Advances in Clinical Medicine
Vol. 11  No. 01 ( 2021 ), Article ID: 39886 , 7 pages
10.12677/ACM.2021.111028

血清BNP水平及左房内径对脑梗死合并阵发性房颤的辅助诊断价值

金玄美,马爱军,潘旭东*

青岛大学,山东 青岛

收稿日期:2020年12月16日;录用日期:2021年1月5日;发布日期:2021年1月21日

摘要

目的:通过比较不同房颤类型引起的心源性脑卒中患者血清脑钠钛(BNP)、D-二聚体、纤维蛋白原、C-反应蛋白(CRP)等指标及超声检测左房前后径大小,评估其在心源性脑梗死患者中合并阵发性房颤诊断中的价值,以指导治疗,预防再栓塞。方法:回顾性收集2017年6月至2020年6月在青岛大学附属医院神经内科接诊合并房颤的急性心源性脑梗死患者185例,其中持续性房颤患者104例、阵发性房颤患者81例,并选择同时期非心源性脑梗死患者115例,比较各组发病72 h之内的血清D-二聚体、纤维蛋白原、脑钠肽(BNP)、C-反应蛋白(CRP),在院住院期间心脏超声测得的左房前后径大小。结果:1) 持续性、阵发性房颤组BNP水平明显高于对照组,差异有显著性(P < 0.05),而持续性和阵发性房颤组之间差异无统计学意义(P > 0.05)。2) 三组发病住院期间测量的左心房前后径大小有明显差异(4.71 ± 0.83, 4.12 ± 0.59, 3.81 ± 0.47),各组间差异有统计学意义(P < 0.05)。3) 多因素logistic回归分析显示,BNP水平升高(OR = 1.02, 95% CI: 1.02~1.03, P < 0.001)和左房前后径增大(cm) (OR = 3.00, 95% CI: 1.04~8.71, P = 0.043)是阵发性房颤类型脑梗死的独立危险因素。结论:房颤引起心源性栓塞患者血浆BNP水平明显高于无心源性脑栓塞患者,房颤患者左心房前后径增大,持续性较阵发性房颤患者更加明显,血清BNP水平升高和左房前后径增大是阵发性房颤心源性脑梗死的独立危险因素。

关键词

缺血性脑卒中,持续性房颤,阵发性房颤,脑钠钛,左房内径

Diagnostic Value of Serum BNP and Left Atrial Diameter in Paroxysmal Atrial Fibrillation with Cerebral Embolism

Xuanmei Jin, Aijun Ma, Xudong Pan*

Qingdao University, Qingdao Shandong

Received: Dec. 16th, 2020; accepted: Jan. 5th, 2021; published: Jan. 21st, 2021

ABSTRACT

Purpose: By comparing the serum brain natriuretic peptides (BNP), D-dimer, fibrinogen, C-reactive protein (CRP), and the anteroposterior diameter of the left atrium (LA) detected by ultrasound, in patients with cardiogenic stroke caused by different types of atrial fibrillation (AF), to evaluate its value in the diagnosis of cardiogenic stroke to guide treatment and prevent re-embolism. Methods: A retrospective collection of 185 patients with acute cardiogenic cerebral infarction with AF in the Department of Neurology of Qingdao University Affiliated Hospital from June 2017 to June 2020, including 104 patients with persistent atrial fibrillation (PeAF) and 81 patients with paroxysmal atrial fibrillation (PaAF), and 115 patients with ischemic cerebral infarction without AF during the same period were selected. Serum D-dimer, fibrinogen, BNP and CRP in each group within 72 hours of onset, and the anteroposterior diameter of the LA measured by ultrasound during the hospital stay, were compared. Results: 1) The BNP level of PeAF and PaAF group was significantly higher than that of the control group, and the difference is significant (P < 0.05), while the difference between PeAF and PaAF group is not statistically significant (P > 0.05). 2) The anteroposterior diameters of the LA measured among the three groups are significantly different (cm) (4.71 ± 0.83, 4.12 ± 0.59, 3.81 ± 0.47), and the differences between the groups are statistically significant (P < 0.05). 3) Multivariate logistic regression analysis showed that BNP (OR = 1.02, 95%CI: 1.02~1.03, P < 0.001) and LA anteroposterior diameter (OR = 3.00, 95% CI: 1.04~8.71, P = 0.043) are independent risk factors for PaAF with cerebral embolism patients. Conclusion: The serum BNP level of patients with cardiogenic embolism caused by AF is significantly higher than that of patients with non-cardiogenic cerebral embolism. The anteroposterior diameter of LA in patients with AF is enlarged, and the PeAF is more obvious than that in patients with PaAF. Serum BNP and LA anteroposterior diameter are independent risk factors of cardiogenic cerebral embolism caused by PaAF.

