Bioprocess
Vol. 12  No. 02 ( 2022 ), Article ID: 52180 , 9 pages
10.12677/BP.2022.122007

用于检测生物硫醇的荧光探针的研究进展

闫鎏鑫1,张鹏程2,吝丽华3,高翔1,高林1,常晓杰2,张杰2*,周西斌2*

1锦州医科大学食品科学与工程学院,辽宁 锦州

2锦州医科大学药学院,辽宁 锦州

3锦州医科大学畜牧兽医学院,辽宁 锦州

收稿日期:2022年4月12日;录用日期:2022年5月28日;发布日期:2022年6月6日

摘要

生物硫醇类化合物,包括L-半胱氨酸、L-同型半胱氨酸和谷胱甘肽等,在许多生理过程中起着十分重要的作用,因此高选择性、高准确度地识别和定量这类化合物对疾病的预防和诊疗起着重要的作用。对生物硫醇的分析方法有很多种,其中荧光探针法由于其选择性高、抗干扰能力强、准确度高且能够用于细胞或动物体内原位成像而受到了越来越多学者的重视。本篇综述按照与生物硫醇发生反应的结构位点,分别介绍了近些年来几种不同类型的荧光探针,不仅有利于生物硫醇分析方法的科学普及,还可以有效地促进新式荧光探针的结构设计和开发。

关键词

生物硫醇,荧光,荧光探针,半胱氨酸,高半胱甘酸,谷胱甘肽

Research Progress of Fluorescent Probes for Detection of Biological Thiols

Liuxin Yan1, Pengcheng Zhang2, Lihua Lin3, Xiang Gao1, Lin Gao1, Xiaojie Chang2, Jie Zhang2*, Xibin Zhou2*

1College of Food Science and Engineering, Jinzhou Medical University, Jinzhou Liaoning

2College of Pharmacy, Jinzhou Medical University, Jinzhou Liaoning

3College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou Liaoning

Received: Apr. 12th, 2022; accepted: May 28th, 2022; published: Jun. 6th, 2022

ABSTRACT

Biothiols, including L-cysteine, L-homocysteine, and glutathione, play important roles in many physiological processes. Therefore, the identification and quantification of such compounds with high selectivity and accuracy plays an important role in the prevention and diagnosis of diseases. There are many methods for the analysis of biological thiols, among which the fluorescent probe method has attracted more and more scholars due to its high selectivity, strong anti-interference ability, high accuracy and can be used for in situ imaging of cells or animals. This review summarizes several different types of fluorescent probes for the analysis of biothiols in recent years according to the structural sites that react with biothiols. This review is not only conducive to the scientific popularization of biological thiol analysis methods, but also can effectively promote the structural design and development of novel fluorescent probes.

Keywords:Biothiols, Fluorescence, Fluorescent Probes, Cysteine, Homocysteine, Glutathione

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

生物硫醇化合物,例如半胱氨酸(Cys),同型半胱氨酸(Hcy)和谷胱甘肽(GSH),这些细胞中的小分子硫醇化合物与复杂生物环境中的生理和病理过程关系密切 [1],它们的含量异常与许多疾病息息相关。正常细胞内的GSH,Cys和Hcy水平分别为1~15 mM [2],30~200 μM [3] 以及12.4 μM [4],这些生物硫醇的缺乏与过量都会相应与一些疾病相关 [5]。详细地说,半胱氨酸的缺乏与生长迟缓,皮肤损伤和肝损伤有关 [6]。半胱氨酸的过量会引起类风湿关节炎,心血管疾病和帕金森氏病 [7]。骨质疏松症,缺血性中风和阿尔兹海默氏病与高水平的Hcy相关 [8]。GSH的异常升高与神经退行性疾病,艾滋病和癌症相关 [9] [10]。因此,高选择性地、高灵敏度地检测生物体内小分子生物硫醇化合物对于这些疾病的治疗思路非常重要。由于重要的生理相关性和疾病风险,人们对开发有效的分析方法来选择性和灵敏地检测这些生物硫醇化合物非常感兴趣。

