Studies in Synthetic Chemistry
Vol.06 No.02(2018), Article ID:25410,6 pages
10.12677/SSC.2018.62006

The Synthesis of Amino Naphthol Compounds Catalyzed by Brønsted Acidic Ionic Liquids [DC2O2IM][HSO4]

Shengpeng Feng, Qiang Liu, Chenjiang Liu*

The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi Xinjiang

Received: May 23rd, 2018; accepted: Jun. 7th, 2018; published: Jun. 14th, 2018

ABSTRACT

A series of amino naphthol compounds were synthesized via three component condensations of aromatic aldehyde, β-naphthol and amide employing Brønsted acid ionic liquid [DC2O2IM][HSO4] as a catalyst at 90˚C for 10 minutes under solvent-free conditions. The method has the advantages of simple operation and short reaction time.

Keywords:Ionic Liquid, Catalysis, Solvent-Free, Amino Naphthol

Brønsted酸性离子液体[DC2O2IM][HSO4]催化合成氨基萘酚化合物

冯胜鹏,刘强,刘晨江*

新疆大学化学化工学院,石油天然气精细化工教育部&自治区重点实验室,新疆 乌鲁木齐

收稿日期:2018年5月23日;录用日期:2018年6月7日;发布日期:2018年6月14日

摘 要

Brønsted酸性离子液体1,3-二羧甲基咪唑硫酸氢盐[DC2O2IM][HSO4]催化芳香醛、β-萘酚和酰胺在无溶剂条件下90˚C反应10 min合成了一系列氨基萘酚化合物。该方法有操作简单、反应时间短等特点。

关键词 :离子液体,催化,无溶剂,氨基萘酚

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

利用多组分反应构建复杂分子结构对于有机合成领域意义重大 [1] ,常见的反应有Bigenilli反应 [2] ,Ugi反应 [3] ,Passerini反应 [4] 和Mannich反应 [5] 等。含氨基和羟基官能团的化合物广泛存在于天然产物和药物分子中,如核苷抗生素和HIV蛋白酶抑制剂 [6] 。1-氨基烷基-2-萘酚衍生物对于心跳过慢和高血压等心血管疾病有重要的作用 [7] 。

氨基萘酚类化合物通常是由醛、β-萘酚和酰胺发生三组分反应而成,碘 [8] 、蒙脱石 [9] 、HClO4∙SiO2 [10] 、十二钨钴酸钾 [11] 、FeCl3∙SiO2 [12] 、氨基磺酸 [13] 和离子液体[(CH2)4SO3HMIM][HSO4] [14] 等作为催化剂已被应用于该反应。离子液体(ILs)因具有低蒸气压、稳定性高、易回收利用和对环境友好等特点被广泛应用于有机合成中,基于我们课题组在酸性离子液体方面的研究基础 [15] ,本文发展了一种Brønsted酸性离子液体[DC2O2IM][HSO4]催化反应合成氨基萘酚的方法。考察了催化剂的种类和用量、反应时间和温度等因素对产物产率的影响,并对反应底物的普适性进行了探究。

2. 实验部分

2.1. 仪器与试剂

Varian inova-400型核磁共振仪(400 MHz, TMS);美国HP 1100液相色谱质谱仪;瑞士Büchi B-560型熔点仪等。

所有药品及试剂均为市售分析纯,用前未经处理。离子液体1-乙基-3-丁基咪唑硫酸氢盐[BEIM][HSO4]的合成参照文献 [16] 、1,3-二羧甲基咪唑硫酸氢盐[DC2O2IM][HSO4]的合成参照文献 [17] 和1,3-二羧甲基咪唑对甲苯磺酸盐[DC2O2IM][p-CH3PhSO3]的合成参照文献 [18] ,离子液体1-乙基-3-羧甲基咪唑氯盐[C2O2EIM][Cl]的合成参照文献 [19] 、1,3-二羧甲基咪唑氯盐[DC2O2IM][Cl]的合成参照文献 [20] 。

2.2. 离子液体[C2O2EIM][HSO4]和[DC2O2IM][CF3COO]的合成

离子液体1-乙基-3-羧甲基咪唑硫酸氢盐[C2O2EIM][HSO4]和1,3-二羧甲基咪唑三氟乙酸盐[DC2O2IM][CF3COO]的合成如式1所示:将0.05 mol咪唑氯盐和0.05 mol的酸在90˚C反应72 h。冷却,用乙醚洗涤反应混合物,旋除乙醚,残余物在90˚C真空干燥至恒重即得离子液体[C2O2EIM][HSO4]和[DC2O2IM][CF3COO]。

离子液体的表征如下:

离子液体1-乙基-3-羧甲基咪唑硫酸氢盐[C2O2EIM][HSO4],棕黄色液体;1H NMR (400 MHz, D2O), δ: 1.41 (t, J = 7.6, 3H, CH3), 4.14~4.20 (q, J = 7.2, 2H, CH2), 5.03 (s, 2H, CH2), 7.43 (d, 2H, ArH), 8.76 (s, 1H, ArH); ESI-MS: m/z (%) = 169.1 (100) [M+], 97.0 (100) [M].