Keywords:Ischemic Stroke, Persistent Atrial Fibrillation, Paroxysmal Atrial Fibrillation, Brain Natriuretic Peptides (BNP), Left Atrial Diameter

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

缺血性脑卒中是世界上死亡和残疾的主要原因之一,而缺血性脑梗死及短暂性脑缺血发作事件中,20%到30%归因于心源性栓塞 [1]。心房颤动(AF)占心源性栓塞病因的70% [2]。因其发病突然,栓塞导致大面积梗死,再栓塞率高,预后差,受到世界的广泛关注。

非瓣膜性房颤由于心房失去有效收缩,伴有快速或缓慢心室率,导致心脏功能下降,心房内附壁血栓形成,心源性栓子脱落,栓塞相应脑动脉造成缺血性卒中。很多患者不自知自己患有心房颤动,且通过缺血性脑卒中事件首次发现。本文旨在通过观察与分析不同类型心房颤动引起心源性栓塞患者D-二聚体、纤维蛋白原、BNP、CRP及左房内径相关特点,及早发现房颤,早治疗,防止再次栓塞,提高生活质量。

2. 资料与方法

2.1. 一般资料

选取我院2017年6月至2020年6月因房颤引起心源性脑梗死患者185例及同时期无房颤脑卒中对照患者115例,共300例作为研究对象,其中持续性房颤组(PeAF) 104例,阵发性房颤组(PaAF) 81例。PeAF组患者平均年龄(72 ± 10)岁,其中男64例,女40例;PaAF组患者平均年龄(71 ± 10)岁,其中男46例,女35例;对照组患者平均年龄(68 ± 11)岁,其中男68例,女47例。本项目研究得到我院医学伦理委员的审批。

2.2. 入组标准

回顾性分析临床表现及影像学明确诊断为急性缺血性脑卒中患者的病历资料,包括患者姓名、性别、年龄、现病史、既往史、家族史等。实验组:既往或发病时心房颤动,或发病后3个月内出现心房颤动,PeAF组:非瓣膜性房颤持续7 d或更长时间,PaAF组:非瓣膜性房颤可自行终止,持续小于7 d [3];对照组:有明确病因且无房颤发作的患者。

研究对象排除标准:患有自身免疫疾病、脑炎、恶性肿瘤、严重的肝病,严重的慢性肾功能不全等;对照组排除标准:一切不明原因型及怀疑心源性栓塞相关的多种心血管疾病,如近期(4周内)心肌梗死、人工机械瓣膜、扩张型心肌病、风湿性二尖瓣狭窄、感染性及非感染性心内膜炎、心房黏液瘤等;相对低危的因素包括卵圆孔未闭、房间隔膜部瘤、房间隔和/或室间隔缺损、主动脉瓣钙化性狭窄和二尖瓣瓣环钙化等疾病。

生化指标检测:静脉抽血20~30毫升。进行临床检验:常规化验、生化指标、凝血指标、BNP和炎症指标等;心脏超声检查常规测量包含以下指标:左房前后径(LAD)、右房上下径(PAl))、室间隔收缩期厚度(IVSD)和左室射血分数(LVEF)。

