International Journal of Psychiatry and Neurology
Vol.06 No.04(2017), Article ID:22815,7 pages
10.12677/IJPN.2017.64013

Advances in Surgical Timing of Acute Cervical Spinal Cord Injury

Yinghao Song, Xiangyu Kong, Yujun Xi, Guangliang Zeng, Rujun Li, Zhiyuan Qian*

Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou Jiangsu

Received: Nov. 3rd, 2017; accepted: Nov. 17th, 2017; published: Nov. 27th, 2017

ABSTRACT

Spinal cord injury is one of the most common and frequent diseases in human health, among which cervical spinal cord injury is the most common. Acute cervical spinal cord injury is a serious trauma disease which has the characteristics of high morbidity and mortality rates. In recent years, great progress has been made in the basic and clinical research of acute cervical spinal cord injury. Reasonable surgical timing can better promote the recovery of spinal nerve function, but there is no uniform standard for when the operation is performed. We review the treatment opportunity of acute cervical spinal cord injury in this paper.

Keywords:Cervical Spinal Cord Injury, Early Surgical Treatment, Late Surgical Treatment, Outcome

急性颈脊髓损伤手术时机的研究进展

宋应豪,孔祥宇,席宇君,曾光亮,李如军,钱志远*

苏州大学附属第二医院神经外科,江苏 苏州

收稿日期:2017年11月3日;录用日期:2017年11月17日;发布日期:2017年11月27日

摘 要

脊柱脊髓损伤是当前危害人类健康的常见病、多发病,其中以颈髓损伤最为多见。急性颈髓损伤是一种很严重的创伤疾病,具有高致残率、致死率的特点。近年来对急性颈脊髓损伤的基础和临床研究已经取得了很大进展,合理的手术时机可以更好得促进脊髓神经功能恢复,但是对于何时手术仍无统一标准,本文现就急性颈髓损伤的救治时机作一综述。

关键词 :颈髓损伤,早期手术,晚期手术,预后

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脊髓损伤是脊柱外科常见疾病,流行病学调查显示,全世界的脊髓损伤发生率为10.4~83人/百万人 [1] 。脊髓损伤是导致残疾和死亡的重要因素之一,严重危害人类健康,并多以年轻人为主 [2] ,给社会带来巨大损失,而其中三分之一是由颈椎损伤(骨折和脱位)引起 [3] 。由于脊髓组织分化程度较高,故受损后再生能力极差,脊髓功能受损严重。脊髓神经功能损伤的主要原因是伤后数分钟内发生的继发性损伤,即在原发性损伤基础上发生的细胞分子水平的主动调节过程。目前已知机制主要有:脑血管机制、自由基氧化学说、钙介导机制、电介质失衡理论、细胞凋亡等机制 [4] [5] [6] [7] 。由于继发性损害导致的一系列脊髓神经功能损伤具有可逆性,适时合理的救治可以挽救残余或未完全死亡的脊髓神经细胞。尽管手术治疗是脊髓损伤的一个重要手段,但是对于手术时机仍存在很大争议 [8] [9] ,包括最新的颈椎损伤治疗指南也没有提出最佳解决措施 [10] ,多个临床研究试图确定手术时机对预后的影响 [11] ,一方面临床前研究并不能直接转化为病人的治疗方案,另一方面,由于损伤水平、严重程度和高昂费用等存在异质性,临床上无偏倚的研究很难进行 [12] ,目前对于中央型脊髓损伤手术时机仍没有I类和II类证据的临床研究 [13] [14] 。现笔者对国内外颈髓损伤手术时机的研究进行综述。