离子液体1,3-二羧甲基咪唑三氟乙酸盐咪唑[DC2O2IM][CF3COO],淡黄色固体;m.p. 237˚C~240˚C, 1H NMR (400 MHz, D2O), δ: 5.13 (s, 4H, 2 × CH2), 7.54 (d, 2H, ArH), 8.92 (s, 1H, ArH); ESI-MS: m/z (%) = 185.1 (100) [M+], 113.0 (100) [M].

2.3. 目标化合物的合成

化合物4a-4m的合成反应如式2所示。将1.0 mmol芳香醛、1.0 mmol β-萘酚、1.2 mmol酰胺和催化剂[DC2O2IM][HSO4] (20 mol%)混合均匀后在无溶剂条件90˚C下搅拌10 min。反应结束后,向反应体系中加入大量碎冰,充分搅拌,过滤,大量冰水洗涤固体,即得纯净的产物4a-4m。不需要重结晶。

3. 结果与讨论

3.1. 反应条件优化

以苯甲醛、β-萘酚和苯甲酰胺三组分为模型反应,考察了离子液体的种类及其用量、反应时间、反应温度等条件对反应的影响。首先,考察了五种Brønsted酸性离子液体对反应的影响(表1,entries 1~5),从中看出,1,3-二羧甲基咪唑硫酸氢盐离子液体([DC2O2IM][HSO4])为最优催化剂,产物产率为89%。其次,讨论了催化剂用量对反应的影响(表1,entries 5~7),从中可知当催化剂用量为10 mol%和30 mol%时产物产率均下降,因此催化剂用量为20 mol%时最佳。然后,探究了反应温度对反应的影响(表1,entries 5, 8~10),当反应温度分别为80˚C,90˚C,100˚C,130˚C,产物产率分别为78%,94%,93%,89%。最后,研究了反应时间对反应的影响(表1,entries 11~13),发现反应时间为10 min时产率最高可达96%,随着时间的延长产物产率略有下降。综上,该反应的最佳条件为:催化剂离子液体1,3-二羧甲基咪唑硫酸氢盐[DC2O2IM][HSO4]的用量20 mol%,反应温度90˚C,回流反应10 min。

3.2. 底物普适性研究

在最佳反应条件下,开展了底物的普适性研究。首先,对于取代芳香醛的取代基进行拓展,发现无论取代基连有吸电子基如2-氯、2-溴、3-溴、4-氟、2-硝基、4-硝基还是给电子基如4-甲基和3-甲氧基都能以良好到优秀的产率得到氨基萘酚类化合物(表2 entries 4a-4i)。然后,我们将乙酰胺代替苯甲酰胺用于该反应也以优秀的产率得到氨基萘酚类衍生物(表2 entries 4j-4m)。综上所述,该反应具有较好的普适性。

Scheme 1. The synthesis of ionic liquid [C2O2EIM][HSO4] and [DC2O2IM][CF3COO]

式1. 离子液体[C2O2EIM][HSO4]和[DC2O2IM][CF3COO]的合成

Scheme 2. Synthesis of amino naphthol

式2. 氨基萘酚的合成

Table 1. Optimization of reaction conditionsa

表1. 反应条件的优化a

a反应条件:β-萘酚(1.0 mmol),苯甲醛(1.0 mmol),苯甲酰胺(1.2 mmol),催化剂,温度,时间,无溶剂反应;b分离产率。

Table 2. Research of substrate scope a

表2. 底物的普适性研究a

a反应条件:β-萘酚(1.0 mmol),芳香醛(1.0 mmol),酰胺(1.2 mmol),催化剂([DC2O2IM][HSO4]) 20 mol%,无溶剂反应,90˚C,10 min;b分离产率。

4. 总结

本文成功地在无溶剂条件下用离子液体1,3-二羧甲基咪唑硫酸氢盐[DC2O2IM][HSO4]催化合成了一系列氨基萘酚类化合物。该反应具有操作简单、反应时间短、对环境友好的特点,是离子液体催化合成氨基萘酚类化合物的重要补充。

基金项目

“万人计划”后备人选培养项目(No. wr2016cx0145);国家自然科学基金(No. 21572195)。

参考文献 (References)