2.3. 统计学方法

应用SPSS 26.0统计软件,计量资料中,符合正态分布的数据均以“ x ¯ ± s ”表示,三组间的比较采用单因素方差分析,任意两组间的比较用LSD-q检验;不符合正态分布数据采用Kruskal-Wallis H检验;计数资料采用率跟构成比表示,采用χ²检验比较不同组间构成比和率;采用二分类logistic回归分析影响阵发性房颤引起的心源性脑栓塞患者的因素,并计算比值比(Odds Ratio, OR)及其95%置信区间(Confidence Interval, CI)。将t检验中P值 < 0.05的候选变量纳入多因素回归分析模型中。所有的分析均采用双侧检验,P < 0.05认为差异有统计学意义。

3. 结果

3.1. 一般特征

表1为三组发生急性脑卒中患者一般特征。本研究共300例急性脑卒中患者,平均年龄为70 ± 10岁,PeAF组和PaAF组平均年龄大于对照组,差异有统计学意义(P < 0.05);血脂水平:总胆固醇与低密度脂蛋白,PaAF组水平低于PeAF和对照组,差异有统计学意义(P < 0.05)。而三组在性别、高血压病病史(≥10年)、糖尿病病史等无统计学差异(P > 0.05)。

Table 1. General characteristics of acute ischemic stroke patients

表1. 急性缺血性脑卒中患者一般特征

3.2. 比较各组血清标志物及左房内径大小水平

表2,三组BNP指标分别为500.4 (324.3),431.3 (296.9),58.4 (68.0) pg/ml,经Kruskal-Wallis H检验分析,存在统计学差异(P < 0.05),组间比较,PeAF组与对照组、PaAF组与对照组差异显著(P < 0.05),PeAF组与PaAF组之间(P = 0.143 > 0.05),无显著性差异。说明房颤患者发生心源性脑卒中时,BNP指标明显增高,而BNP指标大小与房颤类型无关。

三组左房前后径均值(4.71 ± 0.83 vs 4.12 ± 0.59 vs 3.81 ± 0.47) cm,经单因素方差分析,存在统计学差异(P < 0.05),经LSD进一步分析,三组组间差异均显著(P < 0.05)。说明房颤患者较对照组左心房内径大,持续性房颤比阵发性房颤更加明显。而D二聚体、纤维蛋白原、CRP水平无统计学差异。

Table 2. Serum markers and the anteroposterior diameter of the LA

表2. 血清标志物水平及左房前后径大小

注:*:不符合正态分布,经Kruskal-Wallis H检验分析,第1组与第2组比较,P = 0.143 > 0.05,没有统计学差异,第1组与第3组,第2组与第3组P值均 < 0.05,有统计学差异;**:经LSD分析,第1组与第2组,第1组与第3组,第2组与第3组P值均 < 0.05,有统计学差异。

3.3. 阵发性房颤组与对照组多因素Logistic回归分析

PaAF组与对照组,关于BNP及左房前后径大小有关的多因素的Logistic分析(表3)。多因素Logistic回归结果显示:PaAF组LA前后径(cm) (OR = 3.00, 95% CI: 1.04~8.71, P = 0.043)和BNP (OR = 1.02, 95% CI: 1.02~1.03, P < 0.001)分别是对照组的3.00倍和1.02倍。各自变量之间不存在共线性(VIF = 1.003),且该logistic回归模型的准确预测率为91.3%。说明BNP和左房前后径大小是阵发性房颤引起心源性脑卒中的独立危险因素。

Table 3. Multivariate logistic regression analysis between the PaAF group and the control

表3. PaAF组与对照组的多因素logistic回归分析

注:*:P < 0.001。

4. 讨论

血浆BNP从心室肌细胞释放,是心室受压的应激产物,在心室受到牵张、负荷增加等刺激时分泌增加,已被证明可用于心脏功能障碍的评估 [4] [5] [6]。本次研究房颤组BNP指标明显高于对照组,差异有统计学意义,证明血浆BNP指标于房颤相关心源性栓塞型脑卒中有意义。相关研究,在患有AF的急性缺血性脑卒中患者中,将同时伴有LAA/SAO型患者作为实验组,血浆BNP较对照组明显下降,说明BNP是房颤患者心源性栓塞的重要统计学标志物 [7]。Tuinenburg, A.E等研究发现 [8],持续性而非阵发性,房颤可在心房水平上促进Pro-BNP基因表达;Stanciu, A.E.等也同样发现 [9],血浆BNP水平的增高与房颤进展相关。我们此次研究,持续性和阵发性房颤组之间差异无统计学意义,是在心源性栓塞事件发生的基础上测得的样本量,会影响BNP的表达,使两组差异缩小,我们可通过BNP指标初步筛查不明原因脑卒中患者阵发性房颤引起的心源性栓塞可能。

