Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 80108 , 8 pages
10.12677/ACM.2024.141265

尿液外泌体在泌尿外科疾病中的研究现状

叶森·哈力1,李九智2*

1新疆医科大学研究生院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院泌尿外科,新疆 乌鲁木齐

收稿日期:2023年12月27日;录用日期:2024年1月21日;发布日期:2024年1月30日

摘要

外泌体是一种大小不等具有多种生物功能的细胞外囊泡,包含有多种诸如核酸、蛋白质、脂类、氨基酸,小分子代谢物等内容物,这些内容物可以反映其细胞来源。此外,外泌体还可以将内容物转运到靶细胞,成为细胞与细胞之间信息传递的重要媒介。外泌体在体液中广泛存在。尿液外泌体在泌尿系统疾病中被广泛研究并发现了其一定的临床价值。本文就外泌体在肿瘤、结石等泌尿外科疾病诊治中的研究现状进行综述。

关键词

尿液,外泌体,泌尿系肿瘤,结石

Research Status of Urinary Exosomes in Urological Diseases

Yesen Hali1, Jiuzhi Li2*

1Graduate School of Xinjiang Medical University, Urumqi Xinjiang

2Department of Urology, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi Xinjiang

Received: Dec. 27th, 2023; accepted: Jan. 21st, 2024; published: Jan. 30th, 2024

ABSTRACT

Exosomes are extracellular vesicles of different sizes with a variety of biological functions, containing a variety of contents such as nucleic acids, proteins, lipids, amino acids, small molecule metabolites, etc., which can reflect their cellular origin. In addition, exosomes can also transport contents to target cells, becoming an important medium for cell-to-cell information transfer. Exosomes are widely present in body fluids. Urine exosomes have been extensively studied in urological diseases and have been found to have certain clinical value. This article reviews the research status of exosomes in the diagnosis and treatment of urological diseases such as tumors and renal calculus.

Keywords:Urine, Exosomes, Urinary Tract Tumors, Calculi

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 外泌体概述

外泌体是机体内细胞出芽方式分泌的具有脂质双分子层的微小囊泡 [1] ,包括大外泌体(直径为10~1000 nm,主要是细胞由表面质膜出芽生成囊泡而形成)和小外泌体(直径为30~200 nm,主要是通过多泡体途径产生的),多泡体与质膜融合形成小外泌体后,可将内部丰富的内容物释放到细胞外间隙,小外泌体也可以通过高尔基体出芽产生 [2] 。外泌体主要成分有蛋白质、脂肪和核酸等,其中蛋白质参与膜转运、合成、抗原表达以及疾病的发生和发展,脂质参与维持外泌体的形态和细胞间信号转导,有特定的生物分子(如蛋白质、RNA和DNA)可以封装在外泌体中并分泌到细胞外环境中,并调节靶细胞的生理功能,从而导导致一系列病理生理变化 [3] [4] [5] 。据报道,外泌体与感染、免疫反应、肿瘤、退行性疾病及肾脏疾病等许多疾病有关 [6] [7] [8] 。

2. 尿外泌体与泌尿系恶性肿瘤

2.1. 外泌体在泌尿系恶性肿瘤中的作用

2.1.1. 参与恶性肿瘤细胞增殖、转移和血管生成

有研究表明,来源于肿瘤细胞的外泌体可以调节缺氧肿瘤微环境,从而促进恶性肿瘤的发生和转移 [9] [10] 。Xue等报道,缺氧外泌体通过转移长非编码RNA (lncRNA)-UCA1促进膀胱癌的生长和发育 [11] 。肿瘤相关巨噬细胞通过外泌体介导的miR-95转移促进前列腺增殖 [12] 。此外,转移对于泌尿系统恶性肿瘤的进展至关重要。多项研究报道了外泌体参与肿瘤细胞转移 [13] 。Borel等报道,前列腺癌衍生的外泌体通过磷脂酶D2促进成骨细胞分化和活性,认为外泌体参与前列腺癌的骨转移 [14] 。血管生成在肿瘤生长和转移中起着至关重要的作用,新生成的毛细血管为肿瘤细胞提供营养和氧气 [15] 。缺氧和血管生成生长因子刺激等特定条件,有利于具有血管生成潜力的外泌体的释放,从而增强癌细胞的迁移和侵袭能力 [16] [17] 。

