Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64637 , 6 pages
10.12677/ACM.2023.134935

呼吸支持技术在新生儿呼吸窘迫综合征中 的应用

江锦1,李芳2*

1重庆医科大学附属儿童医院新生儿科,重庆

2重庆医科大学附属妇女儿童医院新生儿科,重庆

收稿日期:2023年3月26日;录用日期:2023年4月21日;发布日期:2023年4月27日

摘要

新生儿呼吸窘迫综合征是新生儿尤其是早产儿出生后常见的呼吸系统疾病,也是导致新生儿死亡的重要原因之一。外源性肺泡表面物质联合呼吸机辅助通气是目前公认的针对新生儿呼吸窘迫综合征的核心治疗措施,该措施可以减少病死率及改善晚期预后。本文拟从新生儿呼吸窘迫综合征的病因、肺泡表面活性物质及辅助呼吸技术三个方面着手,对新生儿呼吸窘迫综合征的呼吸支持策略进行综述。

关键词

早产儿,新生儿呼吸窘迫综合征(NRDS),肺泡表面活性物质(PS),呼吸支持技术

Application of Respiratory Support Technology in Neonatal Respiratory Distress Syndrome

Jin Jiang1, Fang Li2*

1Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing

2Department of Neonatology, Women and Children’s Hospital of Chongqing Medical University, Chongqing

Received: Mar. 26th, 2023; accepted: Apr. 21st, 2023; published: Apr. 27th, 2023

ABSTRACT

Neonatal respiratory distress syndrome (NRDS) is a common respiratory disease in newborns, especially premature infants, and one of the main causes of neonatal death. It is acknowledged that exogenous surfactant therapy combined with ventilation support was the core treatment measure for NRDS and it can reduce the mortality and improve late outcomes. In this paper, respiratory support strategies for neonatal respiratory distress syndrome were reviewed from three aspects: etiology of neonatal respiratory distress syndrome, alveolar surfactant and assisted respiratory techniques.

Keywords:Premature Infants, Neonatal Respiratory Distress Syndrome (NRDS), Pulmonary Surfactant (PS), Respiratory Support Technology

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

新生儿呼吸窘迫综合征是早期威胁新生儿生命的原因之一,也是后期支气管肺发育不良的高危因素。每年新生儿死亡人数中有近三分之一是死于新生儿呼吸窘迫综合征继发的进行性呼吸困难 [1] 。目前临床上对于新生呼吸窘迫综合征主要采用外源性肺表面活性物质注入及呼吸机辅助通气联合治疗 [2] 。本文拟从新生儿呼吸窘迫综合征的发病原因、肺表面活性物质的应用及呼吸机辅助通气治疗三个方面分析,对新生儿呼吸窘迫综合征近年来的呼吸支持策略进行综述。

2. 发病机制

新生儿呼吸窘迫综合征(Neonatal Respiratory Distress Syndrome, NRDS)是由于新生儿II型肺泡上皮细胞分泌肺泡表面活性物质(Pulmonary surfactant, PS)不足,主要导致肺表面张力增高,肺通气及肺换气功能明显降低,从而出现进行性呼吸困难、发绀、吸气性三凹征等临床表现的一种综合征 [2] 。NRDS的发病与胎龄、剖宫产、母亲妊娠期糖尿病、围产期窒息等因素相关。其中,胎龄是最重要的因素,胎龄越小,NRDS发病率越高。研究表明,30~21周的早产儿NRDS发病率在52%左右,胎龄在25周以下的早产儿,NRDS的发病率高达90% [3] [4] 。由于NRDS是由于PS相对缺乏导致肺泡表面张力升高、肺泡换气功能障碍,因此外源性肺泡表面活性物质注射及呼吸机辅助呼吸支持成为NRDS的主要治疗手段。

3. 肺表面活性物质的应用

作为经典治疗NRDS治疗手段的PS,可以有效降低NRDS的发病率,也可以显著减小发生不良预后事件的概率 [2] 。目前关于PS的使用主要分为预防性应用和挽救性治疗,前者一般是针对胎龄 < 26周的早产儿在生后15~30分钟内使用PS,后者是指出现NRDS的患儿及时使用PS治疗。近年来研究发现,预防性使用PS与选择性使用PS相比死亡率更高(RR: 1.24, 95% CI: 0.97~1.58)、发生支气管肺发育不良的风险越高(RR: 1.12, 95% CI: 0.99~1.26) [5] ,因此欧洲NRDS防治指南已经不推荐预防性使用PS,并建议生后早期予以无创呼吸机CPAP (Continuous Positive Airway Pressure)模式辅助呼吸,必要时早期使用PS [2] [5] 。