2. 临床前研究

动物实验研究倾向于早期手术可以更好促进神经功能恢复,Carlson [15] 研究了在动物脊髓受压的30 min和180 min分别进行手术减压,发现脊髓受压持续时间越长,继发性损害越重,因此建议早期手术。Rabinowitz [16] 对急性脊髓受压导致瘫痪的猎兔犬研究发现,6 h内进行手术解除压迫所带来的神经预后远远比单用甲强龙好。Sheng [15] 的动物实验表明损伤的减压时间间隔过长,会破坏血–脊髓屏障,随之小胶质细胞的增殖和脊髓细胞凋亡 [17] 。Shields和Lim发现脊髓压迫持续时间越长,组织损伤越严重 [18] 。最近,Ziu [19] 发现脊髓损伤急性期特异性的microRNA的表达水平,在不同的脊髓受压时间所表现出显著的差异(P < 0.05),建议早期减压,这样可以减轻继发性损伤的分子级联反应。对大鼠的脊髓损伤模型研究发现,脊髓损伤后数分钟内就产生脂质过氧化物,并且于1 h达到峰值,造成继发性的损害 [20] 。

3. 临床研究

3.1. 激素治疗

甲强龙是一种人工合成的糖皮质激素,在脊髓损伤动物模型中已经证明了具有可以上调抗炎因子,降低氧化应激反应,提高内源性细胞存活的作用。它也减轻脊髓水肿、防止细胞内钾的耗竭和抑制脂质过氧化 [21] 。很多临床研究仍然推荐早期行激素冲击治疗 [22] [23] ,主要依据是90年代美国急性脊髓损伤研究(NASCIS)的多期试验,NASCIS的II期试验结果发现甲强龙治疗仅对脊髓受伤8 h内的患者有效,第1 h给予30 mg/kg的甲强龙,在15 min内完成,其后23 h给予5.4 mg/Kg/h的甲强龙,在伤后6个月的神经功能评估中,明显好于安慰剂组和纳洛酮组,三组的并发症和死亡率没有明显差别,该研究也表明纳洛酮对于脊髓损伤的治疗无用 [24] 。NASCIS的III期试验结果提示对于脊髓损伤3 h内的患者,仍然给予24 h的甲强龙治疗,对于伤后3~8内的患者,应当将激素治疗延长至48 h,可以显著提高神经功能预后,虽然会增加严重脓毒症和重症肺炎的发生率,但其他并发症与死亡率并未太大差别 [25] 。Bracken等人在2012年完成的一项高质量Cochrane系统评价结果发现,大剂量的甲强龙使用,的确增加了感染、消化道出血、深静脉血栓、褥疮等发生率,但和对照组相比并没有明显的统计学意义 [26] 。近些年,既往奠定激素治疗脊髓损伤基本地位的NASCIS多期临床试验研究结果遭到多方面质疑 [27] [28] ,激素治疗急性脊髓损伤的地位受到影响,最近的一项Meta分析结果显示甲强龙对于急性脊髓损伤没有太大效果,反而胃肠道出血几率明显增加 [29] 。最新的急性脊髓外伤救治指南已经不推荐甲强龙用于急性脊髓损伤,FDA已经不批准大剂量冲击治疗这个适应症了,目前仍没有I、II类临床证据支持甲强龙对急性脊髓损伤有益,但存在I、II、III类临床证据证明大剂量的甲强龙导致严重并发症及死亡 [30] 。

