Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 85315 , 9 pages
10.12677/acm.2024.1441243

帕金森病中神经血管改变与临床表型及白质损害的关系

李司晨,诸玉霞,赖泓宇,达晓慧,廖婷,刘熙*,邓芬*,陈莉芬

重庆医科大学附属第二医院神经内科,重庆

收稿日期:2024年3月25日;录用日期:2024年4月19日;发布日期:2024年4月25日

摘要

帕金森病包含运动症状及非运动症状,临床表现存在显著异质性,黑质纹状体系统中多巴胺能神经元退行性改变不能完全解释临床表型异质性。近年来,随着神经影像学、生物标志物等检查及检验技术的发展,帕金森病中神经血管的结构及功能改变、早期且广泛的白质损害受到了越来越多的关注。本文通过总结既往帕金森病研究中已发现的特异性神经血管结构及功能改变、不同帕金森病临床表型间神经血管结构及功能的异同点、帕金森病中神经血管改变与白质损害及临床表型的关联性,发现了帕金森病中神经血管改变可能通过白质损害对临床表型产生影响,以期促进对帕金森病临床表型、病理生理机制、临床进展及预后的认识。

关键词

帕金森病,神经血管改变,运动症状,非运动症状,白质损害

The Relationship among the Neurovascular Changes, Clinical Phenotypes, and White Matter Impairment in Parkinson’s Disease

Sichen Li, Yuxia Zhu, Hongyu Lai, Xiaohui Da, Ting Liao, Xi Liu*, Fen Deng*, Lifen Chen

Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Mar. 25th, 2024; accepted: Apr. 19th, 2024; published: Apr. 25th, 2024

ABSTRACT

Parkinson’s disease, manifesting both motor and non-motor symptoms, is characterized by its clinical heterogeneity, which can not be completely attributed to mechanisms of dopaminergic neuronal degeneration in striatal-nigral systems. Nowadays, with the development of neuroimaging and biomarkers, more researches focused on structural and functional neurovascular changes as well as early and extensive white matter impairments in Parkinson’s disease. Hence, we summarized specific structural and functional neurovascular changes in Parkinson’s disease, compared similarities and differences of neurovascular changes among different clinical phenotypes of Parkinson’s disease, and discussed the relationship between neurovascular changes and white matter alterations as well as clinical phenotypes of Parkinson’s disease based on recently reported researches. And we found that neurovascular changes may influence clinical phenotypes of Parkinson’s disease mainly via white matter impairments, aiming to broaden our views concerning clinical manifestations, pathophysiological mechanisms, clinical course and prognosis of Parkinson’s disease.

Keywords:Parkinson’s Disease, Neurovascular Changes, Motor Symptoms, Non-Motor Symptoms, White Matter Impairment

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

帕金森病(Parkinson’s Disease, PD)是常见的神经系统退行性疾病,其临床表型多样,核心运动症状包括运动迟缓、肌强直、静止性震颤及姿势步态异常,可进一步分为震颤为主(Tremor Dominant, TD)以及姿势不稳\步态异常为主(Postural Instability and Gait Disorder, PIGD)等临床亚型,伴认知损害(Cognitive Impairment, CI)、自主神经功能障碍、神经精神症状等多种非运动症状 [1] [2] [3] 。各PD临床表型在病理、影像及生物标志物等方面存在差异,提示不同的病理生理学机制,伴随不同的临床进程及预后 [1] [3] [4] 。

脑为高氧耗及高耗能器官,有赖于正常血供时氧及糖类营养物质的供给以及代谢产物的排出,正常情况下Willis环等大血管结构可通过调整血流方向以代偿脑血流变化,微血管系统可适当代偿血压波动引起的血流动力学改变并维持脑灌注、应对外源性血管舒缩刺激而自主调节血管直径、调节血流量以匹配不同脑区的能量需求及神经元活动 [5] [6] 。因此脑血管的正常结构及血流动力学保障了正常的脑能量代谢需求以及有害物质清理能力。具体而言,头颈部大血管,包括影响脑内血流流入及流出的动脉及静脉。PD中大血管结构改变主要涉及局限性狭窄及动脉粥样硬化,影响脑血流速度(Cerebral Blood Flow Velocity, CBFV)、血流方向、脑血流量(Cerebral Blood Flow, CBF)等 [7] [8] 。脑内微血管系统主要包括由内皮细胞、周细胞、基底膜、星形胶质细胞、小胶质细胞以及神经元组成的神经血管单元,在正常的黑质致密部中,上述微血管系统丰富,神经元与毛细血管间联系紧密,每1个黑质神经元至少与1个毛细血管紧密接触 [9] 。PD中脑微血管结构的改变主要涉及异常血管生成以及血管退行性变,影响脑血管反应性(Cerebral Vasoreactivity, CVR)、神经血管耦合(Neurovascular Coupling, NVC)及脑自身调节(Cerebral Autoregulation, CA) [4] [5] [10] 。此外,PD中神经血管结构及功能改变与各种运动及非运动症状相关 [2] [3] [10] 。