临床上广泛应用的气管插管–注入肺泡表面活性物质–拔管(INtubation-SURfactant-Extubation, INSURE)方式可以准确地把PS送到肺表面,但这种侵入性操作无法避免会对气道造成损伤。因此,除了PS的使用时机以外,PS的注射方法也是临床上关注的要点之一。从二十多年前的丹麦开始,世界各国纷纷开始研究如何通过微创的方式给新生儿注射PS [6] 。主要是运用小导管在直接喉镜下随着自主呼吸运动将PS送入肺部,这些方法在被统称为低侵入性PS治疗(less invasive surfactant administration, LISA)技术和微创PS治疗(minimally invasive surfactant therapy, MIST)技术,并认为LISA在治疗NRDS时与INSURE相比可以获得同样收益。有人认为,与INSURE技术相比,LISA技术可以减少NRDS患儿机械通气需求(RR: 0.71, 95% CI: 0.53~0.96)及降低支气管肺发育不良或死亡的发生率(RR: 0.75, 95% CI: 0.59~0.94) [7] 。但是另外一项在中国开展的单中心回顾性分析却得出与此相反的结论,该研究发现LISA与INSURE相比,支气管肺发育不良的发生率分别为21.8%和27.4% (P = 0.85)、重度支气管肺发育不良的发生率分别为4.35%和3.93% (P = 0.903)。LISA与INSURE 相比并不能减少支气管肺发育不良及重度支气管发育不良的风险 [8] 。

另外一项研究表明INSURE和LISA在使用喉镜直视气道时均会引起短暂性脑氧饱和降低。因此,目前临床上仍在寻找其他方式将外源性PS送入肺部,例如雾化吸入。理想状态下是通过将雾化器放置在呼吸机连接通路上,使含有PS的液体震荡变成直径在2~5 μ的液滴,随着呼吸机送气的过程中将PS送入肺部并沉积在气管及肺泡表面。雾化吸入肺泡表面活性物质可以使PS更均匀得分布在肺表面,减少对气道的损伤和机械通气,避免低氧血症。但是雾化吸入PS需要较长时间且吸入PS量较少且具体剂量不易掌控 [9] 。各种使用方法均有其优势与劣势,在临床使用时需结合患儿具体情况分析判断。

4. 辅助通气治疗

随着PS在新生儿中的应用及呼吸辅助支持技术的不断发展,NRDS的治愈率得到提升。随着现代围产医学及新生儿复苏技术的进步,越来越多的早产儿,特别是极低出生体重儿(VLBW)和超低出生体重儿(ELBW)出生,NRDS的发病率及支气管肺发育不良等并发症的发生率也逐渐升高 [10] 。

4.1. 无创通气模式(Noninvasive Ventilation, NIV)

无创通气模式可以减少气管插管,从而减少患儿机械通气时间及插管相关并发症。临床常用的呼吸机模式有以下几种:

1) 持续气道正压通气(CPAP)

CPAP是指在正压通气过程中,持续在呼气末期给一个固定的压力,维持一定的气道压力,促进肺内气体交换,维持一定的肺泡体积和张力的一种模式。早期使用CPAP可以诱导肺泡发育,并减少气管插管的发生。在NRDS早期,CPAP联合PS使用较单独使用CPAP治疗效果更佳 [11] 。

2) 经鼻间歇正压通气(Nasal Intermittent Positive Pressure Ventilation, NIPPV)

NIPPV是在广泛应用的经鼻持续气道正压通气(NCPAP)的基础上给予间歇正压的一种呼吸支持模式。与单独使用CPAP相比,NIPPV可以减少NRDS患儿发生呼吸衰竭、气管插管有创通气的概率 [12] 。对于同时接受PS治疗的NIPPV组和CPAP组,NIPPV组气管插管率明显低于CPAP组 [13] 。然而,Kostekci, Y. E.等人的研究发现NIPPV与CPAP相比,其作为NRDS患儿的早期治疗并没有特殊的优势,在气管插管率、死亡率与BPD的发生率上并没有太大区别,但NIPPV组的住院时间明显短于CPAP组 [14] 。

