Applied Physics
Vol. 13  No. 05 ( 2023 ), Article ID: 65219 , 7 pages
10.12677/APP.2023.135023

高阶非厄米系统的灵敏度研究

范孟军*,付林雪,丁亚琼,付新铭

上海理工大学理学院,上海

收稿日期:2023年3月28日;录用日期:2023年5月6日;发布日期:2023年5月12日

摘要

我们提出了一个由三个无源谐振器组成的高阶系统的结构,近年来,相干完美吸收在各个方面受到越来越多的关注。相干完美吸收可以用于传感器的研究,我们将基于三态PT对称系统,通过分别对任何一个暗谐振器施加非本征扰动,我们可以清楚地观察到与微扰的立方根相关的频率响应。

关键词

非厄米系统,PT对称系统,奇异点,灵敏度

Study of the Sensitivity of High-Order Non-Hermitian System

Mengjun Fan*, Linxue Fu, Yaqiong Ding, Xinming Fu

College of Science, University of Shanghai for Science and Technology, Shanghai

Received: Mar. 28th, 2023; accepted: May 6th, 2023; published: May 12th, 2023

ABSTRACT

We present the structure of a higher-order system consisting of three passive resonators, which have attracted increasing attention in recent years for coherent perfect absorption. Coherent perfect absorption can be used for the study of sensors, and we go over it based on a three-state PT symmetric system. The frequency response associated with the cubic root of the perturbation is clearly observed by applying a non-eigenetic perturbation to any of the dark resonators separately.

Keywords:Non-Hermitian System, PT Symmetry, Exceptional Point, Enhanced Sensitivity

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

从量子力学的角度来看,如果一个量子系统与外部环境相连并引入了损耗,那么该系统就变成了一个开放的非厄米系统。同时,非厄米系统的概念可以应用于光学腔,这是近年来光学领域的一个热点。最近的研究表明,非厄米系统中的奇异点具有增强灵敏度 ‎[1] ‎[2] ‎[3] ‎[4] ‎[5] 的巨大潜力。与厄米系统相比,非厄米系统可以完全改变系统的性质。体现这两个系统的差异的最好例子是奇异点的出现。所谓的奇异点是指两个或多个特征值及其特征态同时合并的点 ‎[6] 。一些在光学系统中与奇异点有关的现象已经被证明,如拓扑手性 ‎[7] ‎[8] ‎[9] ‎[10] 、损失诱导透明 ‎[11] ‎[12] ‎[13] ‎[14] ‎[15] 、单向不可见 ‎[16] ‎[17] 、功率振荡 ‎[18] ‎[19] ‎[20] ‎[21] 和激光 ‎[22] ‎[23] ‎[24] ‎[25] 。

相干完美吸收(CPA)是激光的时间反转过程,最初由YD Chong等人在2010年 ‎[26] 提出。Sun等人于2014年 ‎[27] 首次在实验上观察到PT相变的相干完美吸收。相干完美吸收在许多领域都至关重要,如太阳能电池、隐身、检测和成像 ‎[28] ‎[29] ‎[30] ‎[31] 、超材料系统 ‎[32] ‎[33] ‎[34] 、等离子体系统 ‎[35] ‎[36] ‎[37] 和石墨烯系统 ‎[38] ‎[39] ‎[40] ‎[41] ,以及光子晶体 ‎[42] ‎[43] ‎[44] ‎[45] ‎[46] 。

我们为了研究系统奇异点附近的灵敏度,通过改变此高阶系统的任意一个暗谐振器上加载的电容值来向系统施加非本征值扰动,通过观察在施加相同的扰动时EP点附近各自的频移去探究灵敏度。灵敏度的研究可以应用很多光学系统,如压力传感器或压力检测。