从这些硫醇化合物的结构上观察,我们可以发现Cys,Hcy以及GSH上都含有巯基,氨基和羧基这些相同的官能团,所以如何正确且快速区分这几种化合物,是现在科研工作者面临的巨大挑战。

到目前为止,随着科学的发展,我们已经发现了许多有效检测生物硫醇化合物的方法,如高效液相色谱法(HPLC),电化学方法,紫外可见分光光度法,质谱(MS)和荧光法。在这些方法中,荧光探针因其操作简单,灵敏度高,选择性好和实时快速分析而受到越来越多的关注。经过大量文献查阅,总结出了近年来检测生物硫醇化合物方法的优缺点,见表1

Table 1. Comparison of biothiols detection methods

表1. 生物硫醇检测方法的比较

由上表可知,荧光探针以其优越的灵敏度、选择性,抗干扰能力、生物相容性、设备简单等特点,受到了学者的广泛关注。

2. 反应机理

到目前为止,学者们基于生物硫醇中巯基的强亲核反应性或与过渡金属的高亲和力,多种荧光探针被设计出来用于三种生物硫醇的检测和区分。根据探针与生物硫醇的反应机理,大致可以把生物荧光探针分为以下几类。

2.1. 迈克尔加成

迈克尔加成,即亲核体(巯基)直接与α,β-不饱和羰基发生加成反应,已广泛用于设计探针用于检测生物硫醇。探针中发生迈克尔加成的结构单元包括马来酰亚胺、角鲨烯和丙烯酰胺衍生物。

Jong-Ah Hong等 [26] 将富马酸单乙酯通过乙二胺结构连接到荧光团1,8-萘甲酰亚胺上,亲电的富马酸酯基团阻止了萘酰亚胺荧光团的光诱导电子转移(PET)过程;在与生物硫醇反应后,富马酸酯基团中的双键与巯基发生加成反应,导致4-氨基位置的电子密度增加,从而增强了荧光信号,此探针可用于Hela细胞中生物硫醇的检测。Hyo Sung Jung等 [27] 将香豆素-334与甲酰基苯甲酸结合,合成了一系列具有α,β-不饱和羰基结构的探针,此探针可以选择性的识别Cys,并用于HepG2细胞中Cys的显像。Jin Kang等 [28] 将硝基烯烃单元引入BODIPY染料中,形成了一个强的迈克尔受体,并成功应用于A549细胞中生物硫醇的显像。Xiaolei Wu等 [29] 将马来酰亚胺基团与罗丹明B结构结合,制备了荧光探针Probe-M。此探针的马来酰亚胺基团可以选择性的与GSH发生迈克尔加成反应,并用于活细胞中GSH的显像。

2.2. 丙烯酸酯的共轭加成环化

巯基化合物与丙烯酰基的迈克尔加成反应可以高选择性的鉴别Cys和Hcy。与上述基于迈克尔加成反应的探针不同的是,在反应过程中,Cys及Hcy可以与探针中丙烯酸酯结构发生反应,分别生成7元或8元硫醚酰胺环,从而使丙烯酰基从荧光团上脱离下来,并使荧光团的荧光恢复。

Beibei Liang等 [30] 将丙烯酸酯结构引入带有溶酶体靶向基团的萘酰亚胺荧光团中,成功实现了对A549细胞中生物硫醇的显像研究。Xingjiang Liu等 [31] 将丙烯酸酯结构引入1,3-双(双吡啶-2基亚氨基)异吲哚啉-4-醇染料中,通过PET效应使染料的荧光淬灭。当与Cys/Hcy反应后,丙烯酸酯结构被生物硫醇脱除,从而使染料的荧光恢复。该探针成功应用于4T1细胞中Cys/Hcy的显像。Fengyang Wang等 [32] 将连接有丙烯酸酯结构的香豆素与罗丹明B基团连接,制备了比率型荧光探针。该探针在与生物硫醇反应前显示罗丹明B的红色荧光,在与生物硫醇反应后显示香豆素的蓝色荧光和罗丹明B的红色荧光,检测极限低至0.13 μΜ。该探针被用于胎牛血清中Cys的含量检测。