中枢神经系统包含灰质及白质。灰质中富含神经元及其树突,相同功能的神经元聚集成灰质核团。各灰质核团,基于白质正常结构及功能,产生密切而复杂的联系。白质中大多数轴索,由髓鞘包裹形成,属于有髓神经纤维,在突触传递中起重要作用 [11] 。黑质中多巴胺能神经发出大量细长、无髓鞘或少髓鞘的轴突,能量需求大且易受包括血管因素在内的影响而导致神经元退行性变 [11] 。既往研究中,PD被认为是一种灰质相关疾病,黑质多巴胺能神经元的退行性变为主要研究方向 [12] [13] 。近年研究显示,PD中显著、早期、广泛的白质损害与运动症状及非运动症状相关 [1] [14] [15] 。PD中血管结构伴血流动力学改变,可能通过白质损害,影响临床表型 [15] [16] 。

因此,本文通过总结近年PD中神经血管结构、功能改变,PD中神经血管改变对临床表型的影响,以及PD中神经血管改变伴白质损害的研究,旨在进一步加深对于PD中发病机制及临床表现的认识。

2. PD患者的神经血管改变

PD中同时存在脑血管病的保护因素,如左旋多巴治疗以及吸烟率低,以及脑血管病的危险因素,如直立性低血压(Orthostatic Hypotension, OH)、平卧位高血压以及活动受限 [17] 。相应地,有关PD与脑血管病的流行病学调查结果不一致 [8] [18] [19] 。总体而言,PD中症状性脑血管病的风险较低,无症状脑血管病风险较高 [17] 。PD中神经血管改变的研究由脑血管病相关危险因素,延伸至病理、影像学证实的血管结构及血流动力学改变,以及神经血管改变与临床表型、白质损害等。

2.1. PD患者的神经血管结构改变

PD中头颈部大血管结构改变主要通过磁共振血管成像及超声检查评估 [19] [20] 。既往PD磁共振静脉成像研究主要关注颅内硬脑膜静脉窦、颅外引流静脉有无全程或局部显影缺失、有无狭窄 [20] [21] 。异常的静脉结构伴血流动力学改变在其他神经系统退行性变疾病中也有报道,但目前有关多发性硬化中颈内静脉及奇静脉的狭窄、受压或发育不良等结构异常及其相关的慢性脑脊髓供血不足的研究仍存在争议,据此开展的改善静脉结构及功能的经皮腔内血管成形术也并未对多发性硬化患者的临床预后起到改善作用 [22] 。因此,PD静脉系统结构及功能异常的流行病学调查及临床意义,有待进一步的验证及探索。

PD动脉研究主要基于多普勒超声,通过颅外大动脉的内膜中膜厚度(Intima-Media Thickness, IMT)、管壁与管腔比值、动脉粥样硬化斑块等指标,评估血管狭窄、血管粥样硬化程度 [7] [19] [23] 。PD中血管粥样硬化的研究结论不一致,可能与各研究中PD病程、左旋多巴治疗情况不同相关 [18] [19] [23] [24] 。研究发现,未使用左旋多巴的新发PD患者IMT增加及管壁与管腔比值增大 [23] ,颈动脉狭窄可能是PD运动症状前期特征之一或PD危险因素 [8] 。相反,中晚期PD患者颈动脉IMT低于正常对照,比同龄对照的动脉硬化风险更低 [18] [19] 。但是中晚期PD患者颈动脉IMT增加与预后不良相关 [25] 。因此,进一步探究PD中颅内大动脉结构的动态演变对于临床预后、药物治疗等方面有指导意义。

PD中微血管结构改变的研究主要基于PD患者及小鼠模型中脑组织标本的病理分析。早期研究发现PD患者中黑质致密部多巴胺能神经元与毛细血管间原有的紧密联系缺失 [9] 。近年研究发现,PD中包括黑质纹状体区域在内的广泛脑组织内,微血管存在多种形态改变,主要包括异常血管生成以及血管退行性改变 [4] [10] 。PD中异常血管生成主要表现为血管数量增加、血管源性内皮细胞数量增加、血管源性分子表达改变(血管内皮生长因子及胎盘生长因子增加、血管生成素2减少等) [10] 。PD中血管退行性变主要包括毛细血管数量减少、长度变短、直径变大、分支减少,内皮细胞退行性变而基底膜相对保留造成无血流功能的“线样血管”增加 [4] 。突触核蛋白过表达的PD小鼠模型中已发现微血管的动态变化,主要包括早期毛细血管周围的周细胞异常活化,继而出现代偿性异常血管生成,最后进展至微血管退行性变 [26] 。由此衍生的脑脊液血管生成相关标志物、脑小血管病(Cerebral Small Vessel Disease, CSVD)相关影像学评估、血脑屏障功能障碍等指标在PD诊断、鉴别、病情评估等方面有着重要作用 [1] [2] [10] 。

2.2. PD患者的神经血管功能改变

正电子发射计算机断层扫描、单光子发射计算机断层成像、核磁共振成像(动脉自旋标记)以及多普勒超声已广泛用于评估PD脑血流及脑血流调节能力,反映PD全脑及局部神经血管功能 [20] [27] [28] [29] 。PD脑血流评估主要关注CBF及其衍生指标(动脉总流量、脑灌注、血流量连通性、偏侧化指数)、CBFV及其衍生指标(动脉到达时间(Arterial Arrival Time, AAT)、阻力指数及搏动指数、脑血流调节指标),其中脑血流调节指标主要包括CA指数、NVC以及CVR [5] [6] [7] [20] [29] [30] 。