3) 双水平气道正压通气(Bi-Level Positive Airway Pressure, BiPAP)

BiPAP也是正压通气的一种增强模式。允许患者在任意时刻进行自主呼气,提高肺通气量,改善肺通气血流比例,优化患者和呼吸机之间的同步化,减少人机对抗。一项回顾性研究发现,在NRDS早期应用BiPAP改善通气较CPAP更有效,因为BiPAP可以减少CO2潴留和降低吸氧浓度 [15] 。另外一项早期研究表明,早期应用BiPAP治疗NRDS不仅可以减少CO2潴留、改善氧合,还可以减少机械通气和并发症 [16] 。也有研究表明BiPAP在无创通气时间,气管插管,发生支气管肺发育不良、脑室内出血、气胸甚至死亡等方面与CPAP相比没有临床差异 [17] 。

4) 高流量加温湿化正压通气(High-Flow Nasal Cannula, HFNC)

是指通过空氧混合装置加温湿化经过的高流量气体,使其在经过呼吸道过程中,改善纤毛功能,增强黏液清除,同时,给予小气道的压力,避免肺泡塌陷,减少呼吸肌做功。一项随机对照研究发现,将HFNC用作NRDS早期无创通气模式可以避免使用更高等级呼吸支持 [18] 。然而在预防治疗失败、死亡和支气管肺发育不良上,HFNC与CPAP相比并无明显差别 [19] 。甚至,将HFNC作为早产儿首选呼吸支持模式反而会增加通气失败发生呼吸衰竭需要气管插管的概率 [20] [21] 。然而在大多数研究里,HFNC更多的被用作拔管后的呼吸支持而不是NRDS患儿的初始呼吸支持,这可能是因为拔管后使用HFNC与CPAP相比,具有更低的鼻损伤及气胸发生率 [22] 。

5) 神经调节通气辅助(Neurally Adjusted Ventilatory Assist, NAVA)

NAVA区别于其他无创通气模式的关键主要在于NAVA主要依靠患儿自身的呼吸来控制辅助呼吸的时间及强度 [23] ,NAVA可以通过减少触发延迟和不同步事件的数量使呼吸机和患儿呼吸同步 [24] 。但是与CPAP相比,NAVA在改善氧合及减少机械通气方面并没有特别的优势 [25] ,另一方面NAVA也不能减少拔管后再插管事件的发生率 [26] 。

目前,经鼻持续气道正压通气(NCPAP)仍是早产儿无创呼吸支持的首选模式,在临床上应用最为广泛,欧洲NRDS防治指南及美国儿科协会均建议早产儿生后立即使用CPAP [2] [27] 。虽然随着呼吸辅助支持技术的发展,有各种呼吸辅助模式涌现,但在现有的各种临床证据下,各种模式均有利有弊,且都缺乏长时间大样本的临床数据支持。

4.2. 有创通气模式(Mechanical Ventilation, MV)

虽然普遍认为有创通气与无创通气相比更容易导致呼吸机相关肺炎、气胸、支气管肺发育不良,但是在重症NRDS患儿的治疗上仍是必不可少的。

1) 常频机械通气(Conventional Mechanical Ventilation, CMV)

常频机械通气是抢救危重新生儿的重要治疗手段之一,主要包括压力限制通气和容量限制通气两种类型。容量控制通气模式下,呼吸机会自动调整送气量达到预设的潮气量,减少气道平均压,避免容量损伤,减少有创通气时间。与压力控制通气相比,容量限制通气不仅可以有效减少早产儿机械通气时间 [28] ,还降低BPD、气胸等并发症和死亡的发生率 [29] 。

2) 高频震荡通气(High Frequency Oscillatory Ventilation, HFOV)