2.1.2. 参与恶性肿瘤细胞免疫逃逸

外泌体被证实为肿瘤免疫逃逸和耐受的原因之一 [18] 。外泌体介导的免疫耐受与肿瘤相关抗原和免疫抑制分子有关,可抑制免疫系统 [19] 。前列腺癌患者的循环外泌体通过减少CD+8细胞上的自然杀伤细胞活化性受体的表达,降低淋巴细胞的细胞毒功能,促进前列腺癌细胞的逃 [20] 。近年来,靶向程序性死亡-1 (PD-1)及其配体(PD-L1)的免疫检查点抑制剂的应用逐渐受到广泛关注。最近的证据表明,肾癌衍生外泌体可能对抗抗PD-1检查点,并通过直接内源性外泌体PD-L1和间接外泌体诱导的PD-L1两种机制介导全身免疫抑制 [21] 。例如,在泌尿系统疾病方面,Qin Z等人最近报道,来自尿细胞外囊泡的miR-224-5p可以调节肾细胞癌细胞中免检查点的表达,从而进一步增强肾细胞癌细胞对T细胞依赖性毒性的抵抗能力 [22] 。

2.2. 尿外泌体内容物作为泌尿系统肿瘤生物标志物的潜力

由于外泌体存在于所有体液中并反映其亲本细胞的生理过程,因此它们是泌尿系统疾病临床诊断和预后的非侵入性生物标志物。更重要的是,外泌体在体液活检中具有比循环肿瘤细胞和肿瘤来源DNA更高的敏感性,因为它们具有低免疫原性和高稳定性。有研究提出,尿源性lncRNA在膀胱癌的诊断和预后中具有相当大的临床价值 [23] 。Hiltbrunner等人在膀胱癌患者的外泌体中发现了几种过表达的癌蛋白,这些蛋白可被认为是膀胱癌的潜在诊断生物标志物 [24] 。另外,miRNA已被证明在癌症中具有多种功能,并且在几种类型的癌症中发现了特定的miRNA生物标志物 [25] 。最近,尿外泌体深度测序分析显示,前列腺癌样本中的miR-196a-5p和miR-501-3p显著下调,提示尿外泌体中的特异性miRNA可作为PCa的非侵入性生物标志物 [26] 。有趣的是,除RNA和蛋白质外,尿外泌体脂质是非侵入性前列腺生物标志物的新来源。He等人开发了一种尿细胞外囊泡circRNA分类器,用于检测初始活检时血清前列腺特异性抗原(PSA)为2~10 ng/mL的高级别前列腺患者。这种可重复的非侵入性检测可显著提高前列腺诊断的特异性 [27] 。此外,外泌体内容物对泌尿系统癌症的预后也具有相当大的临床价值。据报道,具有高lncRNA-UBC1表达的非肌层浸润性膀胱癌患者的无复发生存期显着降低。同样,之前的一项研究使用尿液外泌体蛋白来识别高危前列腺癌患者,提出检测尿液外泌体中的ITGA3和ITGB1,有可能成为识别转移性前列腺癌患者的新方法 [28] 。

3. 尿外泌体与泌尿系结石

3.1. 结石形成刺激外泌体分泌

草酸钙结石是肾结石的主要类型,约占肾结石的80%,肾结石的形成往往始于尿液中钙离子和草酸根离子的过饱和,从而在肾小管内形成草酸钙(calciumoxalate, CaOx)晶体 [29] [30] 。CaOx有一水草酸钙(CaOx monohydrate, COM)和二水草酸钙(CaOx dihydrate, COD)两种常见的水合形式。在肾结石疾病中,COM比COD更突出和更具致病性。COM晶体更紧密地粘附在肾上皮细胞表面,然后被内化到细胞中,随后转移到肾间质,在肾间质区域形成结石 [29] [30] 。此外,沉积在肾间质中的晶体还可以触发细胞级联反应刺激多种趋化因子的合成增加 [31] [32] ,从而激活并吸引单核细胞、巨噬细胞和其他白细胞到晶体沉积的区域,以作为参与炎症过程的效应细胞 [31] 。有趣的是,一项细胞层面研究得出了hucMSC-Ex能提高草酸及COM晶体诱导的HK-2细胞活性,减轻其氧化应激损伤,同时缓解其上皮间质转化 [33] ,这说明外泌体对草酸及草酸钙引起的肾小管上皮细胞的损伤起保护作用。电子显微镜检查发现,结石附着部位的肾乳头组织含有许多包含核化磷酸钙晶体的囊泡 [34] 。Jayachandran等 [35] 报道显示,尿液外泌体囊泡的增加与肾结石有关,肾结石患者的尿液中CD63 (外泌体的标志蛋白之一)阳性囊泡的数量明显多于健康对照者。Shyong等 [36] 也证明了磷酸钙颗粒可刺激培养的吞噬细胞分泌外泌体。

