Advances in Applied Mathematics
Vol. 11  No. 03 ( 2022 ), Article ID: 49437 , 6 pages
10.12677/AAM.2022.113114

带一个自相容源的(3 + 1)-维KP-I方程的广义Dromion结构

苏丹

湛江幼儿师范专科学校,广东 湛江

收稿日期:2022年2月16日;录用日期:2022年3月11日;发布日期:2022年3月18日

摘要

本文利用Hirota双线性方法构造了具有一个自相容源的(3 + 1)-维KP-I方程(KPIESCS)的指数局部化解。我们得到了该方程广义dromion型解和多dromion解。

关键词

指数局部化解,带自相容源的(3 + 1)-维KP-I方程,双线性方法

Generalized Dromion Structures of the (3 + 1)-Dimensional Kadomtsev-Petviashvili I Equation with a Self-Consistent Source

Dan Su

Department of Mathematics of Zhanjiang Preschool Education College, Zhanjiang Guangdong

Received: Feb. 16th, 2022; accepted: Mar. 11th, 2022; published: Mar. 18th, 2022

ABSTRACT

Exponentially localized solutions to the (3 + 1)-dimensional Kadomtsev-Petviashvili I equation with a self-consistent source (KPIESCS) are constructed by the Hirota bilinear method. The generalized dromion type solutions and multi-dromion solutions are obtained.

Keywords:Exponentially Localized Solutions, (3 + 1)-Dimensional Kadomtsev-Petviashvili I Equation with a Self-Consistent Source, Hirota Bilinear Method

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

自从Zabusky和Kruskal在非线性波的数值研究中首次提出“孤子”一词后,孤子理论引起了人们的广泛关注 [1]。孤子理论作为非线性科学的一个分支,在数学和物理中有着广泛的应用 [2] [3]。此外,具有自相容源的方程在物理学中具有重要的实际意义,因为它们可以反映不同波之间的相互作用 [4] [5] [6] [7]。目前,求解这些方程的方法主要有两种。一种是基于Lax对的分析方法,如达布变换方法 [8] [9],贝克隆变换方法 [10] [11] 和逆散射方法 [12] [13] [14]。另一种广泛使用的方法是Hirota双线性方法,它是一种代数方法而不是解析方法 [15] [16]。

对于高维可积模型,最重要的特性之一是发现了称为dromion的指数局部化结构 [17]。通常,dromion由两个或多个非平行线ghost孤子驱动 [18] [19]。在具有奇偶时间对称势的(2 + 1)维KdV方程、(3 + 1)维条件可积系统和(2 + 1)维非线性薛定谔方程中,得到了dromion结构 [20] [21] [22]。此外,在Mel’nikov方程的情况下,得到了更一般的具有空间变化振幅的dromion型解以及包含的多dromion解 [23]。

在本文中,我们将重点讨论如下形式的带一个自相容源的(3 + 1)维Kadomtsev-Petviashvili方程(KPIESCS)广义形式的dromion结构

{ ( u t + 6 u u x + u x x x + 8 κ | ϕ | x 2 ) x u y y + u z z = 0 , i ϕ y = 2 ϕ x x + 2 u ϕ , i ϕ z = ϕ x x + u ϕ . (1)

其中,u是长波振幅, ϕ 是复的短波包, κ 满足条件 κ 2 = 1 。文献 [24] 讨论了该方程一般有理解的显式表示。

2. 方程(1)的局部解

通过因变量转换 u = 2 ( ln f ) x x , ϕ = g / f ,方程(1)被转换成双线性方程

{ ( D x D t + D x 4 D y 2 + D z 2 ) f f + 8 κ g g ¯ = 0 , ( i D y 2 D x 2 ) g f = 0 , ( i D z D x 2 ) g f = 0. (2)

ε 幂级数的形式展开 f , g ,如下所示

g = ε g ( 1 ) + ε 3 g ( 3 ) + , f = 1 + ε 2 f ( 2 ) + ε 4 f ( 4 ) + , (3)

将(3)代入(2)可以得到一组线性方程

{ O ( ε ) : i g z ( 1 ) = g x x ( 1 ) , i g y ( 1 ) = 2 g x x ( 1 ) , O ( ε 2 ) : f x x x x ( 2 ) + f x t ( 2 ) f y y ( 2 ) + f z z ( 2 ) = 4 κ | g ( 1 ) | 2 , (4)