[1] Candeias, N.R., Montalbano, F., Cal, P.M.S.D., et al. (2010) Boronic Acids and Esters in the Petasis-Borono Mannich Multicomponent Reaction. Chemical Reviews, 110, 6169-6193. https://doi.org/10.1021/cr100108k

[2] Zumpe, F.L., Flüß, M. and Schmitz, K. (2007) Propane Phosphonic Acid Anhydride: A New Aromoter for the One-Pot Biginelli Synthesis of 3,4-Dihydropyrimidin-2 (1H)-Ones. Tetrahedron Letters, 48, 1421-1423. https://doi.org/10.1016/j.tetlet.2006.12.098

[3] Trifilenkov, A.S., Ilyin A.P. and Kysil, V.M. (2007) One-Pot Tandem Complexity-Generating Reaction Based on Ugi Four Component Condensation and Intramolecular Cyclization. Tetrahedron Letters, 48, 2563-2567. https://doi.org/10.1016/j.tetlet.2007.02.015

[4] Krishna, P.R., Dayaker, G. and Reddy, P.V.N. (2006) Diastereoselective Passerini Reactions Using p-Toluenesulfonylmethyl Isocyanide (TosMIC) as the Isonitrile Component. Tetrahedron Letters, 47, 5977-5980. https://doi.org/10.1016/j.tetlet.2006.06.044

[5] Azizi, N., Torkiyan, L. and Saidi, M.R. (2006) Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids. Organic Letters, 8, 2079-2082. https://doi.org/10.1021/ol060498v

[6] Seebach, D. and Matthews, J.L. (1997) β-Peptides: A Surprise at Every Turn. Chemical Communications, 21, 2015-2022. https://doi.org/10.1039/a704933a

[7] Kala, S.M.J., Balasubramanian, T. and Soris, P.T. (2011) GC-MS Determination of Bioactive Components of Eugenia Singampattiana Bedd. International Journal of Chemtech Research, 3, 1534-1537.

[8] Das, B., Laxminarayana, K. and Ravikanth, B. (2007) Iodine Catalyzed Preparation of Amidoalkyl Naphthols in Solution and under Solvent-Free Conditions. Journal of Molecular Catalysis A: Chemical, 261, 180-183. https://doi.org/10.1016/j.molcata.2006.07.077

[9] Kantevari, S., Vuppalapati, S.V.N. and Nagarapu, L. (2007) Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent-Free Conditions. Catalysis Communications, 8, 1857-1862. https://doi.org/10.1016/j.catcom.2007.02.022

[10] Mahdavinia, G.H., Bigdeli, M.A. and Heravi, M.M. (2008) Silica Supported Perchloric Acid (HClO4-SiO2): A Mild, Reusable and Highly Efficient Heterogeneous Catalyst for the Synthesis of Axidoalkyl Naphthols. Chinese Chemical Letters, 40, 1171-1174. https://doi.org/10.1016/j.cclet.2008.06.048

[11] Nagarapu, L., Baseeruddin, M. and Apuri, S. (2007) Potassium Dodecatungstocobaltate Trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under Solvent Free Conditions. Catalysis Communications, 8, 1729-1734. https://doi.org/10.1016/j.catcom.2007.02.008

[12] Shaterian, H.R. and Yarahmadi, H. (2008) A Modified Reaction for the Preparation of Amidoalkyl Naphthols. Tetrahedron Letters, 49, 1297-1300. https://doi.org/10.1016/j.tetlet.2007.12.093

[13] Nagawade, R.R. and Shinde, D.B. (2007) Sulphamic Acid (H2NSO3H)-Catalyzed Multicomponent Reaction of β-Naphthol: An Expeditious Synthesis of Amidoalkyl Naphthols. Chinese Journal of Chemistry, 25, 1710-1714. https://doi.org/10.1002/cjoc.200790316

[14] Tavakolihoseini, N. (2010) Brønsted Acidic Ionic Liquids as Efficient Catalysts for the Synthesis of Amidoalkyl Naphthols. Synthetic Communications, 41, 298-306. https://doi.org/10.1080/00397910903537356

[15] Cao, D.W., Zhang, Y.H., Liu, C.J., Wang, B., Sun, Y.D., Abdukadera, A., Hu, H.Y. and Liu, Q. (2016) Ionic Liquid Promoted Diazenylation of N-Heterocyclic Compounds with Aryltriazenes under Mild Conditions. Organic Letters, 18, 2000-2003. https://doi.org/10.1021/acs.orglett.6b00605

[16] 刘强, 李贺, 张永红, 孙亚栋, 阿不力米提·阿不都卡德尔, 刘晨江. Brønsted酸性离子液体催化芳香醛和2-甲基喹啉反应合成1,3-二(2-喹啉基)丙烷化合物[J]. 高等学校化学学报, 2015, 36(9): 1702-1706.

