Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61081 , 6 pages
10.12677/ACM.2023.132181

创伤性颅脑损伤神经炎症预后标志物研究进展

李鑫1,李坤正2*

1青海大学,青海 西宁

2青海大学附属医院,青海 西宁

收稿日期:2023年1月3日;录用日期:2023年1月28日;发布日期:2023年2月6日

摘要

创伤性颅脑损伤在全世界范围内,都是导致患者死亡或致残的主要原因之一。脑外伤导致的神经炎症是大脑或脊髓细胞损伤的反应。神经炎症是一种复杂的现象,涉及大脑内神经免疫细胞和胶质细胞(例如星形胶质细胞和小胶质细胞),它们通过产生和释放细胞因子和炎症介质来被激活并对损伤做出反应。这些细胞因子与脑损伤部位的白细胞一起,促进了对损伤的协调反应。本文就创伤性颅脑损伤后的神经炎症阶段有价值的生物标志物对预后的研究进展进行综述。

关键词

创伤性颅脑损伤,神经炎症,标志物

Research Progress on Prognostic Markers of Neuroinflammation in Traumatic Head Injury

Xin Li1, Kunzheng Li2*

1Qinghai University, Xining Qinghai

2Affiliate Hospital of Qinghai University, Xining Qinghai

Received: Jan. 3rd, 2023; accepted: Jan. 28th, 2023; published: Feb. 6th, 2023

ABSTRACT

Traumatic head injury is one of the leading causes of death or disability worldwide. Neuroinflammation from traumatic brain injury is a response to injury to brain or spinal cord cells. Neuroinflammation is a complex phenomenon involving neuroimmune cells and glial cells (such as astrocytes and microglia) within the brain that are activated and respond to damage by producing and releasing cytokines and inflammatory mediators. These cytokines, along with white blood cells at the site of brain injury, promote a coordinated response to injury. This article reviews the research progress of valuable biomarkers for prognosis in the neuroinflammatory stage after traumatic head injury.

Keywords:Traumatic Head Injury, Neuroinflammation, Markers

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 创伤性颅脑损伤

创伤性颅脑损伤(Traumatic Brain Injury, TBI)在全世界范围内,都是导致患者死亡或致残的主要原因之一 [1],全球每年TBI患者大约超过5000万 [2];据统计,中国2001年到2016年TBI患者达125,474例,发生率达到了554~641/10万人 [3];在美国,2019年约有223,135例与TBI相关的住院患者,2020年有64,362例与TBI相关的死亡患者,这些统计不包括许多未经治疗的TBI患者以及在社区就诊等无法统计的病例 [4] [5],同时它所带来的死亡率和致残率也居高不下。TBI是由于头部经过碰撞、打击、震荡,或头部遭受穿透性损伤,从而破坏了大脑的正常功能所造成的一系列疾病。TBI发生后,颅内会出现出血、大脑撕裂和弥漫性损伤等变化,造成不同程度的病理结局,比如硬膜外血肿、硬膜下血肿、脑挫裂伤及弥漫性轴索损伤等。除直接导致大脑的器质性损伤外,还有可能增加患某些疾病的风险,如阿尔兹海默症等 [6]。

2. 损伤后病理变化

当患者头部遭受创伤后,首先造成了颅内局部的损伤,直接作用力和旋转作用力会使轴突膜受损,细胞膜进一步去极化,在这之后一些兴奋性的氨基酸和神经递质被释放出来,同时钙离子和钾离子自由进出细胞,钙离子入胞后会破坏细胞内的功能,导致细胞缺氧,缺氧之后大脑进入无氧酵解,导致乳酸堆积,进而破坏血脑屏障细胞死亡,也就在局部产生了炎症反应,造成大脑弥漫性的损伤 [7] [8] [9]。