PD中全脑CBF及灌注的研究结果不一致,部分研究显示PD中总动脉流量及灌注减少 [20] ,部分研究未发现PD与对照在全脑CBF存在差异 [29] 。PD中局部CBF减少的结论相对一致,但CBF减少的脑区范围存在差异,这可能与评估血流量的影像学指标、PD临床表型及病程差异等相关 [29] [31] [32] 。近期研究关注PD中高灌注及低灌注,并将灌注与代谢、多巴胺能系统、脑萎缩等特征相结合,促进了对PD灌注改变相关特征及机制的认识 [29] [33] [34] [35] 。研究显示,PD相关的灌注模式,主要包括双侧颞叶、岛叶、顶叶后部及下部、枕叶外侧及前额叶联合皮质的灌注相对减少,而小脑、脑桥、右侧丘脑及苍白球、感觉运动皮层、中央旁小叶及辅助运动区的灌注相对增加 [33] 。上述PD相关的灌注模式与PD相关的代谢模式分布区域基本重合,灌注改变区域较代谢改变区域更广泛,可用于PD的鉴别诊断 [33] [35] [36] 。PD中低灌注与多巴胺能退行性变相关,而高灌注可能为代偿性改变,两种代谢改变可独立影响PD的临床表型及预后 [34] 。此外,PD中灌注不对称性,与PD严重程度相关,还反映PD运动症状的偏侧性 [37] 。

PD中CBFV可通过多普勒超声直接测量或核磁共振评估的AAT间接反映,此外,功能影像学通过比较刺激因素(如屏气、体位改变、认知评估任务、感觉运动任务等)前后CBFV变化幅度及时间特性,反映脑血管维持正常灌注的能力 [5] [6] [7] [29] 。既往研究中,PD患者全脑AAT延长,广泛的局部AAT延长,但鉴于不同PD临床表型间AAT的差异,有关AAT延长是否反映脑血管功能的代偿或损害的讨论,仍有待进一步验证 [29] [38] 。PD中血流速度指标主要表现为平均CBFV下降,但反映小血管损害的搏动指数及阻力指数结论不一致 [6] [7] [25] [39] 。PD中功能性血流速度指标主要表现为CA受抑制、CVR幅度降低及潜伏期延长、NVC受损 [5] 。由于早期研究中,诱发CBFV变化的方式、评估CA指标等存在差异,PD中CA的变化不一致,但通过应用传递函数方法以及引入CA指数,近期研究已发现PD中CA改变 [5] 。并且,PD合并OH人群,面对体位改变伴随的血压波动,自身调节CBF以维持灌注的能力相较于健康对照以及PD不合并OH人群显著下降 [3] 。既往多数研究未发现PD中CVR受损,但通过调整测量方法、评估指标等方式,近期研究已发现PD中显著CVR受损,且局部CVR与PD运动症状严重程度相关联 [5] [40] 。早期研究虽未发现PD中显著NVC受损,但认知相关刺激后PD患者中存在CBFV反应延长及减弱趋势 [6] 。近期研究通过调节统计学模型构建方法、应用功能性核磁共振等方式,已发现PD中总体及局部NVC受损,即PD中虽然仍保留神经元活动与血供的联系,但动态神经元同步性与灌注不能较好匹配,提示神经退行性变中神经血管单元功能改变 [5] [6] 。

3. PD患者的神经血管改变与临床表型

3.1. PD患者的神经血管改变与认知障碍

PD中CI与疾病本身引起的脑退行性变相关,其流行病学研究结果还主要受随访时间、年龄、病程及分期等因素影响 [41] 。但CI并非单纯反映PD病情严重程度及病程长短,PD神经血管改变可能与CI相关,并作为促进因素,影响CI程度与进展 [16] [30] [39] 。因此,近期研究探究了PD、PD伴轻度认知损害(Parkinson’s Disease with Mild Cognitive Impairment, PDMCI)、PD痴呆(Parkinson’s Disease Dementia, PDD)中神经血管有何改变及其与CI有无关联、神经血管改变对PD中CI有何影响及如何影响 [16] [30] [39] 。

PD中CI的研究主要关注CBF及灌注改变,通过对比PD伴CI与健康对照或其他认知障碍疾病(如阿尔兹海默病、路易体痴呆)的CBF差异、对比PD伴不同程度CI (PDMCI、PDD、PD不伴CI)的CBF差异、对比PD不同区域灌注改变与认知指标的关联性,总结PD中与CI相关的CBF特征及区域,并用于疾病鉴别及预测转归 [27] [30] [36] [39] [42] 。研究显示,PD、PD不伴痴呆及PDD分别与健康对照相比时,存在局部灌注差异,且灌注改变与认知指标相关 [34] [36] [43] 。PD伴与不伴CI在总灌注方面无显著差异,但PD伴CI存在CBF减小的趋势 [44] 。PD伴与不伴CI在局部灌注方面存在相似与差异区,两者均表现出顶枕区低灌注,这与既往代谢相关研究中PD、PDMCI及PDD表现出后皮质区的低代谢相符合 [27] [43] 。但PD伴CI中与执行功能相关的脑区灌注减低更明显,这与PDD常合并执行功能障碍相符合 [27] 。PD伴CI与其他认知障碍疾病在局部灌注变化中存在相似与鉴别点,上述灌注改变与疾病间CI的临床异同也相互映照 [28] [30] [36] 。PDMCI与遗忘型轻度认知损害的灌注对比,以及PDD与阿尔兹海默病的灌注对比,均提示PD相关CI灌注差异区域异质性更大,伴有更广泛的运动控制区域灌注改变,而阿尔兹海默病相关CI的灌注改变更多累及认知区域,特别是与记忆功能相关的脑区 [30] [36] 。部分研究直接探究PD中不同灌注与认知的关系,发现灌注减低与基线认知指标联系更紧密,而灌注增加与PDD转化相关,提示PD中灌注改变与CI相关并可能参与CI [28] [34] 。已有研究通过PD小鼠模型结合慢性低灌注的干预操作,证实了低灌注本身可导致CI,PD合并低灌注时可进一步加重CI,两者存在协同作用 [16] 。