2. 理论与仿真

我们利用图1的结构研究了高阶非厄米系统的灵敏度,为了研究两个谐振器中的微小共振位移如何被影响,我们在两个谐振器上分别施加一个微扰ε。通过调节谐振环a和谐振环c的电容值来添加微扰ε。通过CST仿真软件进行模拟,然后确定合适的样品参数,整个样品的基板是介电常数为2.2,厚度为0.787 mm的RT5880的双面覆铜介质板。微带线的宽度是2.4 mm,两个SRR的总尺度分别为8 mm × 8 mm,缝宽为1 mm,线宽为0.2 mm;从SRR到微带线的距离10 mm。为了使结构更加紧凑,梳状线折叠成U形,梳状线的总长度为62 mm,其中h1 = 25 mm;h2 = 15 mm;h3 = 22 mm;梳状线与谐振器b的耦合距离为s1,两个暗谐振器的耦合距离为s2,在仿真软件中调节耦合距离,使 τ = η = κ ;则s1 = s2 = 0.2 mm。扰动加在谐振器b上和谐振器c上时的三态非厄米系统的耦合模方程如下:

d a ˜ d t = ( i w 0 γ a Γ a ) a ˜ i τ b ˜ + i 2 γ a S ˜ i n d b ˜ d t = [ i ( w 0 + ε ) Γ a ] b ˜ i τ a ˜ i η c ˜ d c ˜ d t = ( i w 0 Γ a ) c ˜ i η b ˜ (1)

d a ˜ d t = ( i w 0 γ a Γ a ) a ˜ i τ b ˜ + i 2 γ a S ˜ i n d b ˜ d t = [ i w 0 Γ b ] b ˜ i τ a ˜ i η c ˜ d c ˜ d t = ( i ( w 0 + ε ) Γ c ) c ˜ i η b ˜ (2)

由(1)和(2)三态非厄米系统的哈密顿量可以分别写成:

H = ( w 0 + i ( γ a Γ a ) τ 0 τ w 0 + ε i Γ b η 0 η w 0 i Γ c ) (3)

H = ( w 0 + i ( γ a Γ a ) τ 0 τ w 0 i Γ b η 0 η w 0 + ε i Γ c ) (4)

Figure 1. Structural model and theoretical model of the system

图1. 系统的结构模型和理论模型

通过CST仿真软件对系统进行参数的拟合,得到系统的参数如下:亮态原子的散射损耗γa = 0.13 GHz;亮态原子的耗散损耗 Γ a = 0.006 R 1 ;亮态原子的耗散损耗 Γ c = 0.009 R 3 ;三个谐振器均在w0 = 0.91 GHz附近共振激发,两个暗谐振器B和C上的电容C2 = C3 = 2.74 pf。利用 ‎[4] 中的方法,对于谐振器b上的扰动,系统本征频率的实部位移近似为 Re ( w 1 ) = w 0 + 2 1 / 3 κ 2 / 3 ε 1 / 3 ,虚部总是零。对于谐振器C上的扰动,实部位移约为 Re ( w 1 ) = w 0 κ 2 / 3 ε 1 / 3 ,对应的虚部为 Im ( w 1 ) = 2 / 3 κ 1 / 3 ε 2 / 3 图2展示了当微扰ε作用于谐振器b时,红色和黑色圆点分别是通过耦合模公式计算出的不同微扰作用在谐振器b上的CPA频移和谐振器c上的CPA频移,红色和黑色实线分别是通过近似实部和虚部公式计算时微扰作用在谐振器b上和谐振器c上的CPA频移。结果显示dip频移 | Δ w | ( Δ w = w dip w 0 ) Re ( w 1 ) 完全一致。但对于谐振器c上的扰动,ε > 0.08时,位移 | Δ w | ( Δ w = w dip w 0 ) 明显偏离 Re ( w 1 ) 。如图3我们使用线性斜率(蓝色和紫色实线)更清楚的表明对数标度上的立方根行为。

Figure 2. The difference between the calculated frequency shift of CPA and w0 changes with the increase of ε

图2. 计算的CPA的频移与w0的差值随着ε的增加的变化

Figure 3. The result of (a) in logarithmic coordinates

图3. 对数坐标上(a)的结果

3. 总结

我们通过耦合模方程得出系统的哈密顿量,进而推导出系统在加入微扰时相对于本征频率w0的频移,再通过实虚部近似公式推导出系统在不同微扰下相对于本征频率w0的频移,通过对比可以看出当扰动施加在中间的谐振器b上时,通过耦合模方程计算的频移与通过实虚部近似公式推导出的结果一致,但是当扰动施加在谐振器c上时,大于0.08时,通过耦合模方程计算的频移与通过实虚部近似公式推导出的结果明显发生偏移,并且通过观察在施加相同的扰动时各自的频移可以发现,在谐振器c施加扰动的灵敏度低于在在谐振器b施加扰动的灵敏度。我们的研究结果可能有助于实现受益于三阶例外点物理的无源无线传感系统的超灵敏度。