3. 损伤后的炎症反应

脑外伤导致的神经炎症是大脑或脊髓细胞损伤的反应。神经炎症是一种复杂的现象,涉及大脑内神经免疫细胞和胶质细胞(例如星形胶质细胞和小胶质细胞),它们通过产生和释放细胞因子和炎症介质来被激活并对损伤做出反应。这些细胞因子与脑损伤部位的白细胞一起,促进了对损伤的协调反应,具体而言,白细胞产生多种细胞因子和趋化因子,诱导中性粒细胞到损伤处,刺激活性氧(reactive oxygen species, ROS)的产生,并影响血管内皮细胞的功能,从而导致血脑屏障的渗透性增加 [10] [11]。脑外伤期间血脑屏障(blood brain barrier, BBB)的完整性受到影响,导致从正常调控的跨细胞转运向细胞旁转运的转变,导致更多的溶质、细胞因子和炎症介质轻松进入脑实质,使炎症持续存在并导致进一步损伤 [12]。因此,神经炎症反应在整个颅脑创伤的过程中都是不可避免地,神经炎症标志物自然也成为了预测创伤后结局的不可或缺的一方面,本文主要对目前炎症介质相关的标志物及未来应用前景作综述。

4. 炎症介质标志物

1) IL-1β:白细胞介素1β (IL-1β)是由包括胶质细胞在内的多种细胞在损伤后产生的促炎细胞因子。研究表明,脑损伤后,1L-1β由神经胶质细胞产生,1L-1β刺激大脑,通过形成和释放含有大量miRNA和其他作用于区域组织的神经炎症介质的外泌体,使神经炎症持续存在 [13]。此外,IL-1β与抑郁症有关,这表明TBI后1L-1β水平升高可能有助于抑郁症和抑郁症状的发展 [14]。

2) IL-6:白细胞介素6 (IL-6)是免疫细胞分泌的促炎细胞因子,已知在脑外伤后和修复期间的神经炎症反应中发挥重要作用 [15]。Hergenroeder等人 [16] 发现颅内压(intracranial pressure, ICP) > 25 mmHg的患者在伤后17小时内IL-6水平明显高于ICP水平低于20的患者。此外,>128 pg/ml的IL-6水平准确地识别了85%后来发展为ICP升高的TBI患者。Mazzeo等人 [17] 也发现ICP升高、低血压、低脑灌注压(cerebral perfusion pressure, CPP)、缺氧诱导损伤和IL-6水平与早期脑死亡显著相关(p < 0.05)。Thompson等人 [18] 发现,在比较年龄较大(55岁以上)和年龄较小(21~54岁)的轻度TBI患者与对照组时,损伤后6个月,年龄较大的TBI组IL-6和IL-8浓度显著较高,IL-7浓度较低,发病率较高,症状更严重。

3) IL-8:白细胞介素8 (IL-8)是一种由巨噬细胞、上皮细胞、平滑肌细胞、内皮细胞等多种细胞产生的趋化细胞因子。由于其趋化功能,使得IL-8是神经炎症的关键介质。IL-8与其他白介素如IL-1β一起促进ROS的产生,导致氧化应激。中度和重度脑灌注不足与脑外伤患者血清中IL-8水平升高相关 [19]。

4) CRP:C反应蛋白(C-reactive protein, CRP)是一种急性期蛋白,由肝细胞在IL-6等促炎刺激后产生。C反应蛋白是非特异性的,与炎症反应有关。TBI后的炎症过程可能导致CRP水平升高。例如,Shetty等人 [20] 发现TBI患者的高敏感性CRP水平升高与头痛或疲劳等症状显著相关。有证据表明,脑损伤后CRP可能被包围在星形胶质细胞源性外泌体中,据报道,其浓度超过相应神经元对照的12至35倍。

5) NLRP3:NOD样受体热蛋白结构域相关蛋白3 (NOD-LRR-and pyrin domain-containing protein 3, NLRP3)是一种炎症小体复合体和模式识别受体,涉及神经炎症反应。NLRP3在细胞呼吸过程中从线粒体释放ATP或在坏死或损伤后膜变性时被激活。研究表明,并发感染和相关免疫反应可能通过激活NLRP3加重TBI损伤 [21]。目前已经研究了多种NLRP炎性小体,然而,数据表明NLRP3可能与TBI最相关。Wallisch等人 [22] 研究了重度儿科TBI患者的NLRP3。与对照组相比,在所有时间点CSF NLRP3水平均显著升高(p < 0.001)。

6) S-100β:中枢神经特异蛋白(S-100β)在创伤性损伤后由星形胶质细胞和其他胶质细胞释放 [23]。当S-100β释放到细胞外空间时激活神经炎症反应。在TBI患者中,无论是使用格拉斯哥评分还是运动评分,S-100β都与意识水平具有很强的相关性,多项研究的数据表明,血液和脑脊液中的S-100β水平是神经结局的预测因子 [24] [25]。