2.3. 磺酰胺和磺酸酯的裂解

2,4-二硝基苯磺酰基(DNBS)常用来设计为荧光探针对生物硫醇的识别单元。由于巯基的强亲核性,生物硫醇可与2,4-二硝基苯磺磺酸酯或2,4-二硝基苯磺酰胺基团发生反应,使强吸电子的DNBS基团从荧光发射单元上脱落并使探针荧光恢复,从而实现对生物硫醇的检测。

Dugang Chen等 [33] 将DNBS基团连接到2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)propanedinitrile (NT-OH)染料上,成功将NT-OH的荧光淬灭。在与生物硫醇发生反应后,DNBS基团被从染料上消除,染料的红色荧光恢复,从而实现了对生物硫醇的识别。此探针可以用于MCF-7细胞中的内源性生物硫醇的显像研究。Fanghui Liang等 [34] 首先合成了近红外荧光染料EQR,之后将DNBS基团与EQR染料上的酚羟基进行反应制备了探针EQR-S。EQR-S可用于快速、灵敏地测定GSH浓度,检测限低至69 nM。之后作者将EQR-S成功地应用于研究高温压力下活体细胞GSH浓度的波动。Aishan Ren等 [35] 设计了一个通过6-二甲氨基-2-甲基喹啉的4位上羟基的保护-脱保护策略,实现了喹啉到喹啉酮的荧光增强型荧光探针。他们选取DNBS作为4位上羟基的保护基团。在与生物硫醇反应后,DNBS被脱除,从而恢复了染料的荧光,实现了对Hela细胞中生物硫醇的监测。Chengjun Wang等 [36] 报道了一种新型的近红外荧光探针BODIPY-ONs用于敏感和选择性地检测谷胱甘肽(GSH)。该探针以DNBS为淬灭基团,不具有荧光性。加入GSH后,观察到明显的以656 nm为中心的近红外荧光恢复。与Cys和Hcy相比,探针对GSH的反应最高。对GSH的检测极限为131 nM。该探针被用于MCF-7细胞内源性和外源性GSH的检测。

2.4. 醛基加成(醛环化)

醛基可与含有巯基的氨基酸、多肽及蛋白质的氨基和巯基发生反应生成噻唑烷,这种反应通常用于肽以及蛋白质的标记和固定。很多基于此反应的荧光探针被设计出来,用于巯基化合物的检测。

Jun-Ying Xie等 [37] 通过引入刚性共面结构的罗丹明染料,开发了具有高荧光量子产率的近红外荧光探针。该探针具有一个醛基反应基团,可以通过醛基加成反应高选择性的识别GSH,荧光可增强75倍,并且不会受到其他生物硫醇(Cys、Hcy)和氨基酸的干扰。Zhen Huang等 [38] 设计合成了一种含有醛基的分子(E)-2-(2-(4-甲酰苯乙烯)-4H-色烯-4-亚基)丙二腈,在与Cys反应后可以观察到440 nm处的荧光明显增强。该探针对Cys的选择性低至63 nM,可用于血清中Cys含量的分析检测。Aabha Barve等 [39] 报告了一种使用荧光素醛基探针选择性检测Hcy的新方法。高半胱氨酸通过与探针的醛基反应,生成的噻唑烷-4-羧酸比半胱氨酸衍生的噻唑烷-4-羧酸更具碱性,而通过调整pH值和激发波长可以实现对高半胱氨酸的选择性荧光增强反应。