3.2. 支持晚期手术

尽早手术减压可以促进神经功能较好的恢复,但早期手术可能会加重心肺负担,导致血流动力学紊乱以及使受损的神经功能进一步恶化,并且颈髓损伤患者早期容易出现电解质紊乱、呼吸骤停、发热、血压低、肺炎等并发症,导致全身情况恶化,加重颈髓损伤,甚至死亡 [31] [32] [33] 。一些临床病例对照试验表明,早期手术对于严重脊髓损伤患者的感觉运动功能恢复没有太大作用,反而会增加恶化风险,故建议7天后再行手术治疗 [34] 。颈髓损伤往往合并多发伤,患者心肺功能较差,病情极不稳定,同时脊髓出血水肿高峰期为48~72小时,早期手术风险较大,容易导致医源性损伤,死亡率和致残率高 [33] [35] [36] 。支持晚期手术的理论依据主要有两方面,一是需要先稳定血流动力学,二是完全性脊髓损伤具有不可逆性 [37] 。侯海涛等 [23] 对64例脊髓损伤患者在入院后立即予以糖皮质激素、脱水消肿、营养神经等药物治疗,并争取伤后8 h内接受大剂量甲强龙冲击治疗。合并骨折脱位的患者立即给予颅骨牵引复位,24 h内纠正脱位,除了4例关节突交锁型脱位的患者在急诊手术下纠正了脱位、解除了对脊髓神经的压迫,其余患者均于入院一周后行手术治疗。两组患者预后无明显差别,该研究发现脊髓损伤一周内出血较多,此时早期手术术中出血量大,而且会造成脊髓反跳水肿,导致更严重的脊髓再灌注损伤,因此认为颈髓损伤后不宜立即采取手术治疗,而应该先予以激素、神经营养等药物治疗,以阻止脊髓损伤后的继发性损害,减少并发症。待1~2周后全身各项基础功能恢复稳定再行手术治疗。这样可以促进神经功能更好得恢复。许文胜等 [22] 将单纯颈脊髓损伤无骨折脱位型患者分为伤后3天内、3~7天、7天后三个手术组,最终结果提示在伤后3~7天内行手术减压可以最大程度的改善神经功能预后,并且建议初期即采用大剂量激素联合神经营养药物治疗。袁文等 [33] 进行了一项多中心的回顾性研究,纳入了595例C3~C7下颈髓损伤的患者,以72小时内手术为界限,分为早期手术组和晚期手术组,最终结果提示手术治疗均可带来良好的预后。虽然与晚期手术组相比,早期手术组缩短了总住院天数,但是在ICU住院时间和呼吸机支持时间上差异并无统计学意义。两组患者在肺部感染、手术切口感染、泌尿道感染、肺栓塞、败血症等并发症发生率上无明显统计学差异。早期手术组术后神经功能恶化率远大于晚期手术组,分别为6.6%和0.7%,并且死亡率也远高于晚期手术组,分别为7.1%和2.1%。因此建议下颈椎外伤的手术应该待病人全身情况好转,脊髓出血及水肿高峰期过后再行手术治疗。Kerwin [38] 等人的研究也发现48小时内的早期脊柱内固定组死亡率比晚期更高,分别为7.65%和2.5%。

3.3. 手术时机不影响预后

一些学者认为手术时机并不影响总体神经功能的预后 [3] [39] [40] ,Sapkas [3] 等人研究了29例骨折无脱位和38例骨折伴脱位的C3~C7颈髓损伤患者,发现手术治疗可以改善不完全性颈髓损伤患者的预后,是否于72小时之内手术对于结果并无太大影响,Boakye等人 [39] 研究了1993年至2002年间救治的31,381例进行减压和(或)融合手术的脊髓损伤患者,肺部感染(14.4%)发生率最高,并且每发生一个并发症,住院天数延长一倍,死亡率增加5倍,住院话费增加5万美元,多因素分析中,年龄和合并症是死亡的主要危险因素,3种以上合并症的患者死亡率明显增加,年龄85岁以上患者的死亡率是44岁以下的44倍,65~84岁是44岁以下的14倍,何时接受手术治疗并不会对并发症和死亡率产生太大影响。