文章引用

范孟军,付林雪,丁亚琼,付新铭. 高阶非厄米系统的灵敏度研究
Study of the Sensitivity of High-Order Non-Hermitian System[J]. 应用物理, 2023, 13(05): 195-201. https://doi.org/10.12677/APP.2023.135023

参考文献

  1. 1. Wiersig, J. (2014) Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Physical Review Letters, 112, Article ID: 203901. https://doi.org/10.1103/PhysRevLett.112.203901

  2. 2. Chen, P.-Y. and Jung, J. (2016) PT-Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces. Physical Review Applied, 5, Article ID: 064018. https://doi.org/10.1103/PhysRevApplied.5.064018

  3. 3. Lin, Z., Pick, A., Lončar, M. and Rodri-guez, A.W. (2016) Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals. Physical Review Letters, 117, Article ID: 107402. https://doi.org/10.1103/PhysRevLett.117.107402

  4. 4. Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N. and Khajavikhan, M. (2017) Enhanced Sensitivity at Higher-Order Excep-tional Points. Nature, 548, 187-191. https://doi.org/10.1038/nature23280

  5. 5. Chen, W., Özdemir, Ş.K., Zhao, G., Wiersig, J. and Yang, L. (2017) Exceptional Points Enhance Sensing in an Optical Microcavity. Nature, 548, 192-196. https://doi.org/10.1038/nature23281

  6. 6. Heiss, W.D. (2012) The Physics of Exceptional Points. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 444016. https://doi.org/10.1088/1751-8113/45/44/444016

  7. 7. Yin, C., Jiang, H., Li, L., et al. (2018) Geometrical Meaning of Winding Number and Its Characterization of Topological Phases in One-Dimensional Chiral Non-Hermitian Systems. Physical Review A, 97, Article ID: 052115. https://doi.org/10.1103/PhysRevA.97.052115

  8. 8. Leykam, D., Bliokh, K.Y., Huang, C., et al. (2017) Edge Modes, Degeneracies, and Topological Numbers in Non- Hermitian Systems. Physical Review Letters, 118, Article ID: 040401. https://doi.org/10.1103/PhysRevLett.118.040401

  9. 9. Jing, D.Y., Wang, H.Y. and Liu, W.M. (2022) Topo-logical Transition and Majorana Zero Modes in 2D Non-Hermitian Chiral Superconductor with Anisotropy. Journal of Physics: Condensed Matter, 34, Article ID: 195401. https://doi.org/10.1088/1361-648X/ac54e2

  10. 10. Jin, L. and Song, Z. (2019) Bulk-Boundary Correspondence in a Non-Hermitian System in One Dimension with Chiral Inversion Symmetry. Physical Review B, 99, Article ID: 081103. https://doi.org/10.1103/PhysRevB.99.081103

  11. 11. Lü, H., Wang, C., Yang, L., et al. (2018) Opto-mechanically Induced Transparency at Exceptional Points. Physical Review Applied, 10, Article ID: 014006. https://doi.org/10.1103/PhysRevApplied.10.014006

  12. 12. Wang, C., Jiang, X., Zhao, G., et al. (2020) Elec-tromagnetically Induced Transparency at a Chiral Exceptional Point. Nature Physics, 16, 334-340. https://doi.org/10.1038/s41567-019-0746-7

  13. 13. Zhang, H., Saif, F., Jiao, Y., et al. (2018) Loss-Induced Transparency in Optomechanics. Optics Express, 26, 25199- 25210. https://doi.org/10.1364/OE.26.025199

  14. 14. Smith, D.D., Chang, H., Fuller, K.A., et al. (2004) Cou-pled-Resonator-Induced Transparency. Physical Review A, 69, Article ID: 063804. https://doi.org/10.1103/PhysRevA.69.063804

  15. 15. Qin, H., Ding, M. and Yin, Y. (2020) Induced Transpar-ency with Optical Cavities. Advanced Photonics Research, 1, Article ID: 2000009. https://doi.org/10.1002/adpr.202000009

  16. 16. Huang, Y., Shen, Y., Min, C., et al. (2017) Unidirectional Re-flectionless Light Propagation at Exceptional Points. Nanophotonics, 6, 977-996. https://doi.org/10.1515/nanoph-2017-0019