3.2. PD患者的神经血管改变与运动障碍

PD中运动障碍的严重程度与神经血管改变相关,主要包括IMT、扩大的血管周围间隙(Enlarged Perivascular Space, EPVS)等结构指标,以及CBF、CVR等功能指标 [2] [7] [18] [34] [40] 。PD中各运动障碍类型间也存在神经血管差异 [29] [31] 。研究发现PD中临床表型特异性低灌注模式,即PIGD中低灌注主要位于枕叶等后部皮质区域,伴基底节区高灌注,而TD中低灌注主要位于颞叶、顶叶及额叶 [29] 。上述结论与另一基于TD、PIGD及正常对照间局部区域CBF差异的研究相符,该研究发现TD中右侧缘上回的CBF可较好区分PIGD及正常对照,而PIGD中丘脑板内核的CBF可较好地鉴别TD及正常对照,支持TD与代偿机制中小脑–丘脑–皮质环路相关,PIGD与基底节传出路径,即纹状体–丘脑–皮质环路相关 [31] 。此外,PD中神经血管改变与运动障碍的进展相关 [28] 。研究发现PD合并海马低灌注较PD合并海马正常灌注及高灌注,突触前多巴胺能系统受损程度更轻,但运动症状严重程度无显著差异,提示PD合并低灌注时“运动储备”更少,相同多巴胺能系统受损情况下更易出现运动障碍,更易受PD退行性变的影响 [28] 。PD低灌注与冻结步态、左旋多巴反应性下降等远期并发症相关,进一步提示神经血管改变对PD存在长期影响 [34] 。

4. PD患者的神经血管改变主要通过白质损害影响临床表型

PD相关研究已通过弥散系数改变、白质高信号体积及严重度分级、以及生物标志物(神经丝轻链)等方式反映PD中不同程度白质损害、白质损害与PD及其严重程度、临床表型的关联性 [10] [15] [45] 。此外,近年研究将神经血管结构及功能改变与白质损害指标相结合,发现了IMT增加、头颈部静脉结构异常及血流改变、异常血管生成、OH及相应血流动力学改变、CBF改变等因素可能参与PD白质损害,并与白质损害严重程度相关,影响PD临床表型 [7] [10] [21] [38] [46] [47] [48] 。

4.1. PD患者的神经血管改变与白质损害及认知障碍

PD中CSVD负担显著高于正常对照,且晚期PD中CSVD负担也显著高于早期PD,主要表现为侧脑室及深部脑白质高信号、EPVS,其中CSVD总负担及EPVS与PD中注意力、执行能力等认知领域损害相关 [45] 。进一步探索PD中CSVD负担相关因素发现,PD中高血压及平卧位高血压与基底节EPVS相关,并通过总白质高信号及侧脑室旁白质高信号,参与CI [48] 。高血压是PD不伴CI人群中白质病灶的危险因素,而严重的白质病灶负担是预测PDD的重要因素,提示PD中神经血管改变主要通过白质损害进一步影响认知水平 [48] 。上述猜想已在PD小鼠模型中得到验证,该研究发现,低灌注及药物所致的多巴胺能系统退行性变可单独引起小鼠模型中CI及微血管损害,而低灌注可通过神经炎症、加剧白质损害以及海马神经元凋亡等机制进一步加重PD小鼠模型中认知障碍 [16] 。因此PD退行性变与低灌注存在协同作用,可能通过损害微血管及白质病灶,加重CI [16] 。

4.2. PD患者的神经血管改变与白质损害及运动障碍

PD伴脑血管危险因素,较PD不伴脑血管危险因素,表现出更高的血管搏动指数、更显著的CVR改变、及更严重的脑白质损害 [49] 。PD伴CSVD高负担,较PD伴CSVD低负担,表现出更显著的步态平衡及姿势控制异常,其中CSVD总负担、白质高信号及EPVS与步态及姿势相关 [2] 。此外PD不同运动表型间(尤其是预后相对良好的TD与预后更差的亚型比较)存在脑白质损害差异,可能与神经血管改变相关 [14] [29] [49] 。运动不能–肌强直亚型较TD表现出更严重的CVR损害、以及更严重的白质损害倾向 [49] 。PIGD与TD也存在脑白质及神经血管差异 [14] [29] 。基于PD中轴索损害的生物标志物研究显示,PD中神经丝轻链显著升高,随病程进展后PIGD较TD神经丝轻链也显著升高,且PIGD中更高的神经丝轻链水平与基线时更高的运动障碍评分相关,并可用于预测运动障碍的进展 [1] 。基于脑白质病灶的影像学研究显示,TD及PIGD存在表型特异性低灌注区域,PIGD较TD白质病灶体积更大 [29] 。PIGD及TD中CBF、AAT等指标与认知评分无显著关联,而白质病灶体积与认知评分相关,提示神经血管改变相关的白质病灶与临床表型存在更直接的关联性 [29] 。