7) GFAP:胶质纤维酸性蛋白(Glial Fibrillary Acidic Protein, GFAP)是一种只在胶质细胞,特别是星形胶质细胞中表达的中间纤维蛋白。由于其在星形胶质细胞中的特异性,GFAP在评估大脑损伤随时间的变化中是有用的。在TBI期间,BBB被破坏,允许在血液中检测到GFAP。Gill等人 [26] 发现GFAP是区分CT扫描阳性和CT扫描阴性TBI患者的最强预测生物标志物。Neri等人 [27] 证明了GFAP在TBI恢复期监测和评估大脑变化方面的意义。在重度TBI患者中,GFAP水平在伤后14天和30天有所增加。这表明GFAP水平在急性期后仍然升高。

8) UCH-L1:泛素羧基末端水解酶L1 (Ubiquitin carboxy-terminal hydrolase L1, UCHL1)是一种参与蛋白质稳态的酶,在神经元和睾丸中的表达具有高度特异性 [28]。据报道,脑外伤患者血清UCH-L1水平升高,与神经退行性疾病的发展和相关的认知能力下降有关。它还被证明与TBI的损伤严重程度相关,UCH-L1水平升高与死亡等较差结局相关 [29]。

9) NSE:神经元特异性烯醇化酶(NSE)是神经元和神经内分泌细胞特有的细胞内酶。NSE具有多种生理功能,包括糖酵解过程中的酶活性。由于其在神经元内的特异性,细胞外NSE的评估可表明神经元受损,因此NSE在反映TBI后的神经元损伤方面具有高度特异性。

10) HMGB1:高迁移率基盒蛋白1 (High-mobility group box protein 1, HMGB1)是一种核结合蛋白。HMGB1,也被称为两性蛋白,是一种损伤相关的分子蛋白,在炎症期间由免疫细胞释放,并作为多种受体(如TLR2,TLR4和RAGE)的配体,增强和持续炎症 [30]。HMGB1在TBI后由免疫细胞招募到损伤部位以及通过组织坏死释放。HMGB1已被证明可以反映TBI的GCS评分和严重程度,也可以指示TBI后的凋亡和坏死 [31]。

11) TMEM119:跨膜蛋白119 (Transmembrane Protein 119, TMEM119)在全身发挥多种生理作用;然而,在大脑中,TMEM119仅由小胶质细胞表达。由于TMEM119是一种跨膜蛋白,在TBI和随后的组织坏死之后可在细胞外发现TMEM119,并且可诱导巨噬细胞和激活小胶质细胞。Bohnert等人 [32] 发现,在遭受致命TBI的个体中,与对照组相比,急性期TMEM119水平显著高于对照组

12) Substance P:物质P (Substance P)是速激肽家族的一种神经肽,因此与神经炎症反应有关 [33]。P物质可影响BBB通透性并和脑水肿形成有关。Lorente等人 [34] 在损伤后第1、4和8天检测了严重TBI患者血清中P物质的水平,并评估了P物质作为TBI死亡率的预测因子。与在所有三个时间点都存活的人相比,死亡的人的物质P水平明显更高(P < 0.001)。

13) sTNFRI:可溶性肿瘤坏死因子1 (Soluble tumor necrosis factor 1, sTNFRI)既是激活TNF-α信号通路的TNF-α受体,也是抑制下游TNF-α信号通路的诱饵受体。TNF-α与细胞凋亡、炎症、免疫和感染性疾病有关,sTNFRI已被研究为多种疾病的预后因素 [35]。Vijapur等人 [36] 发现,sTNFRI水平,可以预测6个月的GCS评分(例如,高sTNFRI预示6个月的GCS较低)。

14) sIL-2Ra:白介素-2受体α (Interleuken-2 receptor alpha, sIL-2Ra)是IL-2的可溶性受体。IL-2受体存在于T淋巴细胞、B淋巴细胞和少突胶质细胞上。IL-2配体与这些细胞上的IL-2受体结合,激活它们的免疫原性功能,主要与细胞介导免疫有关。IL-2在TBI中的作用尚不明确;然而,血液中sIL-2Ra水平升高已被证明与6个月时较低的GCS相关 [36]。

