyte Mitochondrial DNA Drives Nonalcoholic Steatohepatitis by Activation of TLR9. Journal of Clinical Investi-gation, 126, 859-864. https://doi.org/10.1172/JCI83885

  15. 15. Bernsmeier, C., Singanayagam, A., Patel, V.C., et al. (2015) Immunothera-py in the Treatment and Prevention of Infection in Acute-on-Chronic Liver Failure. Immunotherapy, 7, 641-654. https://doi.org/10.2217/imt.15.27

  16. 16. Piano, S., Brocca, A., Mareso, S., et al. (2018) Infections Complicating Cir-rhosis. Liver International, 38, 126-133. https://doi.org/10.1111/liv.13645

  17. 17. Borst, K., Frenz, T., Spanier, J., et al. (2018) Type I Interferon Receptor Signaling Delays Kupffer Cell Replenishment during Acute Fulminant Viral Hepatitis. Journal of Hepatology, 68, 682-690. https://doi.org/10.1016/j.jhep.2017.11.029

  18. 18. Reid, D.T., Reyes, J.L., McDonald, B.A., et al. (2016) Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation. PLOS ONE, 11, e0159524. https://doi.org/10.1371/journal.pone.0159524

  19. 19. Uderhardt, S., Martins, A.J., Tsang, J.S., et al. (2019) Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage. Cell, 177, 541-555.e17. https://doi.org/10.1016/j.cell.2019.02.028

  20. 20. Krenkel, O. and Tacke, F. (2017) Liver Macrophages in Tissue Homeostasis and Disease. Nature Reviews Immunology, 17, 306-321. https://doi.org/10.1038/nri.2017.11

  21. 21. Tacke, F. (2017) Targeting Hepatic Macrophages to Treat Liver Diseases. Journal of Hepatology, 66, 1300-1312. https://doi.org/10.1016/j.jhep.2017.02.026

  22. 22. MacParland, S.A., Liu, J.C., Ma, X.Z., et al. (2018) Single Cell RNA Sequencing of Human Liver Reveals Distinct Intrahepatic Macrophage Populations. Nature Communications, 9, Article No. 4383. https://doi.org/10.1038/s41467-018-06318-7

  23. 23. Bevan, M.J. (2011) Memory T Cells as an Occupying Force. European Journal of Immunology, 41, 1192-1195. https://doi.org/10.1002/eji.201041377

  24. 24. Sun, H., Sun, C., Xiao, W., et al. (2019) Tissue-Resident Lymphocytes: From Adaptive to Innate Immunity. Cellular & Molecular Immunology, 16, 205-215. https://doi.org/10.1038/s41423-018-0192-y

  25. 25. Mackay, L.K., Braun, A., Macleod, B.L., et al. (2015) Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention. The Journal of Immunology, 194, 2059-2063. https://doi.org/10.4049/jimmunol.1402256

  26. 26. Chapin, C.A., Taylor, S.A., Malladi, P., et al. (2021) Transcrip-tional Analysis of Liver Tissue Identifies Distinct Phenotypes of Indeterminate Pediatric Acute Liver Failure. Hepatology Communications, 5, 1373-1384. https://doi.org/10.1002/hep4.1726

  27. 27. Pallett, L.J., Davies, J., Colbeck, E.J., et al. (2017) IL-2High Tissue-Resident T Cells in the Human Liver: Sentinels for Hepatotropic Infection. Journal of Experimental Medicine, 214, 1567-1580. https://doi.org/10.1084/jem.20162115

  28. 28. You, Z., Li, Y., Wang, Q., et al. (2021) The Clinical Significance of Hepatic CD69+CD103+CD8+ Resident-Memory T Cells in Autoimmune Hepatitis. Hepatology, 74, 847-863. https://doi.org/10.1002/hep.31739

  29. 29. Burkett, P.R., Koka, R., Chien, M., et al. (2004) Coordinate Expression and Trans Presentation of Interleukin (IL)- 15Rα and IL-15 Supports Natural Killer Cell and Memory CD8+ T Cell Homeo-stasis. Journal of Experimental Medicine, 200, 825-834. https://doi.org/10.1084/jem.20041389

  30. 30. Holz, L.E., Prier, J.E., Freestone, D., et al. (2018) CD8+ T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells That Seed a Large and Flexible Niche in the Liver. Cell Reports, 25, 68-79.e4. https://doi.org/10.1016/j.celrep.2018.08.094

  31. 31. Thompson, E.A., Darrah, P.A., Foulds, K.E., et al. (2019) Mon-ocytes Acquire the Ability to Prime Tissue-Resident T Cells via IL-10-Mediated TGF-β Release. Cell Reports, 28, 1127-1135.e4. https://doi.org/10.1016/j.celrep.2019.06.087