5. 小结

近年来,随着PD相关神经影像学及生物标志物的进展,愈来愈多的研究发现了PD中神经血管的结构及功能改变,并通过总结PD及各PD亚型的特异性神经血管结构及功能改变,并将其应用于PD与其他退行性疾病的鉴别、PD临床亚型的鉴别、PD临床进展及预后的预测。PD神经血管指标与白质损害指标相结合,进一步揭示了血流改变、白质损害与PD临床亚型的关联,为PD中神经血管改变、白质损害等病理生理机制提供了新的视角及方向。但鉴于PD中神经血管改变相关研究的研究结论仍存在差异,进一步细化研究对象的临床表型、合理选择神经影像学分析方法及神经血管结构及功能指标、联合神经血管评估及白质损害评估,是今后进一步探究PD中神经血管改变值得关注和改进的方面。

基金项目

以上文章由国家自然科学基金项目(82371262)、重庆市自然科学基金项目(cstc2021jcyj-msxmX0180)、重庆医科大学附属第二医院宽仁英才项目资助。

文章引用

李司晨,诸玉霞,赖泓宇,达晓慧,廖 婷,刘 熙,邓 芬,陈莉芬. 帕金森病中神经血管改变与临床表型及白质损害的关系
The Relationship among the Neurovascular Changes, Clinical Phenotypes, and White Matter Impairment in Parkinson’s Disease[J]. 临床医学进展, 2024, 14(04): 1908-1916. https://doi.org/10.12677/acm.2024.1441243

参考文献

  1. 1. Ng, A.S.L., Tan, Y.J., Yong, A.C.W., Saffari, S.E., Lu, Z., Ng, E.Y., Ng, S.Y.E., Chia, N.S.Y., Choi, X., Heng, D., Neo, S., Xu, Z., Keong, N.C.H., Tay, K.Y., Au, W.L., Tan, L.C.S. and Tan, E.K. (2020) Utility of Plasma Neurofilament Light as a Diagnostic and Prognostic Biomarker of the Postural Instability Gait Disorder Motor Subtype in Early Parkinson’s Disease. Molecular Neurodegeneration, 15, Article No. 33. https://doi.org/10.1186/s13024-020-00385-5

  2. 2. Chen, K., Jin, Z., Fang, J., Qi, L., Liu, C., Wang, R., Su, Y., Yan, H., Liu, A., Xi, J., Wen, Q. and Fang, B. (2023) The Impact of Cerebral Small Vessel Disease Burden and Its Imaging Markers on Gait, Postural Control, and Cognition in Parkinson’s Disease. Neurological Sciences, 44, 1223-1233. https://doi.org/10.1007/s10072-022-06563-1

  3. 3. Chen, H., Xu, E., Zhou, F., Li, Q., Zeng, J., Mei, S. and Xing, Y. (2022) Impaired Dynamic Cerebral Autoregulation: A Potential Mechanism of Orthostatic Hypotension and Dementia in Parkinson’s Disease. Frontiers in Aging Neuroscience, 14, Article 927009. https://doi.org/10.3389/fnagi.2022.927009

  4. 4. Yang, P., Pavlovic, D., Waldvogel, H., Dragunow, M., Synek, B., Turner, C., Faull, R. and Guan, J. (2015) String Vessel Formation Is Increased in the Brain of Parkinson Disease. Journal of Parkinson’s Disease, 5, 821-836. https://doi.org/10.3233/JPD-140454

  5. 5. Barnes, S.C., Panerai, R.B., Beishon, L., Hanby, M., Robinson, T.G. and Haunton, V.J. (2022) Cerebrovascular Responses to Somatomotor Stimulation in Parkinson’s Disease: A Multivariate Analysis. Journal of Cerebral Blood Flow and Metabolism, 42, 1547-1558. https://doi.org/10.1177/0271678X211065204

  6. 6. Gutteridge, D.S., Saredakis, D., Badcock, N.A., Collins-Praino, L.E. and Keage, H.A.D. (2020) Cerebrovascular Function during Cognition in Parkinson’s Disease: A Functional Transcranial Doppler Sonography Study. Journal of the Neurological Sciences, 408, Article ID: 116578. https://doi.org/10.1016/j.jns.2019.116578

  7. 7. Rektor, I., Goldemund, D., Sheardová, K., Rektorová, I., Michálková, Z. and Dufek, M. (2009) Vascular Pathology in Patients with Idiopathic Parkinson’s Disease. Parkinsonism & Related Disorders, 15, 24-29. https://doi.org/10.1016/j.parkreldis.2008.02.007

  8. 8. Jain, S., Ton, T.G., Perera, S., Zheng, Y., Stein, P.K., Thacker, E., Strotmeyer, E.S., Newman, A.B. and Longstreth Jr., W.T. (2012) Cardiovascular Physiology in Premotor Parkinson’s Disease: A Neuroepidemiologic Study. Movement Disorders, 27, 988-995. https://doi.org/10.1002/mds.24979

  9. 9. Issidorides, M.R. (1971) Neuronal Vascular Relationships in the Zona Compacta of Normal and Parkinsonian Substantia Nigra. Brain Research, 25, 289-299. https://doi.org/10.1016/0006-8993(71)90439-2

  10. 10. Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C.H., Beach, T.G., Serrano, G.E., Van Westen, D., Londos, E., Cenci, M.A. and Hansson, O. (2015) Increased CSF Biomarkers of Angiogenesis in Parkinson Disease. Neurology, 85, 1834-1842. https://doi.org/10.1212/WNL.0000000000002151