5. 结论

目前,针对TBI预后标志物的研究已经深入到分子蛋白水平,不仅仅是在炎症反应阶段,许多其他生物标记物都有望通过临床试验来促进我们对TBI的理解。结合神经炎症生物标志物的进一步研究将有助于创建临床指南,并有助于医护人员加深对TBI的认识以及对患者和家属做好医患沟通,从而给出更个体化的诊疗建议。使用生物标记物不仅仅是为了预测患者结局,同时也为TBI的治疗提供新的靶点和思路,从而改善TBI患者的症状和预后。

文章引用

李 鑫,李坤正. 创伤性颅脑损伤神经炎症预后标志物研究进展
Research Progress on Prognostic Markers of Neuroinflammation in Traumatic Head Injury[J]. 临床医学进展, 2023, 13(02): 1315-1320. https://doi.org/10.12677/ACM.2023.132181

参考文献

  1. 1. Mollayeva, T., Mollayeva, S. and Colantonio, A. (2018) Traumatic Brain Injury: Sex, Gender and Intersecting Vulnera-bilities. Nature Reviews Neurology, 14, 711-722. https://doi.org/10.1038/s41582-018-0091-y

  2. 2. Bossers, S.M., Loer, S.A., Bloemers, F.W., et al. (2020) Association between Prehospital Tranexamic Acid Administration and Out-comes of Severe Traumatic Brain Injury. JAMA Neurology, 78, 338-345. https://doi.org/10.1001/jamaneurol.2020.4596

  3. 3. Jiang, J.-Y., Gao, G.-Y., Feng, J.-F., et al. (2019) Traumatic Brain Injury in China. The Lancet Neurology, 18, 286-295. https://doi.org/10.1016/S1474-4422(18)30469-1

  4. 4. National Center for Health Statistics: Mortality Data on CDC WONDER. Centers for Disease Control and Prevention. https://wonder.cdc.gov/mcd.html

  5. 5. Bell, J.M., Breiding, M.J. and DePadilla, L. (2017) CDC’s Efforts to Im-prove Traumatic Brain Injury Surveillance. Journal of Safety Research, 62, 253-256. https://doi.org/10.1016/j.jsr.2017.04.002

  6. 6. Pearn, M.L., Niesman, I.R., Egawa, J., et al. (2017) Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cellular and Molecular Neurobiology, 37, 571-585. https://doi.org/10.1007/s10571-016-0400-1

  7. 7. Eapen, B. and Cifu, D. (2018) Rehabilitation after Traumatic Brain Injury. Elsevier, St. Louis.

  8. 8. Cuccurullo, S.J. (2010) Traumatic Brain Injury. In: Cuccurullo, S.J., Ed., Physical Med-icine and Rehabilitation Board Review, 2nd Edition, Demos Medical Publishing, New York, 49-50, 51-53, 90-91.

  9. 9. Dixon, K.J. (2017) Pathophysiology of Traumatic Brain Injury. Physical Medicine and Rehabilitation Clin-ics of North America, 28, 215-225. https://doi.org/10.1016/j.pmr.2016.12.001

  10. 10. Chodobski, A., Zink, B.J. and Szmydynger-Chodobska, J. (2011) Blood-Brain Barrier Pathophysiology in Traumatic Brain Injury. Translational Stroke Research, 2, 492-516. https://doi.org/10.1007/s12975-011-0125-x

  11. 11. Yarlagadda, A., Alfson, E. and Clayton, A.H. (2009) The Blood Brain Barrier and the Role of Cytokines in Neuropsychiatry. Psychiatry (Edgmont), 6, 18-22.

  12. 12. Wong, A.D., Ye, M., Levy, A.F., et al. (2013) The Blood-Brain Barrier: An Engineering Perspective. Frontiers in Neuroengineering, 6, Article 7. https://doi.org/10.3389/fneng.2013.00007

  13. 13. Gayen, M., Bhomia, M., Balakathiresan, N. and Knollmann-Ritschel, B. (2020) Exosomal MicroRNAs Released by Activated Astrocytes as Potential Neuroinflammatory Biomarkers. International Journal of Molecular Sciences, 21, Article No. 2312. https://doi.org/10.3390/ijms21072312

  14. 14. Devoto, C., Arcurio, L., Fetta, J., Ley, M., Rodney, T., Kanefsky, R. and Gill, J. (2017) Inflammation Relates to Chronic Behavioral and Neurological Symptoms in Military Personnel with Traumatic Brain Injuries. Cell Transplantation, 26, 1169-1177. https://doi.org/10.1177/0963689717714098