  32. 32. Pallett, L.J., Burton, A.R., Amin, O.E., et al. (2020) Longevity and Replenishment of Human Liver-Resident Memory T Cells and Mononuclear Phagocytes. Journal of Experimental Medicine, 217, e20200050. https://doi.org/10.1084/jem.20200050

  33. 33. Kurd, N.S., He, Z., Louis, T.L., et al. (2020) Early Precursors and Mo-lecular Determinants of Tissue-Resident Memory CD8+ T Lymphocytes Revealed by Single-Cell RNA Sequencing. Sci-ence Immunology, 5. https://doi.org/10.1126/sciimmunol.aaz6894

  34. 34. Kumar, B.V., Kratchmarov, R., Miron, M., et al. (2018) Func-tional Heterogeneity of Human Tissue-Resident Memory T Cells Based on Dye Efflux Capacities. JCI Insight, 3, e123568. https://doi.org/10.1172/jci.insight.123568

  35. 35. Pirozyan, M.R., Nguyen, N., Cameron, B., et al. (2019) Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepati-tis C Infection. The Journal of Infectious Diseases, 219, 1430-1438. https://doi.org/10.1093/infdis/jiy679

  36. 36. Chalin, A., Lefevre, B., Devisme, C., et al. (2018) Serum CXCL10, CXCL11, CXCL12, and CXCL14 Chemokine Patterns in Patients with Acute Liver Injury. Cytokine, 111, 500-504. https://doi.org/10.1016/j.cyto.2018.05.029

  37. 37. Tse, S.W., Radtke, A.J., Espinosa, D.A., et al. (2014) The Chemo-kine Receptor CXCR6 Is Required for the Maintenance of Liver Memory CD8+ T Cells Specific for Infectious Pathogens. The Journal of Infectious Diseases, 210, 1508-1516. https://doi.org/10.1093/infdis/jiu281

  38. 38. Skon, C.N., Lee, J.Y., Anderson, K.G., et al. (2013) Transcriptional Downregulation of S1pr1 Is Required for the Establishment of Resi-dent Memory CD8+ T Cells. Nature Immunology, 14, 1285-1293. https://doi.org/10.1038/ni.2745

  39. 39. Huang, B., Lyu, Z., Qian, Q., et al. (2022) NUDT1 Promotes the Accumulation and Longevity of CD103+ T(RM) Cells in Primary Biliary Cholangitis. Journal of Hepatology, 77, 1311-1324. https://doi.org/10.1016/j.jhep.2022.06.014

  40. 40. Kim, J.H., Han, J.W., Choi, Y.J., et al. (2020) Functions of Human Liver CD69+CD103−CD8+ T Cells Depend on HIF-2α Activity in Healthy and Pathologic Livers. Journal of Hepatology, 72, 1170-1181. https://doi.org/10.1016/j.jhep.2020.01.010

  41. 41. Ray, S.J., Franki, S.N., Pierce, R.H., et al. (2004) The Collagen Binding Alpha1beta1 Integrin VLA-1 Regulates CD8 T Cell-Mediated Immune Protection against Heterologous Influen-za Infection. Immunity, 20, 167-179. https://doi.org/10.1016/S1074-7613(04)00021-4

  42. 42. Cheuk, S., Schlums, H., Gallais, Sérézal, I., et al. (2017) CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity, 46, 287-300. https://doi.org/10.1016/j.immuni.2017.01.009

  43. 43. Chapin, C.A., Melin-Aldana, H., Kreiger, P.A., et al. (2020) Activated CD8 T-Cell Hepatitis in Children with Indeterminate Acute Liver Failure: Results from a Multicenter Cohort. Journal of Pediatric Gastroenterology and Nutrition, 71, 713-719. https://doi.org/10.1097/MPG.0000000000002893

  44. 44. Liepelt, A. and Tacke, F. (2016) Stromal Cell-Derived Fac-tor-1 (SDF-1) as a Target in Liver Diseases. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G203-209. https://doi.org/10.1152/ajpgi.00193.2016

  45. 45. DeLeve, L.D., Wang, X. and Wang, L. (2016) VEGF-sdf1 Recruit-ment of CXCR7+ Bone Marrow Progenitors of Liver Sinusoidal Endothelial Cells Promotes Rat Liver Regeneration. American Journal of Physiology-Gastrointestinal and Liver Physiology, 310, G739-G746. https://doi.org/10.1152/ajpgi.00056.2016