  11. 11. Tagliaferro, P. and Burke, R.E. (2016) Retrograde Axonal Degeneration in Parkinson Disease. Journal of Parkinson’s Disease, 6, 1-15. https://doi.org/10.3233/JPD-150769

  12. 12. Fearnley, J.M. and Lees, A.J. (1991) Ageing and Parkinson’s Disease: Substantia Nigra Regional Selectivity. Brain, 114, 2283-2301. https://doi.org/10.1093/brain/114.5.2283

  13. 13. Pineda-Pardo, J.A., Sánchez-Ferro, Á., Monje, M.H.G., Pavese, N. and Obeso, J.A. (2022) Onset Pattern of Nigrostriatal Denervation in Early Parkinson’s Disease. Brain, 145, 1018-1028. https://doi.org/10.1093/brain/awab378

  14. 14. Tan, S.Y.Z., Keong, N.C.H., Selvan, R.M.P., Li, H., Ooi, L.Q.R., Tan, E.K. and Chan, L.L. (2019) Periventricular White Matter Abnormalities on Diffusion Tensor Imaging of Postural Instability Gait Disorder Parkinsonism. AJNR American Journal of Neuroradiology, 40, 609-613. https://doi.org/10.3174/ajnr.A5993

  15. 15. Pelizzari, L., Laganà, M.M., Di Tella, S., Rossetto, F., Bergsland, N., Nemni, R., Clerici, M. and Baglio, F. (2019) Combined Assessment of Diffusion Parameters and Cerebral Blood Flow within Basal Ganglia in Early Parkinson’s Disease. Frontiers in Aging Neuroscience, 11, Article 134. https://doi.org/10.3389/fnagi.2019.00134

  16. 16. Gao, Y., Tang, H., Nie, K., Zhu, R., Gao, L., Feng, S., Wang, L., Zhao, J., Huang, Z., Zhang, Y. and Wang, L. (2019) Hippocampal Damage and White Matter Lesions Contribute to Cognitive Impairment in MPTP-Lesioned Mice with Chronic Cerebral Hypoperfusion. Behavioural Brain Research, 368, Article ID: 111885. https://doi.org/10.1016/j.bbr.2019.03.054

  17. 17. Nanhoe-Mahabier, W., De Laat, K.F., Visser, J.E., Zijlmans, J., De Leeuw, F.E. and Bloem, B.R. (2009) Parkinson Disease and Comorbid Cerebrovascular Disease. Nature Reviews Neurology, 5, 533-541. https://doi.org/10.1038/nrneurol.2009.136

  18. 18. Lee, J.M., Park, K.W., Seo, W.K., Park, M.H., Han, C., Jo, I. and Ahn Jo, S. (2007) Carotid Intima-Media Thickness in Parkinson’s Disease. Movement Disorders, 22, 2446-2449. https://doi.org/10.1002/mds.21757

  19. 19. Zambito Marsala, S., Gioulis, M., Pistacchi, M. and Lo Cascio, C. (2016) Parkinson’s Disease and Cerebrovascular Disease: Is There a Link? A Neurosonological Case-Control Study. Neurological Sciences, 37, 1707-1711. https://doi.org/10.1007/s10072-016-2660-4

  20. 20. Zhang, C., Wu, B., Wang, X., Chen, C., Zhao, R., Lu, H., Zhu, H., Xue, B., Liang, H., Sethi, SK., Haacke, E.M., Zhu, J., Peng, Y. and Cheng, J. (2020) Vascular, Flow and Perfusion Abnormalities in Parkinson’s Disease. Parkinsonism & Related Disorders, 73, 8-13. https://doi.org/10.1016/j.parkreldis.2020.02.019

  21. 21. Liu, M., Xu, H., Wang, Y., Zhong, Y., Xia, S., Utriainen, D., Wang, T. and Haacke, E.M. (2015) Patterns of Chronic Venous Insufficiency in the Dural Sinuses and Extracranial Draining Veins and Their Relationship with White Matter Hyperintensities for Patients with Parkinson’s Disease. Journal of Vascular Surgery, 61, 1511-1520.E1. https://doi.org/10.1016/j.jvs.2014.02.021

  22. 22. Jagannath, V.A., Pucci, E., Asokan, G.V. and Robak, E.W. (2019) Percutaneous Transluminal Angioplasty for Treatment of Chronic Cerebrospinal Venous Insufficiency (CCSVI) in People with Multiple Sclerosis. The Cochrane Database of Systematic Reviews, 5, CD009903. https://doi.org/10.1002/14651858.CD009903.pub3

  23. 23. Kim, J.S., Oh, Y.S., Lee, K.S., Song, I.U., Park, I.S., Yang, D.W., Koo, J.S. and Goldstein, D.S. (2014) Carotid Artery Thickening and Neurocirculatory Abnormalities in De Novo Parkinson Disease. Journal of Neural Transmission, 121, 1259-1268. https://doi.org/10.1007/s00702-014-1203-5

  24. 24. Nakaso, K., Yasui, K., Kowa, H., Kusumi, M., Ueda, K., Yoshimoto, Y., Takeshima, T., Sasaki, K. and Nakashima, K. (2003) Hypertrophy of IMC of Carotid Artery in Parkinson’s Disease Is Associated with L-DOPA, Homocysteine, and MTHFR Genotype. Journal of the Neurological Sciences, 207, 19-23. https://doi.org/10.1016/S0022-510X(02)00353-2