为了得到孤立子解,令

g ( 1 ) = j = 1 N exp ( ψ j ) , ψ j = l j x + m j y + n j z + ω j t + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j , (5)

其中 l j , m j , ω j , ψ j ( 0 ) 是复的待定系数。当 N = 1 时我们得到

f ( 2 ) = exp ( ψ 1 + ψ 1 + 2 A ) , exp ( 2 A ) = κ 4 l 1 R 4 + l 1 R ω 1 R 3 n 1 R 2 , (6)

这里 l 1 = l 1 R + i l 1 I , m 1 = m 1 R + i m 1 I , n 1 = n 1 R + i n 1 I , ω 1 = ω 1 R + i ω 1 I g ( 2 j 1 ) = f ( 2 j ) = 0 ( j 2 ) 。此时我们得到

孤立子解

{ u = 2 l 1 R 2 sech 2 ( ψ 1 R + A ) , ϕ = 4 l 1 R 4 + l 1 R ω 1 R 12 l 1 R 2 l 1 I 2 4 κ sech ( ψ 1 R + A ) e i ψ 1 I , (7)

其中 ψ 1 R = l 1 R x + m 1 R y + 2 l 1 R l 1 I z + ω 1 R t + ψ 1 R ( 0 ) , ψ 1 I = l 1 I x + m 1 I y ( l 1 R 2 l 1 I 2 ) z + ω 1 I t + ψ 1 I ( 0 )

特别地,为了得到类似文献 [19] 中的(1,1)-dromion解,我们取

f = 1 + e ψ 1 + ψ 1 * + e ψ 2 + ψ 2 * + K e ψ 1 + ψ 1 * + ψ 2 + ψ 2 * , g = ρ e ψ 1 + ψ 2 , (8)

其中

ψ 1 = p x + m y + n z , ψ 2 = q t , (9)

并且 K > 0 是一个待定实数, p , m , n , q 是待定复系数。将(8)式代入(2)式中的第一个方程可以得到当 3 n R 2 = 4 p R 4 时满足

κ | ρ | 2 = p R q R ( K 1 ) , (10)

然后再将(8)和(10)代入(2)式中的第二个方程得到 m = 2 n , n = i p 2 , p R 2 = 3 p I 2

因此,我们得到如下形式的指数衰减解

{ u = 8 p R 2 ( 1 + e ψ 2 + ψ 2 ) ( e ψ 1 + ψ 1 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 ) ( 1 + e ψ 1 + ψ 1 + e ψ 2 + ψ 2 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 ) 2 , ϕ = ρ e ψ 1 + ψ 2 1 + e ψ 1 + ψ 1 + e ψ 2 + ψ 2 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 , (11)

此外,可以看到(4)式中的第一个方程只和自变量 x , y , z 有关,因此可以引入一些关于自变量t的任意函数来寻找更一般形式的解。例如,选择

g ( 1 ) = j = 1 N exp ( ψ j ) , ψ j = l j x + m j y + n j z + a j ( t ) + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j , (12)

或者

g ( 1 ) = j = 1 N a j ( t ) exp ( ψ j ) , ψ j = l j x + m j y + n j z + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j . (13)

为了说明此种情况,不妨假设

g ( 1 ) = a ( t ) e ψ 1 , ψ 1 = l 1 x + m 1 y + n 1 z , (14)

这里 a ( t ) 是一个复函数,复系数 l 1 , n 1 , m 1 满足色散关系 l 1 2 = i n 1 , m 1 = 2 n 1 。将(14)代入(4)式第二个方程,我们得到

f ( 2 ) = b ( t ) e ψ 1 + ψ 1 , (15)

其中 b ( t ) 是一个满足如下关系的实函数

8 l 1 R 4 b ( t ) + l 1 R b ( t ) 6 n 1 R 2 b ( t ) = 2 κ | a ( t ) | 2 . (16)

于是我们得到方程(1)如下形式的解

{ u = 2 l 1 R 2 sech 2 [ ψ 1 R + 1 2 ln b ( t ) ] , ϕ = a ( t ) 2 b ( t ) e i ψ 1 I sech [ ψ 1 I + 1 2 ln b ( t ) ] , (17)