心脏超声测得左心房前后径,各组存在统计学差异,持续性房颤组心房大于阵发性房颤组,结果与疾病引起的病理生理改变有关,不断增加的压力及激素刺激心房,导致结构重构及电重构,后期表现心房扩大、纤维化等改变。Pathan, F.等研究发现 [10],在隐源性脑血管意外中,心房应变力的改变(左房容积大、张力减低)可预测房颤的发生,心房应变指数提供独立的预测价值。Padfield, G.J等研究发现 [11],30%以上的阵发性房颤及新发房颤患者,10年内最终转为持续性房颤,而年龄增长、二尖瓣反流、左心房扩张、主动脉瓣狭窄和左心室肥大等是房颤进展相关预测因素;Conen, D等 [12] 通过磁共振成像评估左心房(LA)大小,LA形态,LA纤维化等和通过超声评估LA功能,可于临床进行PeAF和PaAF的准确分类。这些研究都表明通过观察左房大小结构及程度的改变,可以识别高危患者,以确保特定房颤治疗的更好结果并预防不良事件。

不明原因性卒中占整体卒中的30%~40% [1] [13],而他们与隐源性卒中的发生有关。隐源性卒中的发生大部分是未被发现的阵发性房颤导致的心源性栓塞 [14]。因阵发性房颤大部分时间是无临床表现的,常规心电图很难捕捉到异常心率,发现并诊断非常困难。Inaba等研究发现 [15],大于50%的患者,发生栓塞事件之前未诊断或随着栓塞事件第一次发现患有房颤;Gaita, F.等通过MRI图像发现 [16],发生隐源性卒中的房颤患者非皮质区或皮质区大面积广泛梗死,这些隐源性梗死灶与认知功能障碍有关;治疗上,Hsu, J.C等研究发现 [17],阵发性房颤患者进行抗凝治疗比持续性房颤患者少(50.3% vs 64.2%),且一般倾向于抗血小板治疗或不治疗,而及时口服抗凝药物且控制INR水平为2.0,可有效降低脑卒中的发生率、严重程度及死亡率 [18]。

有效途径发现房颤、进行正确的抗凝干预非常重要。通过增加不明原因型脑卒中患者动态心电的观察时间,可增加阵发性房颤的检出率 [14] [19] [20];通过CHA2-DS2-VASc评分、ABC评分(年龄、血浆标志物(cTnI/T、BNP)、脑卒中病史)评估栓塞风险 [21] [22],及早进行抗凝干预,预防心源性栓塞,提高生活质量。而本实验通过比较PaAF组、PeAF组及对照组患者BNP、左房前后径的差别,旨在起到一定的临床指导意义。

本次研究存在不足:本次纳入的样本,老年患者动脉粥样硬化及心功能障碍并存,不能明确脑梗死病因为单纯的心源性栓塞所致;是在已知存在房颤疾病的前提下筛选的样本,存在选择偏倚;未对患者接受抗凝及控制心率等治疗情况进行统计,对结果产生一定影响。

5. 结论

房颤患者发生心源性脑栓塞时,血浆BNP比无房颤脑梗死患者高;左房前后径大小比无房颤脑梗死患者大,持续性房颤患者较阵发性房颤患者更明显;血浆BNP和左房前后径大小是阵发性房颤脑梗死患者的独立危险因素。虽然持续性房颤患者与阵发性房颤患者,血浆BNP无显著性差异,但有助于不明原因性脑卒中患者筛查房颤,进行进一步相关检查,及早预防再次栓塞及进行抗凝治疗。

文章引用

金玄美,马爱军,潘旭东. 血清BNP水平及左房内径对脑梗死合并阵发性房颤的辅助诊断价值
Diagnostic Value of Serum BNP and Left Atrial Diameter in Paroxysmal Atrial Fibrillation with Cerebral Embolism[J]. 临床医学进展, 2021, 11(01): 192-198. https://doi.org/10.12677/ACM.2021.111028