3.4. 支持早期手术

通过早期手术治疗减轻继发性损伤造成的神经功能损害,迅速减少由于骨折、脱位和其他脊柱创伤导致的脊髓压迫。早期手术减少了肺炎、压疮的发生率,一个重要目的是让患者早期下床活动,减少非神经系统并发症发生率 [41] [42] 。虽然早期手术初期费用高,但是住院天数减少,故总住院费用并无明显增加 [43] 。对于早期手术最常用的时间定义为伤后24 h内和48 h内 [34] [38] [41] [44] [45] [46] ,少数研究也以5 h、8 h、10 h [37] [47] [48] ,极个别研究以4 h、4 d为分界线 [32] [49] ,自从2010年以来的临床研究多数以24 h内为标准划分早期和晚期手术 [41] [44] [45] [46] 。但临床研究由于条件限制,无法达到动物试验的伤后1 h、3 h内进行手术治疗,许多前瞻性和回顾性的临床对照研究都支持早期手术 [20] [45] [46] ,提倡尽早手术的学者认为,对于合适的病人早期手术可以保持一个稳定的血流动力学环境,并且阻止神经功能的进一步恶化,早期手术可以减少卧床时间,降低肺部感染、血栓等并发症的发生率 [50] 。Bourassa-Moreau通过分析急性脊髓损伤患者的手术时机与术后并发症,发现尽早手术可以减少住院期间并发症,建议在24小时内接受手术治疗,若由于条件限制也应在72小时内手术 [41] 。一篇2013年的META分析 [11] 纳入了18个对照研究,将早期手术时间窗定义为72 h内,发现早期手术ASIA运动评分比晚期手术多上升5.94分,并且总体平均住院天数缩短10天,这也大大减轻了住院费用。在STASCIS试验 [8] 中,以是否于伤后24 h内手术将研究对象分为早期手术组和晚期手术组,其中19.8%接受早期手术的患者,在改进的美国脊柱损伤协会损害量表(AIS)预后评估中,神经功能提高两级以上,而晚期手术组只有8.8%。在完全性脊髓损伤患者中,进行早期手术的有8例(18.2%)获得了显著神经功能恢复,而晚期手术的只有3例(11.1%)获得了显著神经功能恢复。该研究还比较了并发症的发生率,早期手术组的各种并发症发生率比晚期手术组更低(24.2% VS 30.5%),尽管有30%病人失去随访,但这是自21世纪以来唯一发表的脊髓损伤的随机临床试验,因此,这项试验为指南提供了最高水平的证据。加拿大的一项大规模、多中心临床试验 [45] ,纳入了470例脊髓受伤患者,包括颈髓、胸髓损伤,采用ASIA运动评分评价伤后6个月的神经功能恢复水平,最终结果发现不完全脊髓损伤患者,在24 h内进行手术治疗,运动评分比24 h后接受手术治疗的提高6.3分,但是对于ASIA分级为A级的完全性瘫痪患者,何时手术治疗对于最终的神经功能恢复并无太大影响。该项研究还发现接受早期手术治疗的ASIA分级为A、B级脊髓外伤患者,住院天数较晚期手术缩短5.3天,而C、D级患者住院天数并无太大差别。澳大利亚的多中心回顾性研究 [37] 纳入了49例脊髓损伤患者,33例在5小时内接受手术治疗,16例在5~24小时内接受手术治疗,最终发现六个月后的神经功能恢复ASIA两个级别以上早期手术优于超早期手术,分别为31%比6%,ASIA提高1级以上超早期手术稍微高于早期手术,分别为42%比31%,但并无明显统计学差异,该研究支持24小时之内手术,但是超早期手术并无明显神经功能提高。对于完全性和不完全性脊髓损伤,早期与超早期的预后并无差异。杨建东等 [44] 纳入了53例颈脊髓损伤患者,按伤后手术时间分24 h内早期手术组,晚期手术组:25~72 h组、3~7 d组、8~14 d组,并且按脊髓损伤严重程度分为严重损伤组和损伤组,采用ASIA评分评定神经功能,接受早期手术的5例患者术后ASIA评分明显高于术前和其他组,并且2例急性颈椎间盘突出症完全恢复,3例外伤患者可回归工作,对于颈椎爆裂性骨折伴骨折块凸入椎管、明显脱位伴脊髓横断伤及ASIA分级A级的脊髓严重损伤患者运动功能改善很小,并且与手术时间无关,该研究认为颈髓损伤患者应首先进行充分评估,严重损伤患者应先牵引固定、激素冲击治疗,待患者全身情况稳定后手术治疗,对急性颈椎间盘突出症、颈椎过伸伤等颈髓不完全损伤患者应早期24小时手术,如果条件限制不能急诊手术,则于3天内或者7天后,不推荐3~7天之间手术。有研究 [22] 表明颈椎损伤后3~7天内接受手术会导致严重的并发症和高死亡率,因为此时人体的应激反应最为强烈。