其中 ψ 1 R , ψ 1 I 分别是 ψ 1 的实部和虚部。显然,此时u是一个曲线孤子,自相容源项 ϕ 拥有丰富的结构。例如,如果选择

a ( t ) b ( t ) = 2 sech ( c 0 + c 1 t ) , (18)

我们可以从(16)式中求得

b ( t ) = exp ( 8 κ tanh ( c 0 + c 1 t ) + ( 6 n 1 R 2 8 l 1 R 4 ) t l 1 R ) , (19)

于是可以得到

ϕ = e i ψ 1 I sech ( c 0 + c 1 t ) sech [ l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R ( 8 κ tanh ( c 0 + c 1 t ) + ( 6 n 1 R 2 8 l 1 R 4 ) t ) ] . (20)

这就是一个dromion型解。

如果选择

a ( t ) b ( t ) = 2 ( t + t 0 ) 2 + 1 , (21)

我们就得到一个代数衰减的局部解

ϕ = e i ψ 1 I ( t + t 0 ) 2 + 1 sech { l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R [ ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ d t [ ( t + t 0 ) 2 + 1 ] 2 ] } , (22)

这个解沿着t方向衰减的速度要比解(20)慢很多。

通过扩展上述步骤,我们可以构造广义形式的局部解。实际上,可以得到如下形式的多dromion解

ϕ N = [ j = 1 M a j ( t ) 2 b ( t ) ] e i ψ 1 I sech [ ψ 1 R + 1 2 ln b ( t ) ] . (23)

这里 a j ( t ) , j = 1 , 2 , , N 是关于自变量t的任意函数且满足

8 l 1 R 4 b ( t ) + l 1 R b ( t ) 6 n 1 R 2 b ( t ) = 2 κ p = 1 M q = 1 M a p ( t ) a q ( t ) , (24)

为了说明这种解,我们取 M = 2 为例。令

a 1 ( t ) b ( t ) = 2 sech ( t + η 1 ) , a 2 ( t ) b ( t ) = 2 sech ( t + η 2 ) , (25)

求解式(24)得到

b ( t ) = exp [ ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ ( tanh ( t + η 1 ) + tanh ( t + η 2 ) + 2 sech ( t + η 1 ) sech ( t + η 2 ) d t ) l 1 R ] , (26)

此时就可以到一个高阶dromion解

ϕ 2 = e i ψ 1 I [ sech ( t + η 1 ) + sech ( t + η 2 ) ] sech [ l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R ( ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ ( tanh ( t + η 1 ) + tanh ( t + η 2 ) + 2 sech ( t + η 1 ) sech ( t + η 2 ) d t ) ) ] . (27)

3. 总结

本文中,我们基于Hirota双线性方法找到了(3 + 1)维KPIESCS的指数局部化解。我们特别构造了局域dromion解和诱导dromion解。

基金项目

湛江市非资助科技攻关计划项目(2021B01506)。

文章引用

苏 丹. 带一个自相容源的(3 + 1)-维KP-I方程的广义Dromion结构
Generalized Dromion Structures of the (3 + 1)-Dimensional Kadomtsev-Petviashvili I Equation with a Self-Consistent Source[J]. 应用数学进展, 2022, 11(03): 1053-1058. https://doi.org/10.12677/AAM.2022.113114

参考文献

  1. 1. Zabusky, N.J. and Kruskal, M.D. (1965) Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Physical Review Letters, 15, 240-243. https://doi.org/10.1103/PhysRevLett.15.240

  2. 2. Enns, R.H., Jones, B.L., Miura, R.M. and Rangnekar, S.S. (1981) Nonlinear Phenomena in Physics and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4106-2

  3. 3. Agrawal, G.P. (2006) Nonlinear Fiber Optics. Academic Press, San Diego. https://doi.org/10.1016/B978-012369516-1/50011-X

  4. 4. Mel’nikov, V.K. (1983) On Equations for Wave Interactions. Letters in Mathematical Physics, 7, 129-136. https://doi.org/10.1007/BF00419931