  15. 15. Chiaretti, A., Antonelli, A., Mastrangelo, A., Pezzotti, P., Torto-rolo, L., Tosi, F. and Genovese, O. (2008) Interleukin-6 and Nerve Growth Factor Upregulation Correlates with Im-proved Outcome in Children with Severe Traumatic Brain Injury. Journal of Neurotrauma, 25, 225-234. https://doi.org/10.1089/neu.2007.0405

  16. 16. Hergenroeder, G.W., Moore, A.N., McCoy Jr., J.P., Samsel, L., Ward 3rd, N.H., Clifton, G.L. and Dash, P.K. (2010) Serum IL-6: A Candidate Biomarker for Intracranial Pressure Elevation Following Isolated Traumatic Brain Injury. Journal of Neuroinflammation, 7, Article No. 19. https://doi.org/10.1186/1742-2094-7-19

  17. 17. Mazzeo, A.T., Filippini, C., Rosato, R., Fanelli, V., Assenzio, B., Piper, I., Howells, T., Mastromauro, I., Berardino, M., Ducati, A. and Mascia, L. (2016) Multivariate Projection Method to Investigate Inflammation Associated with Secondary Insults and Outcome after Human Traumatic Brain Injury: A Pilot Study. Journal of Neuroinflammation, 13, Article No. 157. https://doi.org/10.1186/s12974-016-0624-5

  18. 18. Thompson, H.J., Martha, S.R., Wang, J. and Becker, K.J. (2020) Impact of Age on Plasma Inflammatory Biomarkers in the 6 Months Following Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 35, 324-331. https://doi.org/10.1097/HTR.0000000000000606

  19. 19. Stein, D.M., Lindell, A.L., Murdock, K.R., Kufera, J.A., Menaker, J., Bochicchio, G.V., Aarabi, B. and Scalea, T.M. (2012) Use of Serum Biomarkers to Predict Cerebral Hy-poxia after Severe Traumatic Brain Injury. Journal of Neurotrauma, 29, 1140-1149. https://doi.org/10.1089/neu.2011.2149

  20. 20. Shetty, T., Cogsil, T., Dalal, A., Kim, E., Halvorsen, K., Cummings, K. and Nguyen, J.T. (2019) High-Sensitivity C-Reactive Protein: Retrospective Study of Potential Blood Biomarker of In-flammation in Acute Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 34, E28-E36. https://doi.org/10.1097/HTR.0000000000000450

  21. 21. Irrera, N., Russo, M., Pallio, G., et al. (2020) The Role of NLRP3 Inflammasome in the Pathogenesis of Traumatic Brain Injury. International Journal of Molecular Sciences, 21, Article No. 6204. https://doi.org/10.3390/ijms21176204

  22. 22. Wallisch, J.S., Simon, D.W., Bayır, H., Bell, M.J., Kochanek, P.M. and Clark, R.S.B. (2020) Cerebrospinal Fluid NLRP3 Is Increased after Severe Traumatic Brain Injury in Infants and Children. Neurocritical Care, 27, 44-50. https://doi.org/10.1007/s12028-017-0378-7

  23. 23. Mishra, S.K., Kumar, B.S., Khushu, S., Singh, A.K. and Gangenahalli, G. (2020) Early Monitoring and Quantitative Evaluation of Macrophage Infiltration after Experimental Traumatic Brain Injury: A Magnetic Resonance Imaging and Flow Cytometric Analysis. Molecular and Cellular Neuro-science, 78, 25-34. https://doi.org/10.1016/j.mcn.2016.11.008

  24. 24. Carabias, C.S., Gomez, P.A., Panero, I., Eiriz, C., Castaño-León, A.M., Egea, J. and Lagares, A. (2020) Chitinase-3-Like Protein 1, Serum Amyloid A1, C-Reactive Protein, and Procal-citonin Are Promising Biomarkers for Intracranial Severity Assessment of Traumatic Brain Injury: Relationship with Glasgow Coma Scale and Computed Tomography Volumetry. World Neurosurgery, 134, e120-e143. https://doi.org/10.1016/j.wneu.2019.09.143

  25. 25. Di Battista, A.P., Buonora, J.E., Rhind, S.G., Hutchison, M.G., Baker, A.J., Rizoli, S.B., Diaz-Arrastia, R. and Mueller, G.P. (2015) Blood Biomarkers in Moderate-to-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Frontiers in Neurology, 6, Article 110. https://doi.org/10.3389/fneur.2015.00110