参考文献

  1. 1. Kolominsky-Rabas, P.L., Weber, M., Gefeller, O., Neundoerfer, B. and Heuschmann, P.U. (2001) Epidemiology of Ischemic Stroke Subtypes According to TOAST Criteria: Incidence, Recurrence, and Long-Term Survival in Ischemic Stroke Subtypes: A Population-Based Study. Stroke, 32, 2735-2740. https://doi.org/10.1161/hs1201.100209

  2. 2. Marini, C., De Santis, F., Sacco, S., Russo, T., Olivieri, L., Totaro, R., et al. (2005) Contribution of Atrial Fibrillation to Incidence and Outcome of Ischemic Stroke: Results from a Population-Based Study. Stroke, 36, 1115-1119. https://doi.org/10.1161/01.STR.0000166053.83476.4a

  3. 3. Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J.J., Blomström-Lundqvist, C., et al. (2020) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). European Heart Journal, ehaa612. https://doi.org/10.1093/eurheartj/ehaa612

  4. 4. Rost, N.S., Biffi, A., Cloonan, L., Chorba, J., Kelly, P., Greer, D., et al. (2012) Brain Natriuretic Peptide Predicts Functional Outcome in Ischemic Stroke. Stroke, 43, 441-445. https://doi.org/10.1161/STROKEAHA.111.629212

  5. 5. Mukoyama, M., Nakao, K., Hosoda, K., Suga, S., Saito, Y., Ogawa, Y., et al. (1991) Brain Natriuretic Peptide as a Novel Cardiac Hormone in Humans. Evidence for an Exquisite Dual Natriuretic Peptide System, Atrial Natriuretic Peptide and Brain Natriuretic Peptide. Journal of Clinical Investigation, 87, 1402-1412. https://doi.org/10.1172/JCI115146

  6. 6. Maeda, K., Tsutamoto, T., Wada, A., Hisanaga, T. and Hisanaga, T. (1998) Plasma Brain Natriuretic Peptide as a Biochemical Marker of High Left Ventricular End-Diastolic Pressure in Patients with Symptomatic Left Ventricular Dysfunction. American Heart Journal, 135, 825-832. https://doi.org/10.1016/S0002-8703(98)70041-9

  7. 7. Sakamoto, Y., Suda, S., Matsumoto, N., Aoki, J., Shimoyama, T., Kanamaru, T., et al. (2019) Accurate Etiology Diagnosis in Patients with Stroke and Atrial Fibrillation: A Role for Brain Natriuretic Peptide. Journal of the Neurological Sciences, 400, 153-157. https://doi.org/10.1016/j.jns.2019.03.031

  8. 8. Tuinenburg, A.E., Brundel, B.J., Van Gelder, I.C., Henning, R.H., Van Den Berg, M.P., Driessen, C., et al. (1999) Gene Expression of the Natriuretic Peptide System in Atrial Tissue of Patients with Paroxysmal and Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 10, 827-835.

  9. 9. Stanciu, A.E., Vatasescu, R.G., Stanciu, M.M., Serdarevic, N. and Dorobantu, M. (2018) The Role of Pro-Fibrotic Biomarkers in Paroxysmal and Persistent Atrial Fibrillation. Cytokine, 103, 63-68. https://doi.org/10.1016/j.cyto.2017.12.026

  10. 10. Pathan, F., Sivaraj, E., Negishi, K., Rafiudeen, R., Pathan, S., D’Elia, N., et al. (2018) Use of Atrial Strain to Predict Atrial Fibrillation after Cerebral Ischemia. JACC: Cardiovascular Imaging, 11, 1557-1565. https://doi.org/10.1016/j.jcmg.2017.07.027

  11. 11. Padfield, G.J., Steinberg, C., Swampillai, J., Qian, H., Connolly, S.J., Dorian, P., et al. (2017) Progression of Paroxysmal to Persistent Atrial Fibrillation: 10-Year Follow-Up in the Canadian Registry of Atrial Fibrillation. Heart Rhythm, 14, 801-807. https://doi.org/10.1016/j.hrthm.2017.01.038