  5. 5. Mel’nikov, V.K. (1987) A Direct Method for Deriving a Multi-Soliton Solution for the Problem of Interaction of Waves on the x,y Plane. Communications in Mathematical Physics, 112, 639-652. https://doi.org/10.1007/BF01225378

  6. 6. Mel’nikov, V.K. (1989) Interaction of Solitary Waves in the System Described by the Kadomtsev-Petviashvili Equation with a Self-Consistent Source. Communications in Mathematical Physics, 126, 201-215. https://doi.org/10.1007/BF02124337

  7. 7. Mel’nikov, V.K. (1990) New Method for Deriving Nonlinear Integrable Systems. Journal of Mathematical Physics, 31, 1106-1113. https://doi.org/10.1063/1.528790

  8. 8. Matveev, V.B. and Salle, M.A. (1991) Darboux Transformations and Solitons. Springer, Berlin.

  9. 9. Gu, C.H., Hu, H.S. and Zhou, Z.X. (2005) Darboux Transformations in Integrable Systems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3088-6

  10. 10. Rogers, C. and Schief, W.K. (2002) Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511606359

  11. 11. Chen, D.Y. (2006) Introduction to Soliton Theory. Science Press, Beijing.

  12. 12. Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511623998

  13. 13. Zeng, Y.B., Ma, W.X. and Lin, R.L. (2001) Integration of the Soliton Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 41, 5453-5489. https://doi.org/10.1063/1.533420

  14. 14. Li, Q., Zhang, D.J. and Chen, D.Y. (2010) Solving Non-Isospectral mKdV Equation and Sine-Gordon Equation Hierarchies with Self-Consistent Sources via Inverse Scattering Transforma. Communications in Theoretical Physics, 54, 219-228. https://doi.org/10.1088/0253-6102/54/2/04

  15. 15. Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511543043

  16. 16. Deng, S.F., Chen, D.Y. and Zhang, D.J. (2003) The Multisoliton Solutions of the KP Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 72, 2184-2192. https://doi.org/10.1143/JPSJ.72.2184

  17. 17. Fokas, A.S. and Santini, P.M. (1989) Coherent Structures in Multidimensions. Physical Review Letters, 63, 1329-1333. https://doi.org/10.1103/PhysRevLett.63.1329

  18. 18. Boiti, M., Leon, J.J.P., Martina, L. and Pempinelli, F. (1988) Scattering of Localized Solitons in the Plane. Physics Letters A, 132, 432-439. https://doi.org/10.1016/0375-9601(88)90508-7

  19. 19. Radha, R. and Lakshmanan, M. (1994) Singularity Analysis and Localized Coherent Structures in (2+1)-Dimensional Generalized Korteweg-de Vries Equations. Journal of Mathematical Physics, 35, 4746-4756. https://doi.org/10.1063/1.530812

  20. 20. Lou, S.Y. (1995) Generalized Dromion Solutions of the (2+1)-Dimensional KdV Equation. Journal of Physics A: Mathematical and General, 28, 7227-7232. https://doi.org/10.1088/0305-4470/28/24/019

  21. 21. Ruan, Y. and Lou, S.Y. (1997) Higher-Dimensional Dromion Structures: Jimbo-Miwa-Kadomtsev-Petviashvili System. Journal of Mathematical Physics, 38, 3123-3136. https://doi.org/10.1063/1.532038

  22. 22. Li, Y.Q., Liu, W.J., Wong, P., Huang, L.G., Pan, N. (2015) Dromion Structures in the (2+1)-Dimensional Nonlinear Schrödinger Equation with a Parity-Time-Symmetric Potential. Applied Mathematics Letters, 47, 8-12. https://doi.org/10.1016/j.aml.2015.02.002

  23. 23. Kumar, C.S., Radha, R. and Lakshmanan, M. (2004) Exponentially Localized Solutions of Mel’nikov Equation. Chaos, Solitons & Fractals, 22, 705-712. https://doi.org/10.1016/j.chaos.2004.02.046

  24. 24. Yong, X.L., Li, X.Y., Huang, Y.H., Ma, W.X. and Liu, Y. (2020) Rational Solutions and Lump Solutions to the (3+1)-Dimensional Mel’nikov Equation. Modern Physics Letters B, 34, Article ID: 2050033. https://doi.org/10.1142/S0217984920500335

期刊菜单