2.5. 芳香亲核取代

基于芳香亲核取代反应的探针结构中一般含有一个或多个卤素或醚键,强亲核性的硫醇将卤素取代或醚键打断后,往往会使探针的发射光波长改变,从而实现对生物硫醇的检测。

Han Zhang等 [40] 将染料二氰基异佛尔酮与离去基团4-氯-7-硝基-1,2,3-苯并恶二唑(NBD)连接合成探针HZ-NBD。GSH或H2S通过亲核取代反应将该探针的醚键打断,使染料的荧光恢复,从而可以实现对GSH及H2S的检测。此外,该探针还支持基于颜色变化裸眼识别GSH及H2S。Lihui Zhai等 [41] 将香豆素和NBD基团以醚键结合,合成了CA-NBD探针。该探针在330 nm激发下可以选择性鉴别硫醇类化合物,而在460 nm波长激发下可以区分Cys/Hcy和GSH。此外,该探针还用于检测Hela细胞中的Cys。Yuuta Fujikawa等 [42] 合成了4-溴-1,8-萘甲酰胺N-羟乙基衍生物探针HE-BrNaph。在探针的结构中有一个能与GSH发生芳香亲核取代反应的溴原子。溴原子在谷胱甘肽S-转移酶(GST)催化下被GSH的巯基取代后,荧光强度大大增加,从而实现对GST的灵敏检测。该探针成功用于活细胞中GSTP1活性的细胞内GSH检测。Xiaole Sheng等 [43] 将近红外探针IR780与对氨基苯硫醚反应成功制备了含有硫醚键的探针。该探针的硫醚键可选择性的与GSH发生亲核取代反应,而与其他硫醇和氨基酸基本不发生反应。该探针成功用于HepG2细胞中GSH的近红外成像。

2.6. 氧化还原反应

生物硫醇具有良好的还原性,利用这一点,许多基于氧化还原反应的探针被设计出来。

Yuannian Zhang等 [44] 发现,无荧光的1,8-芘二酮可被半胱氨酸和色氨酸还原为强荧光的1,8-芘二醇,从而实现对半胱氨酸和色氨酸的分析检测。Lin Yang等 [45] 其设计了一种含有二硫键的探针。他们将萘酰亚胺荧光团与吩嗪能量受体通过二硫键连接起来,构筑了一个具有荧光共振能量转移(FRET)效应的结构。而二硫键可以选择性的被半胱氨酸还原成巯基,从而破坏原有的FRET效应,使萘酰亚胺荧光团的荧光得以恢复。Chao Yin等 [46] 将近红外荧光染料IR806与2-(吡啶-2-基二硫烷基)乙胺-1-胺连接,形成一个含有二硫键的荧光探针。该探针可以高选择性的与GSH发生氧化还原反应,断开二硫键后形成IR806-S-NH2。该探针不仅可以在近红外区对GSH进行监测,还可以通过光声转化实现对GSH的可视化监控。Jun Han Lee等 [47] 以2-甲氨基-6-乙酰萘为原料合成了一种分子内含有二硫键的荧光探针,该探针可以与生物硫醇发生氧化还原反应,打开二硫键后发生分子内的亲核消除反应,最终生成再次生成2-甲氨基-6-乙酰萘,表现出显著的双光子荧光增强效应。该探针比已知探针8-氧代-苊-并吡咯衍生物的双光子荧光激发强度大10倍以上,可以实现较深处组织中生物硫醇的可视化检测。

2.7. Se键的反应

Se键是一类极容易被生物硫醇的巯基裂解的化学键 [48],如果通过Se键将荧光团和强吸电子基团连接起来,可以基于光电子转移机理将荧光团的荧光淬灭,从而合成对生物硫醇敏感的荧光探针。

Rui Wang等 [48] 以Cy7-Cl为原料,合成了两种结构中含有Se-N键的荧光探针Cy-NiSe和Cy-TfSe。这两种探针对生物硫醇非常灵敏,具有适用PH值宽、反应快速、近红外等特点。Yong Tian等 [49] 以1,2-二氨基蒽-9,10-二酮为原料合成了硒二唑衍生物,该化合物中的两个Se-N可与硫醇发生逐步裂解反应,从而发生荧光及颜色的显著变化。该探针与Cys、Hcy以及GSH的反应速率不同,可有效地区分三种不同的生物硫醇。Yuan Mei等 [50] 合成了带有3,5-二甲基基团的8-氟苯基硒BODIPY类荧光探针,分子结构中的Se-C键可被GSH打断并生成硫醚类化合物,显示很强的绿色荧光;而与Cys和Hcy发生反应时,Se-C键首先被巯基打开,然后分子内快速发生氨基对硫醚键的亲核取代重排反应,显示较强的青色荧光。该探针成功应用于检测活体细胞中的生物硫醇。