  17. 17. An, S., Liu, T., Liang, S., et al. (2021) Unidirectional Invisi-bility of an Acoustic Multilayered Medium with Parity- Time-Symmetric Impedance Modulation. Journal of Applied Physics, 129, Article ID: 175106. https://doi.org/10.1063/5.0039432

  18. 18. Rudnik, V.E., Ufa, R.A. and Malkova, Y.Y. (2022) Analysis of Low-Frequency Oscillation in Power System with Renewable Energy Sources. Energy Reports, 8, 394-405. https://doi.org/10.1016/j.egyr.2022.07.022

  19. 19. Valle, D.B. and Araujo, P.B. (2015) The Influence of GUPFC FACTS Device on Small Signal Stability of the Electrical Power Systems. International Journal of Electrical Power & Energy Systems, 65, 299-306. https://doi.org/10.1016/j.ijepes.2014.10.012

  20. 20. Kishor, N., Haarla, L., Seppänen, J., et al. (2013) Fixed-Order Controller for Reduced-Order Model for Damping of Power Oscillation in Wide Area Network. In-ternational Journal of Electrical Power & Energy Systems, 53, 719-732. https://doi.org/10.1016/j.ijepes.2013.05.048

  21. 21. Balasiu, F., Lazar, F.M. and Balaurescu, R. (2009) Defense Plan against Major Disturbances of the Romanian EPS. 2009 IEEE Power & Energy Society General Meeting, Calgary, 26-30 July 2009, 1-7. https://doi.org/10.1109/PES.2009.5275600

  22. 22. Wagner, M., Ivleva, N.P., Haisch, C., et al. (2009) Combined Use of Confocal Laser Scanning Microscopy (CLSM) and Raman Microscopy (RM): Investigations on EPS-Matrix. Water Research, 43, 63-76. https://doi.org/10.1016/j.watres.2008.10.034

  23. 23. Kang, Y., Zhou, X.E., Gao, X., et al. (2015) Crystal Struc-ture of Rhodopsin Bound to Arrestin by Femtosecond X-Ray Laser. Nature, 523, 561-567. https://doi.org/10.1038/nature14656

  24. 24. Schaffler, K., Nicolas, L.B., Borta, A., et al. (2017) Investigation of the Predictive Validity of Laser-EPs in Normal, UVB-Inflamed and Capsaicin-Irritated Skin with Four Analgesic Compounds in Healthy Volunteers. British Journal of Clinical Pharmacology, 83, 1424-1435. https://doi.org/10.1111/bcp.13247

  25. 25. Hassan, A.N., Frank, J.F. and Qvist, K.B. (2002) Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy. Journal of Dairy Science, 85, 1705-1708. https://doi.org/10.3168/jds.S0022-0302(02)74243-4

  26. 26. Longhi, S. (2010) Backward Lasing Yields a Perfect Absorber. Physics, 3, 61. https://doi.org/10.1103/Physics.3.61

  27. 27. Sun, Y., Tan, W., Li, H., et al. (2014) Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition. Physical Review Letters, 112, Article ID: 143903. https://doi.org/10.1103/PhysRevLett.112.143903

  28. 28. Pu, M., Feng, Q., Hu, C. and Luo, X. (2012) Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film. Plasmonics, 7, 733-738. https://doi.org/10.1007/s11468-012-9365-1

  29. 29. Niesler, F.B.P., Gansel, J.K., Fischbach, S. and Wegener, M. (2012) Metamaterial Metal-Based Bolometers. Applied Physics Letters, 100, Article ID: 203508. https://doi.org/10.1063/1.4714741

  30. 30. Alves, F., Kearney, B., Grbovic, D. and Karunasiri, G. (2012) Narrowband Terahertz Emitters Using Metamaterial Films. Optics Express, 20, 21025-21032. https://doi.org/10.1364/OE.20.021025

  31. 31. Alves, F., Grbovic, D., Kearney, B., Lavrik, N.V. and Karunasiri, G. (2013) Bi-Material Terahertz Sensors Using Metamaterial Structures. Optics Express, 21, 13256-13271. https://doi.org/10.1364/OE.21.013256

  32. 32. Kang, M., Liu, F. and Li, J. (2013) Effective Spontaneous PT-Symmetry Breaking in Hybridized Metamaterials. Physical Review A, 87, Article ID: 053824. https://doi.org/10.1103/PhysRevA.87.053824