HFOV具有通气频率高,潮气量小的特点,可以有效减小气道压力,避免气道压力损伤,具有有效改善患儿氧合,血降低重症患儿的死亡风险的特点。一项meta分析表明,HFOV可以减少支气管肺发育不良的发生率 [30] ,然而另外有实验证明HFOV并不能有效降低发生支气管肺发育不良、早产儿视网膜病变发生率,但是可以降低重度脑室内出血及新生儿坏死性小肠结肠炎的发生率 [31] 。直接从高频震荡通气过渡到其他无创通气模式可以缩短有创机械通气时间,改善预后。近年来,无创高频震荡通气(non-invasive high frequency oscillatory ventilation, NFHOV)在新生儿尤其是极低出生体重儿的呼吸支持上扮演重要角色。更多的被应用到拔管后的呼吸支持上,与NCPAP相比,拔管后使用NHFOV辅助通气可以减少呼吸暂停发生次数、缩短有创通气时间,减少再插管事件的发生 [32] 。NHFOV联合肺表面活性物质治疗NRDS能避免气管插管 [33] ,减少机械通气。NHFOV作为早产儿的初始呼吸支持,尤其是胎龄 < 30周和出生体重 < 1500克的早产儿的治疗上,具有更低的有创通气比例 [34] 。

5. 总结和展望

NRDS的呼吸支持技术经过多年的演变,逐渐从有创到微创,再到无创取得了长足的进步。但是随着我国三胎政策的全面放开,高龄产妇逐渐增多,NRDS仍然是导致早产儿死亡的主要原因之一,也是后期发生支气管肺发育不良、新生儿坏死性小肠结肠炎等的高危因素。因此,对于NRDS患儿的呼吸支持策略仍集中在缩短机械通气时间,减少气管插管,减少NRDS严重并发症的发生上。对于NRDS的呼吸支持策略的制定需要结合患儿胎龄、出生体重、肺部情况、疾病状态等各个方面综合考虑。进一步探索不同状态、时期NRDS患儿呼吸支持策略,预防重症NRDS和控制NRDS并发症可能会成为我们进一步研究的方向。

文章引用

江 锦,李 芳. 呼吸支持技术在新生儿呼吸窘迫综合征中的应用
Application of Respiratory Support Technology in Neonatal Respiratory Distress Syndrome[J]. 临床医学进展, 2023, 13(04): 6686-6691. https://doi.org/10.12677/ACM.2023.134935

参考文献

  1. 1. Lawn, J.E., Blencowe, H., et al. (2014) Every Newborn: Progress, Priorities, and Potential beyond Survival. The Lancet, 384, 189-205. https://doi.org/10.1016/S0140-6736(14)60496-7

  2. 2. Sweet, D.G., Carnielli, V., et al. (2019) Euro-pean Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology, 115, 432-450. https://doi.org/10.1159/000499361

  3. 3. Anadkat, J.S., Kuzniewicz, M.W., et al. (2012) Increased Risk for Respiratory Distress among White, Male, Late Preterm and Term Infants. Journal of Perinatology, 32, 780-785. https://doi.org/10.1038/jp.2011.191

  4. 4. Grandi, C., Tapia, J.L., et al. (2015) Impact of Maternal Diabetes Mellitus on Mortality and Morbidity of Very Low Birth Weight Infants: A Multicenter Latin America Study. The Journal of Pedi-atrics (Rio J), 91, 234-241. https://doi.org/10.1016/j.jped.2014.08.007

  5. 5. Sardesai, S., Biniwale, M., et al. (2017) Evolution of Surfactant Therapy for Respiratory Distress Syndrome: Past, Present, and Future. Pediatric Research, 81, 240-248. https://doi.org/10.1038/pr.2016.203

  6. 6. Verder, H., Agertoft, L., et al. (1992) Surfactant Treatment of Newborn Infants with Respiratory Distress Syndrome Primarily Treated with Nasal Continuous Positive Air Pressure. A Pilot Study. Ugeskrift for Laeger, 154, 2136-2139.