然而,与肾结石疾病相关的外泌体样囊泡最初是在大鼠模型中发现的 [37] 。研究表明,肾乳头中的晶体沉积可能始于受损肾细胞刷状缘的纳米级囊泡,这些纳米级膜囊泡即肾细胞由质膜直接出芽形成的外泌体,可诱导胶原框架外围的原型晶体成核、结晶和增大。夏等的肾结石模型研究发现,肾结石形成过程中,肾小管损伤加重,尿外泌体分泌增加,同时较少外泌体分泌可减轻草酸钙晶体诱导的肾脏纤维化。在临床研究方面,虽然健康人的肾细胞也能产生和分泌外泌体,但与健康对照者相比,肾结石患者表现出更高水平的尿液外泌体分泌 [35] 。肾结石疾病中外泌体分泌增加的生物学相关性仍有待进一步研究。

3.2. 尿外泌体参与结石形成过程

肾结石由晶体和有机基质组成,这些有机基质不仅仅覆盖在晶体表面,也存在于晶体内部空间 [38] 。结石中的有机基质包括许多大分子,如:骨桥蛋白、血浆蛋白、尿凝血酶原片段1 (Urine prothrombin fragment 1, UPTF1)和多种类型的脂质等。已被证明,这些脂质可以诱导晶体成核。在晶体成核早期,晶体和脂质之间就有一定的联系,并一直持续到石头的形成和生长阶段。目前结石形成机制主要包括“自由粒子”(晶体在肾小管内形成“Randall’s plug”)和“固定粒子”(结石生长在“Randall’s plaques”上)。Randall’s斑块和Randall’s塞均覆盖有有机基质,这些有机基质是由暴露于肾小管上皮细胞中的管状晶体沉积组成的大分子,如:脂质、骨桥蛋白、UPTF1等 [37] [39] 。随之影像技术的发展,高分辨率影响检查也证实了Randall’s斑块的存在 [40] 。CaP作为斑块的主要成分 [37] ,同时也是CaOx晶体的主要成核剂,而研究发现大量特发性CaOx结石形成于Randall’s斑上 [41] 。

3.2.1. 巨噬细胞来源外泌体

巨噬细胞是一种效应细胞,负责清除沉积在肾间质中的CaOx晶体,但另一方面,可以通过自分泌、旁分泌和/或细胞因子机制加剧或恶化肾结石疾病中的组织炎症 [42] 。一项基于凝胶的蛋白质组学技术研究 [43] ,对暴露于COM晶体后源自巨噬细胞的外泌体中的蛋白质组变化进行了几项功能测定,结果表明,巨噬细胞的外泌体在参与免疫调节的蛋白质水平上发生了变化,此外,这些外泌体激活了炎症细胞的多种功能,包括单核细胞、巨噬细胞和T细胞,并促进了细胞因子(IL-8)的产生增加;该研究还发现,通过小干扰RNA抑制波形蛋白的表达,可以消除巨噬细胞来源外泌体对单核细胞和T细胞的迁移及吞噬活性的影响。他们另一项研究中,与对照组外泌体相比,暴露于COM晶体的巨噬细胞来源外泌体中许多蛋白的水平发生了显著改变 [44] 。这些蛋白主要参与细胞骨架和肌动蛋白的结合、钙结合、应激反应、转录调控、免疫反应和细胞外基质的分解。功能测定表明,暴露于COM晶体后,巨噬细胞会分泌修饰外泌体,这种修饰外泌体更脆弱而容易破碎,表达的蛋白质也会发生改变,所包含的内容物也更容易释放到肾间质中,并触发肾小管细胞分泌更高水平的炎症小体IL8,以诱导中性粒细胞迁移到肾间质中,从而加重组织炎症。此外,经COM晶体处理的巨噬细胞分泌的修饰外泌体具有与COM晶体紧密结合的能力,并随后通过肾间质中的细胞外基质(ECM)促进COM晶体入侵 [43] [44] 。综合上述可见,巨噬细胞来源的外泌体至少部分参与了肾结石发病机制中常见的免疫过程和炎症级联反应。