  33. 33. Baviskar, J., Mulla, A., Baviskar, A., et al. (2016) Met-amaterial Lens Incorporated Enhanced Gain Omnidirectional Conformal Patch Antenna. 2016 IEEE Aerospace Conference, Big Sky, 5-12 March 2016, 1-7. https://doi.org/10.1109/AERO.2016.7500732

  34. 34. Mavidis, C.P., Tasolamprou, A.C., Economou, E.N., et al. (2020) Polaritonic Cylinders as Multifunctional Metamaterials: Single Scattering and Effective Medium Description. Physical Review B, 102, Article ID: 155310. https://doi.org/10.1103/PhysRevB.102.155310

  35. 35. Jackson Jr., C., Reynolds, P.J. and Lindahl, I.L. (1975) Effect of Cyclophosphamide on Erythrocyte and Plasma Acetycholinesterase Activity in Sheep. Journal of Animal Science, 41, 1390-1393. https://doi.org/10.2527/jas1975.4151390x

  36. 36. Grossherr, M., Hengstenberg, A., Meier, T., et al. (2006) Discontinuous Monitoring of Propofol Concentrations in Expired Alveolar Gas and in Arterial and Venous Plasma during Artificial Ventilation. The Journal of the American Society of Anesthesiologists, 104, 786-790. https://doi.org/10.1097/00000542-200604000-00024

  37. 37. Spence, J.D., Malinow, M.R., Barnett, P.A., et al. (1999) Plasma Homocyst (e)ine Concentration, but Not MTHFR Genotype, Is Associated with Variation in Carotid Plaque Area. Stroke, 30, 969-973. https://doi.org/10.1161/01.STR.30.5.969

  38. 38. Luo, X., Cheng, Z.Q., Zhai, X., et al. (2019) A Tunable Du-al-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Nanoscale Research Letters, 14, Article No. 337. https://doi.org/10.1186/s11671-019-3155-z

  39. 39. Sun, W., Wu, T., Wang, L., et al. (2019) The Role of Gra-phene Loading on the Corrosion-Promotion Activity of Graphene/Epoxy Nanocomposite Coatings. Composites Part B: Engineering, 173, Article ID: 106916. https://doi.org/10.1016/j.compositesb.2019.106916

  40. 40. Ning, Y., Dong, Z., Si, J., et al. (2017) Tunable Po-larization-Independent Coherent Perfect Absorber Based on a Metal-Graphene Nanostructure. Optics Express, 25, 32467-32474. https://doi.org/10.1364/OE.25.032467

  41. 41. Ding, J., Zhao, H. and Yu, H. (2020) Superior to Graphene: Super-Anticorrosive Natural Mica Nanosheets. Nanoscale, 12, 16253-16261. https://doi.org/10.1039/D0NR05040G

  42. 42. Limpert, J., et al. (2004) All Fiber CPA System Based on Air-Guiding Photonic Bandgap Fiber Compressor. Conference on Lasers and Electro-Optics, San Francisco, 16-21 May 2004, 2.

  43. 43. Sobon, G., Klimczak, M., Sotor, J., et al. (2014) Infrared Supercontinuum Generation in Soft-Glass Photonic Crystal Fibers Pumped at 1560 nm. Optical Materials Express, 4, 7-15. https://doi.org/10.1364/OME.4.000007

  44. 44. Ogino, J., Sueda, K., Kurita, T., et al. (2013) Development of High-Energy Fiber CPA System. EPJ Web of Conferences, 59, Article No. 07004. https://doi.org/10.1051/epjconf/20135907004

  45. 45. Wang, H., Kong, W., Zhang, P., et al. (2019) Coherent Perfect Absorption Laser Points in One-Dimensional Anti-Parity- Time-Symmetric Photonic Crystals. Applied Sci-ences, 9, Article No. 2738. https://doi.org/10.3390/app9132738

  46. 46. Ni, H., Zhou, G., Chen, X., et al. (2023) Non-Reciprocal Spatial and Quasi-Reciprocal Angular Goos-Hänchen Shifts around Double CPA-LPs in PT-Symmetric Thue-Morse Photonic Crystals. Optics Express, 31, 1234-1248. https://doi.org/10.1364/OE.479595

  47. NOTES

    *通讯作者。

期刊菜单