  46. 46. Wang, H., Tu, M., Fu, R., et al. (2014) The Clinical and Immune Characteristics of Patients with Hepatitis-Associated Aplastic Anemia in China. PLOS ONE, 9, e98142. https://doi.org/10.1371/journal.pone.0098142

  47. 47. Fujiwara, K., Yasui, S., Yonemitsu, Y., et al. (2014) Efficacy of High-Dose Corticosteroid in the Early Stage of Viral Acute Liver Failure. Hepatology Research, 44, 491-501. https://doi.org/10.1111/hepr.12148

  48. 48. Zhao, B., Zhang, H.Y., Xie, G.J., et al. (2016) Evaluation of the Efficacy of Steroid Therapy on Acute Liver Failure. Experimental and Therapeutic Medicine, 12, 3121-3129. https://doi.org/10.3892/etm.2016.3720

  49. 49. Bernsmeier, C., Antoniades, C.G. and Wendon, J. (2014) What’s New in Acute Liver Failure? Intensive Care Medicine, 40, 1545-1548. https://doi.org/10.1007/s00134-014-3350-4

  50. 50. Fernández, J., Clària, J., Amorós, A., et al. (2019) Effects of Al-bumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients with Decompensated Cirrhosis. Gastroenterology, 157, 149-162. https://doi.org/10.1053/j.gastro.2019.03.021

  51. 51. Caraceni, P., Riggio, O., Angeli, P., et al. (2018) Long-Term Al-bumin Administration in Decompensated Cirrhosis (ANSWER): An Open-Label Randomised Trial. The Lancet, 391, 2417-2429. https://doi.org/10.1016/S0140-6736(18)30840-7

  52. 52. Becares, N., Härmälä, S., China, L., et al. (2020) Immune Regulatory Mediators in Plasma from Patients with Acute Decompensation Are Associated with 3-Month Mortality. Clinical Gastroenterology and Hepatology, 18, 1207-1215.e6. https://doi.org/10.1016/j.cgh.2019.08.036

  53. 53. Wang, X., Sun, R., Wei, H. and Tian, Z. (2013) High-Mobility Group Box 1 (HMGB1)-Toll-Like Receptor (TLR)4- Interleukin (IL)-23-IL-17A Axis in Drug-Induced Dam-age-Associated Lethal Hepatitis: Interaction of γδ T Cells with Macrophages. Hepatology, 57, 373-384. https://doi.org/10.1002/hep.25982

  54. 54. Zamora, R., Barclay, D., Yin, J., et al. (2019) HMGB1 Is a Central Driver of Dynamic Pro-Inflammatory Networks in Pediatric Acute Liver Failure Induced by Acetaminophen. Scientific Reports, 9, Article No. 5971. https://doi.org/10.1038/s41598-019-42564-5

  55. 55. Vodovotz, Y., Barclay, D., Yin, J., et al. (2020) Dynamics of Systemic Inflammation as a Function of Developmental Stage in Pediatric Acute Liver Failure. Frontiers in Immunology, 11, Article 610861. https://doi.org/10.3389/fimmu.2020.610861

  56. 56. Lundbäck, P., Lea, J.D., Sowinska, A., et al. (2016) A Novel High Mobility Group Box 1 Neutralizing Chimeric Antibody Attenuates Drug-Induced Liver Injury and Postinjury In-flammation in Mice. Hepatology, 64, 1699-1710. https://doi.org/10.1002/hep.28736

  57. 57. Wen, Z., Liu, Y., Li, F., et al. (2013) Circulating Histones Exacerbate In-flammation in Mice with Acute Liver Failure. Journal of Cellular Biochemistry, 114, 2384-2391. https://doi.org/10.1002/jcb.24588

  58. 58. Antoniades, C.G., Khamri, W., Abeles, R.D., et al. (2014) Secretory Leu-kocyte Protease Inhibitor: A Pivotal Mediator of Anti-Inflammatory Responses in Acetaminophen-Induced Acute Liver Failure. Hepatology, 59, 1564-1576. https://doi.org/10.1002/hep.26933

  59. 59. Marra, F. and Tacke, F. (2014) Roles for Chemokines in Liver Disease. Gastroenterology, 147, 577-594.e1. https://doi.org/10.1053/j.gastro.2014.06.043

  60. 60. Mossanen, J.C., Krenkel, O., Ergen, C., et al. (2016) Chemokine (C-C Motif) Receptor 2-Positive Monocytes Aggravate the Early Phase of Acetaminophen-Induced Acute Liver Injury. Hepatology, 64, 1667-1682. https://doi.org/10.1002/hep.28682

  61. NOTES

    *通讯作者。

期刊菜单