[17] Yang, Y., Gao, H. and Lu, F. (2014) Preparation and Characterization of Directional Conducting and Lower Methanol Permeable Ultrathin Membrane Based on Poly (Vinyl Alcohol) and Imidazolium Compounds. International Journal of Hydrogen Energy, 39, 17191-17200. https://doi.org/10.1016/j.ijhydene.2014.08.055

[18] Zhang, Y.H., Hu, H.Y., Liu, C.J., Cao, D.W., Wang, B., Sun, Y.D. and Abdukader, A. (2017) Highly Efficient Brønsted Acidic Ionic Liquid Promoted Direct Diazenylation of Pyrazolones with Aryltriazenes under Mild Conditions. Asian Journal of Organic Chemistry, 6, 102-107. https://doi.org/10.1002/ajoc.201600475

[19] Prodius, D., Macaev, F., Lan, Y., et al. (2013) Evidence of Slow Relaxation of Magnetization in Dysprosium-Based ionic Liquids. Chemical Communications, 49, 9215-9217. https://doi.org/10.1039/c3cc45554h

[20] Fei, Z., Zhao, D. and Geldbach, T.J. (2004) Brønsted Acidic Ionic Liquids and Their Zwitterions: Synthesis, Characterization and pKa Determination. Chemistry-A European Journal, 10, 4886-4893. https://doi.org/10.1002/chem.200400145

[21] Patil, S.B., Singh, P.R. and Surpur, M.P. (2007) Ultrasound-Promoted Synthesis of 1-Amidoalkyl-2-Naphthols via a Three-Component Condensation of 2-Naphthol, Ureas/Amides, and Aldehydes, Catalyzed by Sulfamic Acid under Ambient Conditions. Ultrasonics Sonochemistry, 14, 515-518. https://doi.org/10.1016/j.ultsonch.2006.09.006

[22] Niralwad, K.S., Shingate, B.B. and Shingare, M.S. (2011) 1-Hexanesulphonic Acid Sodium Salt Promoted the One-Pot Synthesis of Amidoalkyl Naphthols under Microwave-Irradiation. Chinese Chemical Letters, 22, 551-554. https://doi.org/10.1016/j.cclet.2010.11.018

[23] Dallinger, D. and Kappe C.O. (2007) Automated Generation of a Dihydropyrimidine Compound Library Using Microwave-Assisted Processing. Nature Protocols, 2, 1713-1721. https://doi.org/10.1038/nprot.2007.224

[24] Hajipour, A.R, Ghayeb, Y. and Sheikhan, N. (2009) Brønsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst for One-Pot Synthesis of 1-Amidoalkyl 2-Naphthols under Solvent-Free Conditions. Tetrahedron Letters, 50, 5649-5651. https://doi.org/10.1016/j.tetlet.2009.07.116

[25] Zhang, P. and Zhang, Z.H. (2009) Preparation of Amidoalkyl Naphthols by a Three-Component Reaction Catalyzed by 2,4,6-Trichloro-1,3,5-Triazine under Solvent-Free Conditions. Monatshefte Für Chemie-Chemical Monthly, 140, 199-203. https://doi.org/10.1007/s00706-008-0059-5

[26] Konkala, K., Sabbavarapu, N.M. and Katla, R. (2012) Revisit to the Biginelli Reaction: A Novel and Recyclable Bioglycerol-Based Sulfonic Acid Functionalized Carbon Catalyst for One-Pot Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1H)-Ones. Tetrahedron Letters, 53, 1968-1973. https://doi.org/10.1016/j.tetlet.2012.02.018

[27] Shaterian, H.R., Azizi, K. and Fahimi, N. (2017) Phosphoric Acid Supported on Alumina: A Useful and Effective Heterogeneous Catalyst in the Preparation of α-Amidoalkyl-β-Naphthols, α-Carbamato-Alkyl-β-Naphthols, and 2-Arylbenzothiazoles. Arabian Journal of Chemistry, 10, S42-S55. https://doi.org/10.1016/j.arabjc.2012.07.006

[28] Nasr-Esfahani, M., Montazerozohori, M. and Taei, M. (2016) Aluminatesulfonic Acid: Novel and Recyclable Nanocatalyst for Efficient Synthesis of Aminoalkyl Naphthols and Amidoalkyl Naphthols. Comptes Rendus Chimie, 19, 986-994. https://doi.org/10.1016/j.crci.2016.02.003

NOTES

*通讯作者。

期刊菜单