3.2.2. 肾小管上皮细胞来源外泌体

草酸盐(或草酸)作为肾脏代谢的产物主要之一,也可促进肾小管上皮细胞分泌外泌体 [45] 。由不同浓度的草酸盐晶体对人肾小管上皮细胞(HK-2)进行干预的结果显示,随草酸盐晶浓度增加高,HK-2分泌速率和数量增加,同时外泌体内容物增多且表达的外泌体标志蛋白(HSP70及CD63)和非编码RNA增加,但其外泌体的大小是变小的 [45] 。据以往的研究报道显示,外泌体越小越有助于靶细胞的吸收 [46] 。此外,草酸盐晶体引起的肾小管上皮细胞氧化应激损伤会影响细胞的 miRNA表达,并激活参与CaOx肾结石形成的特定通路 [47] 。有研究者推测,草酸盐导致的受损肾小管上皮细胞也可能分泌带有特定miRNA的外泌体 [48] 。目前就来源于肾小管上皮细胞的外泌体是如何参与结石形成机制尚不清楚,有待进一步研究。

3.2.3. 脂肪基质来源外泌体

肾小管上皮间充质内富含易于采集和体外培养的脂肪基质细胞(adipose-derived stromal cells, ADSCs),来自ADSCs的外泌体与聚合物纳米微粒和脂质体不同,可以避免内体溶酶体降解,且缺乏免疫原性 [49] 。因此,ADSCs来源外泌体被看作为基因药物传递的理想载体,可能被用于肾结石的药物治疗 [50] [51] 。有动物实验表明,在形成高钙结石的大鼠肾组织中miR-20b-3p下调 [52] ,但具体的调控机制尚不清楚。多项研究证实,miRNA介导的细胞自噬和炎症调节在肾脏疾病的进展中起重要作用 [53] [54] 。炎症反应和自噬与肾结石形成的形成关系密切,抑制自噬可减轻肾小管细胞氧化损伤和炎症,从而使CaOx晶体沉积减少 [43] [50] 。研究表明miR-20b-3p在肾脏损伤中对调节炎症反应和自噬起重要作用 [55] ,生物学信息分析发现miR-20b-3p的靶蛋白Toll样受体4 (toll-likereceptor4, TLR4)和自噬相关蛋白Atg7,其中TLR4是在肾脏损伤中对调节炎症反应起重要作用的一种炎症相关蛋白,而Atg7是一种重要的自噬调控因子。Oedayrajsingh-Varma等 [49] 为了研究来源于脂肪基质细胞的含有miR-20b-3p的外泌体在肾结石形成中的潜在作用和机制,检测了高草酸盐肾结石大鼠模型中miR-20b-3p的水平,并研究了miR-20b-3p的靶基因及miR-20b-3p与炎症和自噬之间的关系。他们的动物实验和细胞实验结果显示,当肾结石患者的尿液和大鼠模型的肾脏组织中草酸盐含量增高时,miR-20b-3p的水平随之降低;并且使用上述外泌体进行治疗,可使高草酸盐大鼠肾内的CaOx晶体沉积和肾脏细胞损伤减少;同时,细胞实验结果显示,使用含miR-20b-3p的ADSCs来源外泌体联合培养的肾小管上皮细胞,可以通过抑制Atg7和TLR4的表达使草酸盐导致的细胞自噬和炎症反应减少。综上可见,ADSCs来源含miR-20b-3p的外泌体可通过调控自噬和炎症反应来对肾结石的形成起保护作用。

4. 总结与展望

外泌体作为细胞间信息传递的平台和物质传递的载体,可参与调节许多病理生理过程,包括免疫反应、炎症和自噬等。近年来,研究外泌体在各种疾病中的临床价值已成为热点。越来越多的研究表明,外泌体不仅参与了泌尿系肿瘤的发生、发展及转移等过程,还与泌尿系结石形成密切相关。综上所述,有大量研究表明外泌体促进肿瘤的发生、发展,但仍需大规模的临床试验阐明其内在联系。将外泌体用于泌尿系癌症诊疗是一个重要的外泌体研究方向,改造外泌体的内容物、选择合适的来源等均影响外泌体的诊疗效价,因此仍需继续探索外泌体诊疗的最佳条件。总之,外泌体具有来源丰富、稳定性强、可靶向改造、可装载多样内容物、生物兼容等优点,未来外泌体应用技术对泌尿系恶性肿瘤的诊治带来革命性的进步。