4. 结论与展望

综上所述,对于完全性还是不完全性急性颈髓损伤,大多数国外的动物实验及临床对照研究支持早期手术治疗,对于“早期”的时间窗目前主要以24 h内为准,笔者认为,存在进行性神经功能损害的患者应急诊手术减压,解除对脊髓的压迫,神经功能正常但脊柱结构不稳定的患者也应急诊手术内固定,手术时机应当越早越好,不建议早期使用激素冲击治疗。对于何种条件下的病人通过早期手术可以获益仍需要大量临床对照研究,关于超早期手术治疗(8 h以内)是否能带来更好的临床预后,有待于进一步证实。

文章引用

宋应豪,孔祥宇,席宇君,曾光亮,李如军,钱志远. 急性颈脊髓损伤手术时机的研究进展
Advances in Surgical Timing of Acute Cervical Spinal Cord Injury[J]. 国际神经精神科学杂志, 2017, 06(04): 83-89. http://dx.doi.org/10.12677/IJPN.2017.64013

参考文献 (References)

  1. 1. Chen, Y., He, Y. and DeVivo, M.J. (2016) Changing Demographics and Injury Profile of New Traumatic Spinal Cord Injuries in the United States. Archives of Physical Medicine and Rehabilitation, 97, 1610-1619. https://doi.org/10.1016/j.apmr.2016.03.017

  2. 2. Yue, J.K., Chan, A.K., Winkler, E.A., et al. (2016) A Review and Update on the Guidelines for the Acute Management of Cervical Spinal Cord Injury-Part II. Journal of Neurosurgical Sciences, 60, 367-384. https://doi.org/10.1177/230949900701500212

  3. 3. Sapkas, G.S. and Papadakis, S.A. (2007) Neurological Outcome Following Early versus Delayed Lower Cervical Spine Surgery. Journal of Orthopaedic Surgery (Hong Kong), 15, 183-186.

  4. 4. 陈志斌, 陈国锋. 脊髓损伤机制的研究进展[J]. 中外医疗, 2010, 29(33): 184, 186.

  5. 5. Quinzanos-Fresnedo, J. and Sahagun-Olmos, R.C. (2015) Micro RNA and Its Role in the Pathophysiology of Spinal Cord Injury-A Further Step towards Neurodegenerative Medicine. CIR Compagnie Industriali Riunite, 83, 442-447.

  6. 6. Geremia, N.M., Hryciw, T., Bao, F., et al. (2017) The Effectiveness of the Anti-CD11d Treatment is Reduced in Rat Models of Spinal Cord Injury that Produce Significant Levels of Intraspinal Hemorrhage. Experimental Neurology, 295, 125-134. https://doi.org/10.1016/j.expneurol.2017.06.002

  7. 7. Freria, C.M., Hall, J.C., Wei, P., et al. (2017) Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. Journal of Neuroscience, 37, 3568- 3587. https://doi.org/10.1523/JNEUROSCI.2841-16.2017

  8. 8. Fehlings, M.G., Vaccaro, A., Wilson, J.R., et al. (2012) Early versus Delayed Decompression for Traumatic Cervical Spinal Cord Injury: Results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One, 7, e32037. https://doi.org/10.1371/journal.pone.0032037

  9. 9. Ng, W.P., Fehlings, M.G., Cuddy, B., et al. (1999) Surgical Treatment for Acute Spinal Cord Injury Study Pilot Study: Evaluation of Protocol for Decompressive Surgery within 8 Hours of Injury. Neurosurg Focus, 6, e3. https://doi.org/10.3171/foc.1999.6.1.6