  25. 25. Rektor, I., Goldemund, D., Bednařík, P., Sheardová, K., Michálková, Z., Telecká, S., Dufek, M. and Rektorová, I. (2012) Impairment of Brain Vessels May Contribute to Mortality in Patients with Parkinson’s Disease. Movement Disorders, 27, 1169-1172. https://doi.org/10.1002/mds.25066

  26. 26. Elabi, O., Gaceb, A., Carlsson, R., Padel, T., Soylu-Kucharz, R., Cortijo, I., Li, W., Li, J.Y. and Paul, G. (2021) Human α-Synuclein Overexpression in A Mouse Model of Parkinson’s Disease Leads to Vascular Pathology, Blood Brain Barrier Leakage and Pericyte Activation. Scientific Reports, 11, Article No. 1120. https://doi.org/10.1038/s41598-020-80889-8

  27. 27. Firbank, M.J., Colloby, S.J., Burn, D.J., McKeith, I.G. and O’Brien, J.T. (2003) Regional Cerebral Blood Flow in Parkinson’s Disease with and without Dementia. NeuroImage, 20, 1309-1319. https://doi.org/10.1016/S1053-8119(03)00364-1

  28. 28. Chun, M.Y., Chung, S.J., Kim, S.H., Park, C.W., Jeong, S.H., Lee, H.S., Lee, P.H., Sohn, Y.H., Jeong, Y. and Kim, Y.J. (2024) Hippocampal Perfusion Affects Motor and Cognitive Functions in Parkinson Disease: An Early Phase 18F-FP-CIT Positron Emission Tomography Study. Annals of Neurology, 95, 388-399. https://doi.org/10.1002/ana.26827

  29. 29. Al-Bachari, S., Vidyasagar, R., Emsley, H.C. and Parkes, L.M. (2017) Structural and Physiological Neurovascular Changes in Idiopathic Parkinson’s Disease and Its Clinical Phenotypes. Journal of Cerebral Blood Flow and Metabolism, 37, 3409-3421. https://doi.org/10.1177/0271678X16688919

  30. 30. Shang, S., Wu, J., Chen, Y.C., Chen, H., Zhang, H., Dou, W., Wang, P., Cao, X. and Yin, X. (2021) Aberrant Cerebral Perfusion Pattern in Amnestic Mild Cognitive Impairment and Parkinson’s Disease with Mild Cognitive Impairment: A Comparative Arterial Spin Labeling Study. Quantitative Imaging in Medicine and Surgery, 11, 3082-3097. https://doi.org/10.21037/qims-20-1259

  31. 31. Xiong, J., Zhu, H., Li, X., Hao, S., Zhang, Y., Wang, Z. and Xi, Q. (2023) Auto-Classification of Parkinson’s Disease with Different Motor Subtypes Using Arterial Spin Labelling MRI Based on Machine Learning. Brain Sciences, 13, Article 1524. https://doi.org/10.3390/brainsci13111524

  32. 32. Shang, S., Ye, J., Wu, J., Zhang, H., Dou, W., Krishnan Muthaiah, V.P., Tian, Y., Zhang, Y., Chen, Y.C. and Yin, X. (2022) Early Disturbance of Dynamic Synchronization and Neurovascular Coupling in Cognitively Normal Parkinson’s Disease. Journal of Cerebral Blood Flow and Metabolism, 42, 1719-1731. https://doi.org/10.1177/0271678X221098503

  33. 33. Teune, L.K., Renken, R.J., De Jong, B.M., Willemsen, A.T., Van Osch, M.J., Roerdink, J.B., Dierckx, R.A. and Leenders, K.L. (2014) Parkinson’s Disease-Related Perfusion and Glucose Metabolic Brain Patterns Identified with PCASL-MRI and FDG-PET Imaging. NeuroImage Clinical, 5, 240-244. https://doi.org/10.1016/j.nicl.2014.06.007

  34. 34. Jeong, S.H., Kim, S.H., Park, C.W., Lee, H.S., Lee, P.H., Kim, Y.J., Sohn, Y.H., Jeong, Y. and Chung, S.J. (2023) Differential Implications of Cerebral Hypoperfusion and Hyperperfusion in Parkinson’s Disease. Movement Disorders, 38, 1881-1890. https://doi.org/10.1002/mds.29565

  35. 35. Nakano, Y., Hirano, S., Kojima, K., Li, H., Sakurai, T., Suzuki, M., Tai, H., Furukawa, S., Sugiyama, A., Yamanaka,Y., Yamamoto, T., Iimori, T., Yokota, H., Mukai, H., Horikoshi, T., Uno, T. and Kuwabara, S. (2022) Dopaminergic Correlates of Regional Cerebral Blood Flow in Parkinsonian Disorders. Movement Disorders, 37, 1235-1244. https://doi.org/10.1002/mds.28981

  36. 36. Chen, H., Xu, Y., Chen, L., Shang, S., Luo, X., Wang, X., Xia, W. and Zhang, H. (2022) The Convergent and Divergent Patterns in Brain Perfusion between Alzheimer’s Disease and Parkinson’s Disease with Dementia: An ASL MRI Study. Frontiers in Neuroscience, 16, Article 892374. https://doi.org/10.3389/fnins.2022.892374