结石成分和形成过程与外泌体之间是互相作用的,外泌体对肾结石形成的影响也是双方面的,这可能取决于外泌体来源的特定细胞类型和组织环境。探讨外泌体对肾结石形成的影响不应局限于以上细胞,还应研究其他类型肾脏细胞来源外泌体的作用;此外,外泌体的大规模分析不应仅限于蛋白质组学,还可以通过转录组学、脂质组学、代谢组学等进行;还要根据不同成分类型结石(如尿酸铵结石等)形成与外泌体的关系进行分析。进一步阐明肾结石形成的确切机制,将为肾结石疾病的预防及诊治开辟新方法。

文章引用

叶森·哈力,李九智. 尿液外泌体在泌尿外科疾病中的研究现状
Research Status of Urinary Exosomes in Uro-logical Diseases[J]. 临床医学进展, 2024, 14(01): 1869-1876. https://doi.org/10.12677/ACM.2024.141265

参考文献

  1. 1. Raimondo, F., Morosi, L., Chinello, C., et al. (2011) Advances in Membranous Vesicle and Exosome Proteomics Im-proving Biological Understanding and Biomarker Discovery. Proteomics, 11, 709-720. https://doi.org/10.1002/pmic.201000422

  2. 2. Ratajczak, M.Z. and Ratajczak, J. (2020) Extracellular Microvesi-cles/Exosomes: Discovery, Disbelief, Acceptance, and the Future? Leukemia, 34, 3126-3135. https://doi.org/10.1038/s41375-020-01041-z

  3. 3. Barile, L. and Vassalli, G. (2017) Exosomes: Therapy Delivery Tools and Biomarkers of Diseases. Pharmacology & Therapeutics, 174, 63-78. https://doi.org/10.1016/j.pharmthera.2017.02.020

  4. 4. Colombo, M., Raposo, G. and Théry, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Devel-opmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326

  5. 5. Park, S.J., Kim, J.M., Kim, J., et al. (2018) Molecular Mechanisms of Biogenesis of Apoptotic Exosome-Like Vesicles and Their Roles as Damage-Associated Molecular Pat-terns. Proceedings of the National Academy of Sciences of the United States of America, 115, E11721-E11730. https://doi.org/10.1073/pnas.1811432115

  6. 6. Jiang, K., Dong, C., Yin, Z., et al. (2018) The Critical Role of Exo-somes in Tumor Biology. Journal of Cellular Biochemistry, 120, 6820-6832.

  7. 7. Schorey, J.S. and Bhatnagar, S. (2008) Exosome Function: From Tumor Immunology to Pathogen Biology. Traffic, 9, 871-881. https://doi.org/10.1111/j.1600-0854.2008.00734.x

  8. 8. Théry, C., Zitvogel, L. and Amigorena, S. (2002) Exo-somes: Composition, Biogenesis and Function. Nature Reviews Immunology, 2, 569-579. https://doi.org/10.1038/nri855

  9. 9. Tadokoro, H., Umezu, T., Ohyashiki, K., et al. (2013) Exosomes Derived from Hypoxic Leukemia Cells Enhance Tube Formation in Endothelial Cells. Journal of Biological Chemistry, 288, 34343-34351. https://doi.org/10.1074/jbc.M113.480822

  10. 10. Li, L., Li, C., Wang, S., et al. (2016) Exosomes Derived from Hy-poxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Can-cer Research, 76, 1770-1780. https://doi.org/10.1158/0008-5472.CAN-15-1625

  11. 11. Xue, M., Chen, W., Xiang, A., et al. (2017) Hypoxic Exo-somes Facilitate Bladder Tumor Growth and Development through Transferring Long Non-Coding RNA-UCA1. Molec-ular Cancer, 16, Article No. 143. https://doi.org/10.1186/s12943-017-0714-8

  12. 12. Guan, H., Peng, R., Fang, F., et al. (2020) Tumor-Associated Macrophages Promote Prostate Cancer Progression via Exosome-Mediated miR-95 Transfer. Journal of Cellular Physi-ology, 235, 9729-9742. https://doi.org/10.1002/jcp.29784