  26. 26. Gill, J., Latour, L., Diaz-Arrastia, R., Motamedi, V., Turtzo, C., Shahim, P., Mondello, S., DeVoto, C., Veras, E., Hanlon, D., Song, L. and Jeromin, A. (2018) Glial Fibrillary Acidic Protein Elevations Relate to Neuroimaging Abnormalities after Mild TBI. Neurology, 91, e1385-e1389. https://doi.org/10.1212/WNL.0000000000006321

  27. 27. Neri, M., Frati, A., Turillazzi, E., Cantatore, S., Cipolloni, L., Di Paolo, M., Frati, P., La Russa, R., Maiese, A., Scopetti, M., Santurro, A., Sessa, F., Zamparese, R. and Fineschi, V. (2018) Immunohistochemical Evaluation of Aquaporin-4 and Its Correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 Expressions in Fatal Traumatic Brain Injury. International Journal of Molecular Sciences, 19, Article No. 3544. https://doi.org/10.3390/ijms19113544

  28. 28. Bishop, P., Rocca, D. and Henley, J.M. (2016) Ubiquitin C-Terminal Hydrolase L1 (UCH-L1): Structure, Distribution and Roles in Brain Function and Dysfunction. Biochemical Journal, 473, 2453-2462. https://doi.org/10.1042/BCJ20160082

  29. 29. Huibregtse, M.E., Bazarian, J.J., Shultz, S.R. and Kawata, K. (2021) The Biological Significance and Clinical Utility of Emerging Blood Biomarkers for Traumatic Brain Injury. Neuroscience & Biobehavioral Reviews, 130, 433-447. https://doi.org/10.1016/j.neubiorev.2021.08.029

  30. 30. Paudel, Y.N., Angelopoulou, E., Piperi, C., Othman, I. and Shaikh, M.F. (2020) HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. International Journal of Molecular Sciences, 21, Article No. 4609. https://doi.org/10.3390/ijms21134609

  31. 31. Chirico, V., Lacquaniti, A., Salpietro, V., Munafò, C., Calabrò, M.P., Buemi, M., Arrigo, T. and Salpietro, C. (2014) High-Mobility Group Box 1 (HMGB1) in Childhood: From Bench to Bedside. European Journal of Pediatrics, 173, 1123-1136. https://doi.org/10.1007/s00431-014-2327-1

  32. 32. Bohnert, S., Seiffert, A., Trella, S., Bohnert, M., Distel, L., Ondruschka, B. and Monoranu, C.-M. (2020) TMEM119 as a Specific Marker of Microglia Reaction in Traumatic Brain Injury in Postmortem Examination. International Journal of Legal Medicine, 134, 2167-2176. https://doi.org/10.1007/s00414-020-02384-z

  33. 33. Lorente, L. (2015) New Prognostic Biomarkers in Patients with Traumatic Brain Injury. Archives of Trauma Research, 4, e30165. https://doi.org/10.5812/atr.30165

  34. 34. Lorente, L., Martín, M.M., Pérez-Cejas, A., González-Rivero, A.F., Argueso, M., Ramos, L., Solé-Violán, J., Cáceres, J.J., Ji-ménez, A. and García-Marín, V. (2019) Persistently High Serum Substance P Levels and Early Mortality in Patients with Severe Traumatic Brain Injury. World Neurosurgery, 132, e613-e617. https://doi.org/10.1016/j.wneu.2019.08.064

  35. 35. Sedger, L.M. and McDermott, M.F. (2014) TNF and TNF-Receptors: From Mediators of Cell Death and Inflammation to Therapeutic Giants—Past, Present and Future. Cyto-kine & Growth Factor Reviews, 25, 453-472. https://doi.org/10.1016/j.cytogfr.2014.07.016

  36. 36. Vijapur, S.M., Vaughan, L.E., Awan, N., DiSanto, D., McKernan, G.P. and Wagner, A.K. (2021) Treelet Transform Analysis to Identify Clusters of Systemic Inflammatory Variance in a Population with Moderate-to-Severe Traumatic Brain Injury. Brain, Behavior, and Immunity, 95, 45-60. https://doi.org/10.1016/j.bbi.2021.01.026

  37. NOTES

    *通讯作者。

期刊菜单