  7. 7. Aldana-Aguirre, J.C., Pinto, M., et al. (2017) Less Invasive Surfac-tant Administration versus Intubation for Surfactant Delivery in Preterm Infants with Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Archives of Disease in Childhood. Fetal and Neonatal Edition, 102, F17-F23. https://doi.org/10.1136/archdischild-2015-310299

  8. 8. Xu, C.C., Bao, Y.Y., et al. (2022) Effects of Less Invasive Surfactant Administration versus Intubation-Surfactant- Extubation on Bronchopulmonary Dysplasia in Preterm Infants with Respiratory Distress Syndrome: A Single-Center, Retrospective Study from China. BMC Pulmonary Medicine, 22, 462. https://doi.org/10.1186/s12890-022-02270-x

  9. 9. Guthrie, S.O. and Cummings, J.J. (2020) Not Sure? How Should We Give Exogenous Surfactant to Newborns with RDS? Pediatric Pulmonology, 55, 14-16. https://doi.org/10.1002/ppul.24543

  10. 10. Wang, J., Liu, X., et al. (2015) Analysis of Neonatal Respiratory Distress Syndrome among Different Gestational Segments. International Journal of Clinical and Experimental Medicine, 8, 16273-16279.

  11. 11. Chen, C.Y., Chou, A.K., et al. (2017) Quality Improvement of Nasal Continuous Positive Airway Pressure Therapy in Neonatal Intensive Care Unit. Pediatrics & Neonatology, 58, 229-235. https://doi.org/10.1016/j.pedneo.2016.04.005

  12. 12. Lemyre, B., Laughon, M., et al. (2016) Early Nasal Intermittent Positive Pressure Ventilation (NIPPV) versus Early Nasal Continuous Positive Airway Pressure (NCPAP) for Preterm Infants. Cochrane Database of Systematic Reviews, 12, CD005384. https://doi.org/10.1002/14651858.CD005384.pub2

  13. 13. Li, W., Long, C., et al. (2015) Nasal Intermittent Positive Pressure Ventilation versus Nasal Continuous Positive Airway Pressure for Preterm Infants with Respiratory Distress Syndrome: A Meta-Analysis and Up-Date. Pediatric Pulmonology, 50, 402-409. https://doi.org/10.1002/ppul.23130

  14. 14. Gharehbaghi, M.M., Hosseini, M.B., et al. (2019) Comparing the Efficacy of Nasal Continuous Positive Airway Pressure and Nasal Intermittent Positive Pressure Ventilation in Early Management of Respiratory Distress Syndrome in Preterm Infants. Oman Medical Journal, 34, 99-104. https://doi.org/10.5001/omj.2019.20

  15. 15. Cimino, C., Saporito, M.A.N., et al. (2020) N-BiPAP vs n-CPAP in Term Neonate with Respiratory Distress Syndrome. Early Human Development, 142, Article ID: 104965. https://doi.org/10.1016/j.earlhumdev.2020.104965

  16. 16. Zhou, B., Zhai, J.F., et al. (2015) Usefulness of DuoPAP in the Treatment of Very Low Birth Weight Preterm Infants with Neonatal Respiratory Distress Syndrome. European Review for Medical and Pharmacological Sciences, 19, 573-577.

  17. 17. Sadeghnia, A., Barekateyn, B., et al. (2016) Analysis and Comparison of the Effects of N-BiPAP and Bubble-CPAP in Treatment of Preterm Newborns with the Weight of below 1500 Grams Affiliated with Respiratory Distress Syndrome: A Randomised Clinical Trial. Advanced Biomedical Research, 5, 3. https://doi.org/10.4103/2277-9175.174965

  18. 18. Murki, S., Singh, J., et al. (2018) High-Flow Nasal Cannula versus Nasal Continuous Positive Airway Pressure for Primary Respiratory Support in Pre-term Infants with Respiratory Distress: A Randomized Controlled Trial. Neonatology, 113, 235-241. https://doi.org/10.1159/000484400

  19. 19. Wilkinson, D., Andersen, C., et al. (2016) High Flow Nasal Cannula for Respiratory Support in Preterm Infants. Cochrane Database of Systematic Reviews, 2, CD006405. https://doi.org/10.1002/14651858.CD006405.pub3

  20. 20. Bruet, S., Butin, M., et al. (2022) Systematic Review of High-Flow Nasal Cannula versus Continuous Positive Airway Pressure for Primary Support in Preterm Infants. Archives of Disease in Childhood. Fetal and Neonatal Edition, 107, 56-59. https://doi.org/10.1136/archdischild-2020-321094