  13. 13. Mcatee, C.O., Booth, C., Elowsky, C., et al. (2019) Prostate Tumor Cell Exosomes Containing Hyaluronidase Hyal1 Stimulate Prostate Stromal Cell Motility by Engagement of FAK-Mediated Integrin Signaling. Matrix Biology, 78-79, 165-179. https://doi.org/10.1016/j.matbio.2018.05.002

  14. 14. Borel, M., Lollo, G., Magne, D., et al. (2020) Prostate Cancer-Derived Exosomes Promote Osteoblast Differentiation and Activity through Phospholipase D2. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165919. https://doi.org/10.1016/j.bbadis.2020.165919

  15. 15. Mashouri, L., Yousefi, H., Aref, A.R., et al. (2019) Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance. Molecular Cancer, 18, Article No. 75. https://doi.org/10.1186/s12943-019-0991-5

  16. 16. Shao, C., Yang, F., Miao, S., et al. (2018) Role of Hypoxia-Induced Exosomes in Tumor Biology. Molecular Cancer, 17, Article No. 120. https://doi.org/10.1186/s12943-018-0869-y

  17. 17. Olejarz, W., Kubiak-Tomaszewska, G., Chrzanowska, A. and Lorenc, T. (2020) Exosomes in Angiogenesis and Anti-Angiogenic Therapy in Cancers. International Journal of Molec-ular Sciences, 21, Article 5840. https://doi.org/10.3390/ijms21165840

  18. 18. Jiang, X., Wang, J., Deng, X., et al. (2019) Role of the Tumor Micro-environment in PD-L1/PD-1-Mediated Tumor Immune Escape. Molecular Cancer, 18, Article No. 10. https://doi.org/10.1186/s12943-018-0928-4

  19. 19. Whiteside, T.L. (2016) Exosomes and Tumor-Mediated Immune Suppression. Journal of Clinical Investigation, 126, 1216-1223. https://doi.org/10.1172/JCI81136

  20. 20. Lundholm, M., Schröder, M., Nagaeva, O., et al. (2014) Prostate Tumor-Derived Exosomes Down-Regulate NKG2D Expression on Natural Killer Cells and CD8+ T Cells: Mechanism of Immune Evasion. PLOS ONE, 9, e108925. https://doi.org/10.1371/journal.pone.0108925

  21. 21. Morrissey, S.M. and Yan, J. (2020) Exosomal PD-L1: Roles in Tumor Progression and Immunotherapy. Trends in Cancer, 6, 550-558. https://doi.org/10.1016/j.trecan.2020.03.002

  22. 22. Qin, Z., Hu, H., Sun, W., et al. (2021) miR-224-5p Contained in Urinary Extracellular Vesicles Regulates PD-L1 Expression by Inhibiting Cyclin D1 in Renal Cell Carcinoma Cells. Cancers, 13, Article 618. https://doi.org/10.3390/cancers13040618

  23. 23. Zhan, Y., Du, L., Wang, L., et al. (2018) Expression Signatures of Exosomal Long Non-Coding RNAs in Urine Serve as Novel Non-Invasive Biomarkers for Diagnosis and Recurrence Prediction of Bladder Cancer. Molecular Cancer, 17, Article No. 142. https://doi.org/10.1186/s12943-018-0893-y

  24. 24. Hiltbrunner, S., Mints, M., Eldh, M., et al. (2020) Urinary Exo-somes from Bladder Cancer Patients Show a Residual Cancer Phenotype Despite Complete Pathological Downstaging. Scientific Reports, 10, Article No. 5960. https://doi.org/10.1038/s41598-020-62753-x

  25. 25. Hayes, J., Peruzzi, P.P. and Lawler, S. (2014) MicroRNAs in Cancer: Biomarkers, Functions and Therapy. Trends in Molecular Medicine, 20, 460-469. https://doi.org/10.1016/j.molmed.2014.06.005

  26. 26. Rodríguez, M., Bajo-Santos, C., Hessvik, N.P., et al. (2017) Identification of Non-Invasive miRNAs Biomarkers for Prostate Cancer by Deep Sequencing Analysis of Urinary Exo-somes. Molecular Cancer, 16, Article No. 156. https://doi.org/10.1186/s12943-017-0726-4