2.8. 金属配合物中金属离子的夺取

在基于这一机理的探针设计中,往往需要合成一个具有荧光发射的配体,在配体与金属离子络合后,配体本身的荧光发生显著淬灭。由于生物硫醇中的巯基与金属离子更强的配位作用,生物硫醇可将络合物中的金属离子夺取并与之形成更稳定的络合物,同时使配体的荧光恢复,从而实现对生物硫醇的检测。

Hui Huang等 [51] 合成了具有强烈荧光的苯乙炔类直线型化合物PPESO3,该化合物可与Cu2+形成较稳定的静电配合物,从而使PPESO3的荧光强度大大降低。而生物硫醇的加入可以使PPESO3再次游离出来从而使荧光恢复。该系统成功地作用于HepG2细胞中生物硫醇的荧光成像。Xueying Yu等 [52] 合成了一种二乙基氨基吡啶甲酰席夫碱化合物,此化合物可与Cu2+络合并使原化合物的荧光大大降低。在加入生物硫醇后,由于硫醇与铜离子更强的络合作用,使得席夫碱化合物游离出来恢复荧光,从而实现对生物硫醇的检测,该化合物成功地应用于活细胞的生物成像。

3. 总结和展望

生物硫醇类化合物在人体内的重要性是毋庸置疑的,准确、简单、快速地检测这些物质是化学家们一直追求的目标。本文综述了近些年来在荧光探针领域检测生物硫醇类化合物的一些分类、方法,例如基于迈克尔加成、丙烯酸酯的共轭加成环化、磺酰胺和磺酸酯的裂解、醛基加成、芳香亲核取代、氧化还原反应、Se键的断裂、金属配合物中金属离子的夺取等设计思路和方法。通过总结大量文献我们发现,虽然目前为止生物硫醇的荧光探针分析法已经取得了令人瞩目的成就,但是还有一些地方存在不足,例如Cys与Hcy之间往往难以很明显的区分;这些探针的应用大部分停留在细胞层面,应用于动物层面的探针相对较少;对于精细亚细胞结构的生物硫醇检测类探针相对较少等。在未来,能够更好地区分Cys/Hcy/GSH三者的荧光探针,能够应用于更复杂环境的动物体内生物硫醇的检测、能够对精细亚细胞器内的生物硫醇进行准确定位和检测的荧光探针可能会是此类探针发展的主要方向。

基金项目

感谢国家自然科学基金项目批准号:21405069;辽宁省“兴辽英才计划”XLYC2007140;大学生创新创业项目《基于DNBS-O裂解反应对生物巯基化合物的选择性检测》,20201016096;辽宁省自然科学基金,201602339;辽宁省高等学校优秀人才支持计划,LJQ2015068对本文章的支持。

文章引用

闫鎏鑫,张鹏程,吝丽华,高 翔,高 林,常晓杰,张 杰,周西斌. 用于检测生物硫醇的荧光探针的研究进展
Research Progress of Fluorescent Probes for Detection of Biological Thiols[J]. 生物过程, 2022, 12(02): 54-62. https://doi.org/10.12677/BP.2022.122007

参考文献

  1. 1. Wood, Z.A., Schröder, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8

  2. 2. Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325. https://doi.org/10.5414/CN108040

  3. 3. Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469. https://doi.org/10.1093/clinchem/47.8.1467

  4. 4. Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165. https://doi.org/10.1093/jn/120.2.158

  5. 5. German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003. https://doi.org/10.1016/S0021-9258(17)44376-6