  21. 21. Conte, F., Orfeo, L., et al. (2018) Rapid Systematic Review Shows That Using a High-Flow Nasal Cannula Is Inferior to Nasal Continuous Positive Airway Pressure as First-Line Support in Preterm Neonates. Acta Paediatrica, 107, 1684-1696. https://doi.org/10.1111/apa.14396

  22. 22. Colleti Junior, J., Azevedo, R., et al. (2020) High-Flow Nasal Cannula as a Post-Extubation Respiratory Support Strategy in Preterm Infants: A Systematic Review and Meta-Analysis. The Journal of Pediatrics (Rio J), 96, 422-431. https://doi.org/10.1016/j.jped.2019.11.004

  23. 23. Firestone, K.S., Beck, J., et al. (2016) Neurally Adjusted Ventila-tory Assist for Noninvasive Support in Neonates. Clinics in Perinatology, 43, 707-724. https://doi.org/10.1016/j.clp.2016.07.007

  24. 24. Vignaux, L., Grazioli, S., et al. (2013) Patient-Ventilator Asyn-chrony during Noninvasive Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist in Infants and Chil-dren. Pediatric Critical Care Medicine, 14, e357-e364. https://doi.org/10.1097/PCC.0b013e3182917922

  25. 25. Kallio, M., Mahlman, M., et al. (2019) NIV NAVA versus Nasal CPAP in Premature Infants: A Randomized Clinical Trial. Neonatology, 116, 380-384. https://doi.org/10.1159/000502341

  26. 26. Parashar, N., Amidon, M., et al. (2019) Noninvasive Neurally Adjusted Ventilatory Assist versus High Flow Cannula Support after Congenital Heart Surgery. World Journal for Pediatric and Congenital Heart Surgery, 10, 565-571. https://doi.org/10.1177/2150135119859879

  27. 27. F. Committee on Newborn, et al. (2014) Respiratory Support in Preterm Infants at Birth. Pediatrics, 133, 171-174. https://doi.org/10.1542/peds.2013-3442

  28. 28. Liu, C.Z., Huang, B.Y., et al. (2016) Efficacy of Volume-Targeted Ventilation for the Treatment of Neonatal Respiratory Distress Syndrome. Chinese Journal of Contemporary Pediatrics, 18, 6-9.

  29. 29. Klingenberg, C., Wheeler, K.I., et al. (2017) Volume-Targeted versus Pressure-Limited Ventilation in Ne-onates. Cochrane Database of Systematic Reviews, 10, CD003666. https://doi.org/10.1002/14651858.CD003666.pub4

  30. 30. Cools, F., Offringa, M., et al. (2015) Elective High Fre-quency Oscillatory Ventilation versus Conventional Ventilation for Acute Pulmonary Dysfunction in Preterm Infants. Cochrane Database of Systematic Reviews, 3, CD000104. https://doi.org/10.1002/14651858.CD000104.pub4

  31. 31. Yao, Y.T. and Shi, Y. (2022) Efficacy of Vol-ume-Targeted Ventilation versus High-Frequency Oscillatory Ventilation in the Treatment of Neonatal Respiratory Dis-tress Syndrome. Chinese Journal of Contemporary Pediatrics, 24, 1321-1325.

  32. 32. Zhu, X., Qi, H., et al. (2022) Non-invasive High-Frequency Oscillatory Ventilation vs Nasal Continuous Positive Airway Pressure vs Nasal Intermittent Positive Pressure Ventilation as Postextubation Support for Preterm Neonates in China: A Randomized Clinical Trial. JAMA Pediatrics, 176, 551-559. https://doi.org/10.1001/jamapediatrics.2022.0710

  33. 33. Pan, S. and Zhang, Z. (2020) Less Invasive Surfactant Ad-ministration Combined with Nasal High Frequency Oscillatory Ventilation for an Extremely Low Birth Weight Infant with Severe Hypercapnia: A Case Report. Medicine (Baltimore), 99, e22796. https://doi.org/10.1097/MD.0000000000022796

  34. 34. Zhu, X., Feng, Z., et al. (2021) Nasal High-Frequency Os-cillatory Ventilation in Preterm Infants with Moderate Respiratory Distress Syndrome: A Multicenter Randomized Clini-cal Trial. Neonatology, 118, 325-331. https://doi.org/10.1159/000515226

  35. NOTES

    *通讯作者。

期刊菜单