  27. 27. He, Y.D., Tao, W., He, T., et al. (2021) A Urine Extracellular Vesicle circRNA Classifier for Detection of High-Grade Prostate Cancer in Patients with Prostate-Specific Antigen 2-10 ng/mL at Initial Biopsy. Molecular Cancer, 20, Article No. 96. https://doi.org/10.1186/s12943-021-01388-6

  28. 28. Bijnsdorp, I.V., Geldof, A.A., Lavaei, M., et al. (2013) Exoso-mal ITGA3 Interferes with Non-Cancerous Prostate Cell Functions and Is Increased in Urine Exosomes of Metastatic Prostate Cancer Patients. Journal of Extracellular Vesicles, 2, Article 22097. https://doi.org/10.3402/jev.v2i0.22097

  29. 29. Thongboonkerd, V., Semangoen, T. and Chutipongtanate, S. (2006) Factors Determining Types and Morphologies of Calcium Oxalate Crystals: Molar Concentrations, Buffering, pH, Stir-ring and Temperature. Clinica Chimica Acta, 367, 120-131. https://doi.org/10.1016/j.cca.2005.11.033

  30. 30. Alelign, T. and Petros, B. (2018) Kidney Stone Disease: An Update on Current Concepts. Advances in Urology, 2018, Article ID: 3068365. https://doi.org/10.1155/2018/3068365

  31. 31. Umekawa, T., Chegini, N. and Khan, S.R. (2002) Oxalate Ions and Calcium Oxalate Crystals Stimulate MCP-1 Expression by Renal Epithelial Cells. Kidney International, 61, 105-112. https://doi.org/10.1046/j.1523-1755.2002.00106.x

  32. 32. Mulay, S.R., Evan, A. and Anders, H.J. (2014) Molecular Mechanisms of Crystal-Related Kidney Inflammation and Injury. Implications for Cholesterol Embolism, Crystalline Nephropathies and Kidney Stone Disease. Nephrology Dialysis Transplantation, 29, 507-514. https://doi.org/10.1093/ndt/gft248

  33. 33. 李典. hucMSC外泌体对草酸及草酸钙诱导HK-2细胞损伤的保护作用及其机制[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2018.

  34. 34. Khan, S.R. and Canales, B.K. (2015) Unified The-ory on the Pathogenesis of Randall’s Plaques and Plugs. Urolithiasis, 43, 109-123. https://doi.org/10.1007/s00240-014-0705-9

  35. 35. Jayachandran, M., Lugo, G., Heiling, H., et al. (2015) Extracellu-lar Vesicles in Urine of Women with But Not without Kidney Stones Manifest Patterns Similar to Men: A Case Control Study. Biology of Sex Differences, 6, Article No. 2. https://doi.org/10.1186/s13293-015-0021-2

  36. 36. Shyong, Y.J., Chang, K.C. and Lin, F.H. (2018) Calcium Phos-phate Particles Stimulate Exosome Secretion from Phagocytes for the Enhancement of Drug Delivery. Colloids and Sur-faces B: Biointerfaces, 171, 391-397. https://doi.org/10.1016/j.colsurfb.2018.07.037

  37. 37. Khan, S.R., Rodriguez, D.E., Gower, L.B. and Monga, M. (2012) Association of Randall Plaque with Collagen Fibers and Membrane Vesicles. Journal of Urology, 187, 1094-1100. https://doi.org/10.1016/j.juro.2011.10.125

  38. 38. Ryall, R.L., Chauvet, M.C. and Grover, P.K. (2005) Intracrystalline Proteins and Urolithiasis: A Comparison of the Protein Content and Ultrastructure of Urinary Calcium Oxalate Monohydrate and Dihydrate Crystals. BJU International, 96, 654-663. https://doi.org/10.1111/j.1464-410X.2005.05701.x

  39. 39. Kok, D.J. and Khan, S.R. (1994) Calcium Oxalate Neph-rolithiasis, a Free or Fixed Particle Disease. Kidney International, 46, 847-854. https://doi.org/10.1038/ki.1994.341

  40. 40. Coe, F.L., Evan, A.P., Lingeman, J.E. and Worcester, E.M. (2010) Plaque and Deposits in Nine Human Stone Diseases. Urological Research, 38, 239-247. https://doi.org/10.1007/s00240-010-0296-z

  41. 41. Coe, F.L., Evan, A.P., Worcester, E.M. and Lingeman, J.E. (2010) Three Pathways for Human Kidney Stone Formation. Urological Research, 38, 147-160. https://doi.org/10.1007/s00240-010-0271-8