  10. 10. Walters, B.C., Hadley, M.N., Hurlbert, R.J., et al. (2013) Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injuries: 2013 Update. Neurosurgery, 60, 82-91. https://doi.org/10.1227/01.neu.0000430319.32247.7f

  11. 11. Van Middendorp, J.J., Hosman, A.J. and Doi, S.A. (2013) The Effects of the Timing of Spinal Surgery after Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of Neuroscience, 30, 1781-1794. https://doi.org/10.1089/neu.2013.2932

  12. 12. O'Toole, J.E. (2014) Timing of Surgery after Cervical Spinal Cord Injury. World Neurosurg, 82, e389-e390. https://doi.org/10.1016/j.wneu.2013.02.024

  13. 13. Dahdaleh, N.S., Lawton, C.D., El, A.T., et al. (2013) Evidence-Based Management of Central Cord Syndrome. Neurosurg Focus, 35, E6. https://doi.org/10.3171/2013.3.FOCUS13101

  14. 14. Ropper, A.E., Neal, M.T. and Theodore, N. (2015) Acute Management of Traumatic Cervical Spinal Cord Injury. Practical Neurology, 15, 266-272. https://doi.org/10.1136/practneurol-2015-001094

  15. 15. Carlson, G.D., Gorden, C., Oliff, H.S., et al. (2003) Sustained Spinal Cord Compression: Part I: Time-Dependent Effect on Long-Term Pathophysiology. The Journal of Bone and Joint Surgery, 85, 86-94. https://doi.org/10.2106/00004623-200301000-00014

  16. 16. Rabinowitz, R.S., Eck, J.C., Harper, C.J., et al. (2008) Urgent Surgical Decompression Compared to Methylprednisolone for the Treatment of Acute Spinal Cord Injury: A Randomized Prospective Study in Beagle Dogs. Spine, 33, 2260-2268. https://doi.org/10.1097/BRS.0b013e31818786db

  17. 17. Sheng, H., Wang, H., Homi, H.M., et al. (2004) A No-Laminectomy Spinal Cord Compression Injury Model in Mice. Journal of Neurotrauma, 21, 595-603. https://doi.org/10.1089/089771504774129928

  18. 18. Shields, C.B., Zhang, Y.P., Shields, L.B., et al. (2005) The Therapeutic Window for Spinal Cord Decompression in a Rat Spinal Cord Injury Model. Journal of Neurosurgery: Spine, 3, 302-307. https://doi.org/10.3171/spi.2005.3.4.0302

  19. 19. Ziu, M., Fletcher, L., Savage, J.G., et al. (2014) Spatial and Temporal Expression Levels of Specific microRNAs in a Spinal Cord Injury Mouse Model and Their Relationship to the Duration of Compression. The Spine Journal, 14, 353-360. https://doi.org/10.1016/j.spinee.2013.08.015

  20. 20. 杨建东, 李家顺, 贾连顺, 等. 大剂量甲基强的松龙对大鼠急性脊髓损伤预防保护作用的研究[J]. 中国脊柱脊髓杂志, 2005, 15(1): 46-48.

  21. 21. Rouanet, C., Reges, D., Rocha, E., et al. (2017) Traumatic Spinal Cord Injury: Current Concepts and Treatment Update. Arquivos de Neuro-Psiquiatria, 75, 387-393. https://doi.org/10.1590/0004-282x20170048

  22. 22. 许文胜, 陈永军, 杨增华, 等. 无骨折脱位型颈脊髓损伤手术时机的选择对术后功能恢复的影响[J]. 中国伤残医学, 2016, 24(6): 42-43.

  23. 23. 侯海涛, 孙秀琛, 邵诗泽, 等. 外伤性颈髓损伤手术时机探讨[J]. 骨科, 2011, 2(2): 73-75.