  6. 6. She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070. https://doi.org/10.1039/C8SC03421D

  7. 7. Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978. https://doi.org/10.1021/ac010541m

  8. 8. Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881. https://doi.org/10.1002/ange.201103759

  9. 9. Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155. https://doi.org/10.1016/S0753-3322(03)00043-X

  10. 10. Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38. https://doi.org/10.2147/JBM.S35496

  11. 11. Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417. https://doi.org/10.1039/B315496N

  12. 12. Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245. https://doi.org/10.1016/0021-9673(92)85387-9

  13. 13. Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259. https://doi.org/10.1006/abio.2000.4980

  14. 14. Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46. https://doi.org/10.1016/S0378-4347(98)00414-9

  15. 15. Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23. https://doi.org/10.1016/j.aca.2004.11.070

  16. 16. McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039. https://doi.org/10.1021/ac2010668

  17. 17. Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308. https://doi.org/10.1016/j.jchromb.2009.03.038

  18. 18. Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544. https://doi.org/10.1080/10826070903249666

  19. 19. Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140. https://doi.org/10.1016/j.jchromb.2012.04.003

  20. 20. Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124. https://doi.org/10.1002/jssc.201000399

  21. 21. Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664. https://doi.org/10.1016/j.jphotochem.2021.113664

  22. 22. Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654. https://doi.org/10.1016/j.jphotochem.2021.113654

  23. 23. Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811. https://doi.org/10.1016/j.molstruc.2021.131811

  24. 24. Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664. https://doi.org/10.1080/00032719.2021.1958830

  25. 25. Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295. https://doi.org/10.1039/D1RA00010A

  26. 26. Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426. https://doi.org/10.1002/bkcs.11429

  27. 27. Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502. https://doi.org/10.1016/j.biomaterials.2012.08.009

  28. 28. Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20. https://doi.org/10.1016/j.saa.2018.01.052

  29. 29. Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442. https://doi.org/10.1016/j.snb.2016.06.161

  30. 30. Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74. https://doi.org/10.1016/j.saa.2017.10.044

  31. 31. Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213. https://doi.org/10.1016/j.tetlet.2017.06.082

  32. 32. Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155. https://doi.org/10.1016/j.talanta.2017.03.080

  33. 33. Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96. https://doi.org/10.1016/j.jphotochem.2018.09.030

  34. 34. Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403. https://doi.org/10.1016/j.saa.2019.117403

  35. 35. Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267. https://doi.org/10.1039/C8AY02413H

  36. 36. Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92. https://doi.org/10.1016/j.dyepig.2018.01.034

  37. 37. Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752. https://doi.org/10.1021/acs.analchem.6b02646

  38. 38. Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285. https://doi.org/10.1039/C9AY00659A

  39. 39. Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222. https://doi.org/10.1039/C4CC03527E

  40. 40. Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189. https://doi.org/10.1016/j.dyepig.2018.11.050

  41. 41. Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171. https://doi.org/10.1016/j.dyepig.2019.02.010

  42. 42. Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640. https://doi.org/10.1016/j.talanta.2019.06.059

  43. 43. Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598. https://doi.org/10.1002/cjoc.201500733

  44. 44. Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774. https://doi.org/10.1016/j.snb.2017.12.059

  45. 45. Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189. https://doi.org/10.1039/C4AN01732C

  46. 46. Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400. https://doi.org/10.1002/smll.201703400

  47. 47. Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217. https://doi.org/10.1021/ja9090676

  48. 48. Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349. https://doi.org/10.1002/chem.201200671

  49. 49. Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349. https://doi.org/10.1016/j.snb.2018.01.181

  50. 50. Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201. https://doi.org/10.1039/D1CC03912A

  51. 51. Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540. https://doi.org/10.1016/j.snb.2013.01.003

  52. 52. Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138. https://doi.org/10.1016/j.snb.2017.04.147

  53. 53. Wood, Z.A., Schröder, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8

  54. 54. Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325. https://doi.org/10.5414/CN108040

  55. 55. Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469. https://doi.org/10.1093/clinchem/47.8.1467