  42. 42. Kusmartsev, S., Dominguez-Gutierrez, P.R., Canales, B.K., et al. (2016) Calcium Oxalate Stone Fragment and Crystal Phagocytosis by Human Macrophages. Journal of Urology, 195, 1143-1151. https://doi.org/10.1016/j.juro.2015.11.048

  43. 43. Singhto, N., Kanlaya, R., Nilnumkhum, A. and Thongboonkerd, V. (2018) Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals. Frontiers in Immunology, 9, Article 316. https://doi.org/10.3389/fimmu.2018.00316

  44. 44. Singhto, N. and Thongboonkerd, V. (2018) Exosomes Derived from Calcium Oxalate-Exposed Macrophages Enhance IL-8 Production from Renal Cells, Neutrophil Migration and Crystal Invasion through Extracellular Matrix. Journal of Proteomics, 185, 64-76. https://doi.org/10.1016/j.jprot.2018.06.015

  45. 45. He, Z., Guan, X., Liu, Y., et al. (2017) Alteration of Exosomes Secreted from Renal Tubular Epithelial Cells Exposed to High-Concentration Oxalate. Oncotarget, 8, 92635-92642. https://doi.org/10.18632/oncotarget.21517

  46. 46. Caponnetto, F., Manini, I., Skrap, M., et al. (2017) Size-Dependent Cellular Uptake of Exosomes. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 1011-1020. https://doi.org/10.1016/j.nano.2016.12.009

  47. 47. Liu, Z., Jiang, H., Yang, J., et al. (2016) Analysis of Altered mi-croRNA Expression Profiles in the Kidney Tissues of Ethylene Glycol-Induced Hyperoxaluric Rats. Molecular Medicine Reports, 14, 4650-4658. https://doi.org/10.3892/mmr.2016.5833

  48. 48. 吴承, 饶婷, 周向军, 等. 外泌体在草酸钙肾结石形成中的作用研究进展[J]. 国际泌尿系统杂志, 2022, 42(4): 733-737.

  49. 49. Oedayrajsingh-Varma, M.J., Van Ham, S.M., Knip-penberg, M., et al. (2006) Adipose Tissue-Derived Mesenchymal Stem Cell Yield and Growth Characteristics Are Af-fected by the Tissue-Harvesting Procedure. Cytotherapy, 8, 166-177. https://doi.org/10.1080/14653240600621125

  50. 50. Shi, J., Duan, J., Gong, H., et al. (2019) Exosomes from miR-20b-3p-Overexpressing Stromal Cells Ameliorate Calcium Oxalate Deposition in Rat Kidney. Journal of Cellular and Molecular Medicine, 23, 7268-7278. https://doi.org/10.1111/jcmm.14555

  51. 51. Ha, D., Yang, N. and Nadithe, V. (2016) Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Phar-maceutica Sinica B, 6, 287-296. https://doi.org/10.1016/j.apsb.2016.02.001

  52. 52. Lu, Y., Qin, B., Hu, H., et al. (2016) Integrative microRNA-Gene Expression Network Analysis in Genetic Hypercalciuric Stone-Forming Rat Kidney. PeerJ, 4, e1884. https://doi.org/10.7717/peerj.1884

  53. 53. Matboli, M., Eissa, S., Ibrahim, D., et al. (2017) Caffeic Acid Attenuates Diabetic Kidney Disease via Modulation of Autophagy in a High-Fat Diet/Streptozotocin-Induced Diabetic Rat. Scientific Reports, 7, Article No. 2263. https://doi.org/10.1038/s41598-017-02320-z

  54. 54. Guo, J., Li, J., Zhao, J., et al. (2017) MiRNA-29c Regulates the Expression of Inflammatory Cytokines in Diabetic Nephropathy by Targeting Tristetraprolin. Scientific Reports, 7, Article No. 2314. https://doi.org/10.1038/s41598-017-01027-5

  55. 55. González-Guerrero, C., Cannata-Ortiz, P., Guerri, C., et al. (2017) TLR4-Mediated Inflammation Is a Key Pathogenic Event Leading to Kidney Damage and Fibrosis in Cyclospor-ine Nephrotoxicity. Archives of Toxicology, 91, 1925-1939. https://doi.org/10.1007/s00204-016-1830-8

  56. NOTES

    *通讯作者。

期刊菜单