  24. 24. Bracken, M.B., Shepard, M.J., Collins, W.J., et al. (1992) Methylprednisolone or Naloxone Treatment after Acute Spinal Cord Injury: 1-Year Follow-Up Data. Results of the Second National Acute Spinal Cord Injury Study. Journal of Neurosurgery, 76, 23-31. https://doi.org/10.3171/jns.1992.76.1.0023

  25. 25. Bracken, M.B., Shepard, M.J., Holford, T.R., et al. (1998) Methylprednisolone or Tirilazad Mesylate Administration after Acute Spinal Cord Injury: 1-Year Follow up. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. Journal of Neurosurgery, 89, 699-706. https://doi.org/10.3171/jns.1998.89.5.0699

  26. 26. Bracken, M.B. (2012) Steroids for Acute Spinal Cord Injury. The Cochrane Database of Systematic Reviews, 1, D1046. https://doi.org/10.1002/14651858.CD001046.pub2

  27. 27. Teles, A.R., Cabrera, J., Riew, K.D., et al. (2016) Steroid Use for Acute Spinal Cord Injury in Latin America: A Potentially Dangerous Practice Guided by Fear of Lawsuit. World Neurosurgery, 88, 342-349. https://doi.org/10.1016/j.wneu.2015.12.045

  28. 28. Evaniew, N. and Dvorak, M. (2016) Cochrane in CORR1: Steroids for Acute Spinal Cord Injury (Review). Clinical Orthopaedics and Related Research, 474, 19-24. https://doi.org/10.1007/s11999-015-4601-6

  29. 29. Evaniew, N., Belley-Cote, E.P., Fallah, N., et al. (2016) Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 33, 468-481. https://doi.org/10.1089/neu.2015.4192

  30. 30. Resnick, D.K. (2013) Updated Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injury. Neurosurgery, 72, 1. https://doi.org/10.1227/NEU.0b013e318276ee7e

  31. 31. Anderson, D.G., Sayadipour, A., Limthongkul, W., et al. (2012) Traumatic Central Cord Syndrome: Neurologic Recovery after Surgical Management. American Journal of Orthopedics, 41, E104-E108.

  32. 32. Chen, L., Yang, H., Yang, T., et al. (2009) Effectiveness of Surgical Treatment for Traumatic Central Cord Syndrome. Journal of Neurosurgery: Spine, 10, 3-8. https://doi.org/10.3171/2008.9.SPI0822

  33. 33. Liu, Y., Shi, C.G., Wang, X.W., et al. (2015) Timing of Surgical Decompression for Traumatic Cervical Spinal Cord Injury. International Orthopaedics, 39, 2457-2463. https://doi.org/10.1007/s00264-014-2652-z

  34. 34. McKinley, W., Meade, M.A., Kirshblum, S., et al. (2004) Outcomes of Early Surgical Management versus Late or no Surgical Intervention after Acute Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 85, 1818-1825. https://doi.org/10.1016/j.apmr.2004.04.032

  35. 35. Vaccaro, A.R., Daugherty, R.J., Sheehan, T.P., et al. (1997) Neurologic Outcome of Early versus Late Surgery for Cervical Spinal Cord Injury. Spine, 22, 2609-2613. https://doi.org/10.1097/00007632-199711150-00006

  36. 36. Marshall, L.F., Knowlton, S., Garfin, S.R., et al. (1987) Deterioration Following Spinal Cord Injury. A Multicenter Study. Journal of Neurosurgery, 66, 400-404. https://doi.org/10.3171/jns.1987.66.3.0400

  37. 37. Mattiassich, G., Gollwitzer, M., Gaderer, F., et al. (2017) Functional Outcomes in Individuals Undergoing Very Early (< 5 h) and Early (5-24 h) Surgical Decompression in Traumatic Cervical Spinal Cord Injury: Analysis of Neurological Improvement from the Austrian Spinal Cord Injury Study. Journal of Neurotrauma. https://doi.org/10.1089/neu.2017.5132