  56. 56. Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165. https://doi.org/10.1093/jn/120.2.158

  57. 57. German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003. https://doi.org/10.1016/S0021-9258(17)44376-6

  58. 58. She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070. https://doi.org/10.1039/C8SC03421D

  59. 59. Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978. https://doi.org/10.1021/ac010541m

  60. 60. Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881. https://doi.org/10.1002/ange.201103759

  61. 61. Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155. https://doi.org/10.1016/S0753-3322(03)00043-X

  62. 62. Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38. https://doi.org/10.2147/JBM.S35496

  63. 63. Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417. https://doi.org/10.1039/B315496N

  64. 64. Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245. https://doi.org/10.1016/0021-9673(92)85387-9

  65. 65. Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259. https://doi.org/10.1006/abio.2000.4980

  66. 66. Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46. https://doi.org/10.1016/S0378-4347(98)00414-9

  67. 67. Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23. https://doi.org/10.1016/j.aca.2004.11.070

  68. 68. McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039. https://doi.org/10.1021/ac2010668

  69. 69. Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308. https://doi.org/10.1016/j.jchromb.2009.03.038

  70. 70. Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544. https://doi.org/10.1080/10826070903249666

  71. 71. Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140. https://doi.org/10.1016/j.jchromb.2012.04.003

  72. 72. Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124. https://doi.org/10.1002/jssc.201000399

  73. 73. Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664. https://doi.org/10.1016/j.jphotochem.2021.113664

  74. 74. Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654. https://doi.org/10.1016/j.jphotochem.2021.113654

  75. 75. Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811. https://doi.org/10.1016/j.molstruc.2021.131811

  76. 76. Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664. https://doi.org/10.1080/00032719.2021.1958830

  77. 77. Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295. https://doi.org/10.1039/D1RA00010A

  78. 78. Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426. https://doi.org/10.1002/bkcs.11429

  79. 79. Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502. https://doi.org/10.1016/j.biomaterials.2012.08.009

  80. 80. Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20. https://doi.org/10.1016/j.saa.2018.01.052

  81. 81. Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442. https://doi.org/10.1016/j.snb.2016.06.161

  82. 82. Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74. https://doi.org/10.1016/j.saa.2017.10.044

  83. 83. Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213. https://doi.org/10.1016/j.tetlet.2017.06.082

  84. 84. Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155. https://doi.org/10.1016/j.talanta.2017.03.080

  85. 85. Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96. https://doi.org/10.1016/j.jphotochem.2018.09.030

  86. 86. Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403. https://doi.org/10.1016/j.saa.2019.117403

  87. 87. Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267. https://doi.org/10.1039/C8AY02413H

  88. 88. Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92. https://doi.org/10.1016/j.dyepig.2018.01.034

  89. 89. Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752. https://doi.org/10.1021/acs.analchem.6b02646

  90. 90. Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285. https://doi.org/10.1039/C9AY00659A

  91. 91. Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222. https://doi.org/10.1039/C4CC03527E

  92. 92. Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189. https://doi.org/10.1016/j.dyepig.2018.11.050

  93. 93. Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171. https://doi.org/10.1016/j.dyepig.2019.02.010

  94. 94. Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640. https://doi.org/10.1016/j.talanta.2019.06.059

  95. 95. Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598. https://doi.org/10.1002/cjoc.201500733

  96. 96. Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774. https://doi.org/10.1016/j.snb.2017.12.059

  97. 97. Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189. https://doi.org/10.1039/C4AN01732C

  98. 98. Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400. https://doi.org/10.1002/smll.201703400

  99. 99. Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217. https://doi.org/10.1021/ja9090676

  100. 100. Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349. https://doi.org/10.1002/chem.201200671

  101. 101. Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349. https://doi.org/10.1016/j.snb.2018.01.181

  102. 102. Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201. https://doi.org/10.1039/D1CC03912A

  103. 103. Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540. https://doi.org/10.1016/j.snb.2013.01.003

  104. 104. Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138. https://doi.org/10.1016/j.snb.2017.04.147

  105. NOTES

    *通讯作者。

期刊菜单