  12. 12. Conen, D., Rodondi, N., Müller, A., Beer, J.H., Ammann, P., Moschovitis, G., et al. (2019) Relationships of Overt and Silent Brain Lesions with Cognitive Function in Patients with Atrial Fibrillation. Journal of the American College of Cardiology, 73, 989-999. https://doi.org/10.1016/j.jacc.2018.12.039

  13. 13. Amarenco, P., Bogousslavsky, J., Caplan, L.R., Donnan, G.A. and Hennerici, M.G. (2009) New Approach to Stroke Subtyping: The A-S-C-O (Phenotypic) Classification of Stroke. Cerebrovascular Diseases, 27, 502-508. https://doi.org/10.1159/000210433

  14. 14. Sanna, T., Diener, H.-C., Passman, R.S., Di Lazzaro, V., Bernstein, R.A., Morillo, C.A., et al. (2014) Cryptogenic Stroke and Underlying Atrial Fibrillation. New England Journal of Medicine, 370, 2478-2486.

  15. 15. Inaba, O., Yamauchi, Y., Sekigawa, M., Miwa, N., Yamaguchi, J., Nagata, Y., et al. (2018) Atrial Fibrillation Type Matters: Greater Infarct Volume and Worse Neurological Defects Seen in Acute Cardiogenic Cerebral Embolism Due to Persistent or Permanent Rather than Paroxysmal Atrial Fibrillation. EP Europace, 20, 1591-1597. https://doi.org/10.1093/europace/eux346

  16. 16. Gaita, F., Corsinovi, L., Anselmino, M., Raimondo, C., Pianelli, M., Toso, E., et al. (2013) Prevalence of Silent Cerebral Ischemia in Paroxysmal and Persistent Atrial Fibrillation and Correlation with Cognitive Function. Journal of the American College of Cardiology, 62, 1990-1997. https://doi.org/10.1016/j.jacc.2013.05.074

  17. 17. Hsu, J.C., Chan, P.S., Tang, F.M., Maddox, T.M. and Marcus, G.M. (2015) Differences in Anticoagulant Therapy Prescription in Patients with Paroxysmal versus Persistent Atrial Fibrillation. American Journal of Medicine, 128, 654.e1-654.e10. https://doi.org/10.1016/j.amjmed.2014.11.035

  18. 18. Hylek, E.M., Go, A.S., Chang, Y.C., Jensvold, N.G., Henault, L.E., Selby, J.V., et al. (2003) Effect of Intensity of Oral Anticoagulation on Stroke Severity and Mortality in Atrial Fibrillation. New England Journal of Medicine, 349, 1019-1026. https://doi.org/10.1056/NEJMoa022913

  19. 19. Seet, R.C., Friedman, P.A. and Rabinstein, A.A. (2011) Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation, 124, 477-486. https://doi.org/10.1161/CIRCULATIONAHA.111.029801

  20. 20. Healey, J.S., Connolly, S.J., Gold, M.R., Israel, C.W., Van Gelder, I.C., Capucci, A., et al. (2012) Subclinical Atrial Fibrillation and the Risk of Stroke. New England Journal of Medicine, 366, 120-129. https://doi.org/10.1056/NEJMoa1105575

  21. 21. Olesen, J.B., Lip, G.Y.H., Hansen, M.L., Tolstrup, J.S., Lindhardsen, J., Selmer, C., et al. (2011) Validation of Risk Stratification Schemes for Predicting Stroke and Thromboembolism in Patients with Atrial Fibrillation: Nationwide Cohort study. BMJ, 342, d124. https://doi.org/10.1136/bmj.d124

  22. 22. Hijazi, Z., Lindbäck, J., Alexander, J.H., Hanna, M., Held, C., Hylek, E.M., et al. (2016) The ABC (Age, Biomarkers, Clinical History) Stroke Risk Score: A Biomarker-Based Risk Score for Predicting Stroke in Atrial Fibrillation. European Heart Journal, 37, 1582-1590. https://doi.org/10.1093/eurheartj/ehw054

期刊菜单