  38. 38. Kerwin, A.J., Frykberg, E.R., Schinco, M.A., et al. (2007) The Effect of Early Surgical Treatment of Traumatic Spine Injuries on Patient Mortality. The Journal of Trauma, 63, 1308-1313. https://doi.org/10.1097/TA.0b013e31815b8361

  39. 39. Boakye, M., Patil, C.G., Santarelli, J., et al. (2008) Laminectomy and Fusion after Spinal Cord Injury: National Inpatient Complications and Outcomes. Journal of Neurotrauma, 25, 173-183. https://doi.org/10.1089/neu.2007.0395

  40. 40. Croce, M.A., Bee, T.K., Pritchard, E., et al. (2001) Does Optimal Timing for Spine Fracture Fixation Exist? Annals of Surgery, 233, 851-858. https://doi.org/10.1097/00000658-200106000-00016

  41. 41. Bourassa-Moreau, E., Mac-Thiong, J.M., Ehrmann, F.D., et al. (2013) Complications in Acute Phase Hospitalization of Traumatic Spinal Cord Injury: Does Surgical Timing Matter? Journal of Trauma and Acute Care Surgery, 74, 849-854. https://doi.org/10.1097/TA.0b013e31827e1381

  42. 42. Jalan, D., Saini, N., Zaidi, M., et al. (2017) Effects of Early Surgical Decompression on Functional and Histological Outcomes after Severe Experimental Thoracic Spinal Cord Injury. Journal of Neurosurgery: Spine, 26, 62-75. https://doi.org/10.3171/2016.6.SPINE16343

  43. 43. Mac-Thiong, J.M., Feldman, D.E., Thompson, C., et al. (2012) Does Timing of Surgery Affect Hospitalization Costs and Length of Stay for Acute Care Following a Traumatic Spinal Cord Injury? Journal of Neurotrauma, 29, 2816-2822. https://doi.org/10.1089/neu.2012.2503

  44. 44. 杨建东, 冯新民, 蒋百川, 等. 颈脊髓损伤后外科干预时机的选择[J]. 中国骨与关节损伤杂志, 2010, 25(5): 388-390.

  45. 45. Dvorak, M.F., Noonan, V.K., Fallah, N., et al. (2015) The Influence of Time From Injury to Surgery on Motor Recovery and Length of Hospital Stay in Acute Traumatic Spinal Cord Injury: An Observational Canadian Cohort Study. Journal of Neurotrauma, 32, 645-654. https://doi.org/10.1089/neu.2014.3632

  46. 46. Umerani, M.S., Abbas, A. and Sharif, S. (2014) Clinical Outcome in Patients with Early versus Delayed Decompression in Cervical Spine Trauma. Asian the Spine Journal, 8, 427-434. https://doi.org/10.4184/asj.2014.8.4.427

  47. 47. Batchelor, P.E., Kerr, N.F., Gatt, A.M., et al. (2011) Intracanal Pressure in Compressive Spinal Cord Injury: Reduction with Hypothermia. Journal of Neurotrauma, 28, 809-820. https://doi.org/10.1089/neu.2010.1622

  48. 48. Yang, D.G., Li, J.J., Gu, R., et al. (2013) Optimal Time Window of Myelotomy in Rats with Acute Traumatic Spinal Cord Injury: A Preliminary Study. Spinal Cord, 51, 673-678. https://doi.org/10.1038/sc.2013.56

  49. 49. Newton, D., England, M., Doll, H., et al. (2011) The Case for Early Treatment of Dislocations of the Cervical Spine with Cord Involvement Sustained Playing Rugby. The Journal of Bone and Joint Surgery. British Volume, 93, 1646-1652. https://doi.org/10.1302/0301-620X.93B12.27048

  50. 50. Kepler, C.K., Kong, C., Schroeder, G.D., et al. (2015) Early Outcome and Predictors of Early Outcome in Patients Treated Surgically for Central Cord Syndrome. Journal of Neurosurgery: Spine, 23, 490-494. https://doi.org/10.3171/2015.1.SPINE141013

期刊菜单