  37. 37. Yamashita, K., Hiwatashi, A., Togao, O., Kikuchi, K., Yamaguchi, H., Suzuki, Y., Kamei, R., Yamasaki, R., Kira, J.I. and Honda, H. (2017) Cerebral Blood Flow Laterality Derived from Arterial Spin Labeling as a Biomarker for Assessing the Disease Severity of Parkinson’s Disease. Journal of Magnetic Resonance Imaging, 45, 1821-1826. https://doi.org/10.1002/jmri.25489

  38. 38. Al-Bachari, S., Parkes, L.M., Vidyasagar, R., Hanby, M.F., Tharaken, V., Leroi, I. and Emsley, H.C. (2014) Arterial Spin Labelling Reveals Prolonged Arterial Arrival Time in Idiopathic Parkinson’s Disease. NeuroImage Clinical, 6, 1-8. https://doi.org/10.1016/j.nicl.2014.07.014

  39. 39. Ge, Y.L., Gong, S.Y., Wang, P.Z., Yan, J.H., Li, W., Zhang, J.R., Jin, H., Zhuang, S., Hu, L., Ding, C.W., Yang, Y.P., Wang, F., Li, D., Chen, J., Mao, C.J., Zhang, Y.C., Li, K. and Liu, C.F. (2022) Cognitive Performance Is Associated with Altered Cerebral Hemodynamics Assessed by Transcranial Ultrasound in Parkinson’s Disease. Neuropsychiatric Disease and Treatment, 18, 1421-1431. https://doi.org/10.2147/NDT.S358150

  40. 40. Pelizzari, L., Laganà, M.M., Rossetto, F., Bergsland, N., Galli, M., Baselli, G., Clerici, M., Nemni, R. and Baglio, F. (2019) Cerebral Blood Flow and Cerebrovascular Reactivity Correlate with Severity of Motor Symptoms in Parkinson’s Disease. Therapeutic Advances in Neurological Disorders, 12, 1-10. https://doi.org/10.1177/1756286419838354

  41. 41. Severiano, E.S.C., Alarcão, J., Pavão Martins, I. and Ferreira, J.J. (2022) Frequency of Dementia in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Journal of the Neurological Sciences, 432, Article ID: 120077. https://doi.org/10.1016/j.jns.2021.120077

  42. 42. Suo, X., Lei, D., Cheng, L., Li, N., Zuo, P., Wang, D.J.J., Huang, X., Lui, S., Kemp, G.J., Peng, R. and Gong, Q. (2019) Multidelay Multiparametric Arterial Spin Labeling Perfusion MRI and Mild Cognitive Impairment in Early Stage Parkinson’s Disease. Human Brain Mapping, 40, 1317-1327. https://doi.org/10.1002/hbm.24451

  43. 43. Syrimi, Z.J., Vojtisek, L., Eliasova, I., Viskova, J., Svatkova, A., Vanicek, J. and Rektorova, I. (2017) Arterial Spin Labelling Detects Posterior Cortical Hypoperfusion in Non-Demented Patients with Parkinson’s Disease. Journal of Neural Transmission, 124, 551-557. https://doi.org/10.1007/s00702-017-1703-1

  44. 44. Hattori, N., Yabe, I., Hirata, K., Shiga, T., Sakushima, K., Tsuji-Akimoto, S., Sasaki, H. and Tamaki, N. (2013) Brain Regions Associated with Cognitive Impairment in Patients with Parkinson Disease: Quantitative Analysis of Cerebral Blood Flow Using 123I Iodoamphetamine SPECT. Clinical Nuclear Medicine, 38, 315-320. https://doi.org/10.1097/RLU.0b013e3182873511

  45. 45. Ma, X., Li, S., Li, C., Wang, R., Chen, M., Chen, H. and Su, W. (2021) Total Cerebral Small Vessel Score Association with Hoehn and Yahr Stage in Parkinson’s Disease. Frontiers in Aging Neuroscience, 13, Article 682776. https://doi.org/10.3389/fnagi.2021.682776

  46. 46. Della-Morte, D., Dong, C., Markert, M.S., Elkind, M.S.V., Sacco, R.L., Wright, C.B. and Rundek, T. (2018) Carotid Intima-Media Thickness Is Associated with White Matter Hyperintensities: The Northern Manhattan Study. Stroke, 49, 304-311. https://doi.org/10.1161/STROKEAHA.117.018943

  47. 47. Ding, L., Hou, B., Zang, J., Su, T., Feng, F., Zhu, Z. and Peng, B. (2023) Imaging of Angiogenesis in White Matter Hyperintensities. Journal of the American Heart Association, 12, e028569. https://doi.org/10.1161/JAHA.122.028569

  48. 48. Oh, Y.S., Kim, J.S. and Lee, K.S. (2013) Orthostatic and Supine Blood Pressures Are Associated with White Matter Hyperintensities in Parkinson Disease. Journal of Movement Disorders, 6, 23-27. https://doi.org/10.14802/jmd.13006

  49. 49. Brisson, R.T., Fernandes, R.C.L., Arruda, J.F.L., Rocha, T., Santos, N.G.D., Silva, L.D., De Lima, M. and De Rosso, A.L.Z. (2023) Altered Cerebral Vasoreactivity on Transcranial Color-Coded Sonography Related to Akinetic-Rigid Phenotype of Parkinson’s Disease: Interim Analysis of a Cross-Sectional Study. Brain Sciences, 13, Article 709. https://doi.org/10.3390/brainsci13050709

  50. NOTES

    *通讯作者。

期刊菜单