Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78792 , 8 pages
10.12677/ACM.2024.141031

癫痫共患抑郁、焦虑相关机制的研究进展

迪丽菲娜尔·买买提玉素甫,韩登峰*

新疆医科大学第一附属医院神经内科,新疆 乌鲁木齐

收稿日期:2023年12月8日;录用日期:2024年1月2日;发布日期:2024年1月9日

摘要

近年来,癫痫共患病正在逐渐引起重视,其中癫痫共患抑郁、焦虑的发病率则高于其他精神疾病,且癫痫患者共患抑郁、焦虑将显著增加疾病负担、降低生活质量。目前研究发现,癫痫与抑郁、焦虑之间可能存在一些双向关系及共同的病理生理机制。本文将对此进行综述。

关键词

癫痫,抑郁,焦虑,共患病,共同机制

Progress in the Study of Mechanisms Related to Depression and Anxiety in Epilepsy Co-Morbidity

Dilifeinaer·Maimaitiyusufu, Dengfeng Han*

Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Dec. 8th, 2023; accepted: Jan. 2nd, 2024; published: Jan. 9th, 2024

ABSTRACT

In recent years, epilepsy co-morbidities are gradually attracting attention, in which the prevalence of epilepsy co-morbid depression and anxiety is higher than that of other psychiatric disorders, and co-morbid depression and anxiety in epileptic patients will significantly increase the burden of disease and reduce the quality of life. Current research has revealed that there may be some bidirectional relationships and common pathophysiological mechanisms between epilepsy and depression and anxiety. This article will review this issue.

Keywords:Epilepsy, Depression, Anxiety, Co-Morbidity, Common Mechanisms

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

癫痫是一种慢性反复发作的短暂性脑功能失调综合征,是由多种病因导致脑部神经元高度同步异常化放电所致。据世界卫生组织2018年发布的报道,全球有超过5000万人口患有癫痫,在中国有高达900万以上的人群受累,并以每年60万例的速度持续递增 [1] 。而抑郁症和焦虑症是癫痫患者中最常见的两种精神疾病,其发病率远远高于普通人群和其他类型的慢性病患者。一项国外的荟萃分析显示,癫痫患者合并抑郁的总患病率为32%,且近年来患病率增长一倍 [2] 。同时,癫痫患者伴焦虑障碍的患病率约为11.0%~39.4% [3] 。癫痫共患抑郁、焦虑对患者的影响是不容小觑的,对于伴有抑郁的癫痫患者可能导致患者预后差、加重抗癫痫发作药物(anti-seizure medications, ASMs)的不良反应、降低用药依从性、加重病耻感等。有研究显示癫痫共患焦虑、抑郁可能增加患者自杀的风险,合并抑郁后癫痫患者自杀率为普通人群29倍 [4] ,共患焦虑则会使患者自杀意念和自杀企图的风险增加 [5] 。虽然对于情感障碍会严重降低癫痫患者的生活质量这一点已众所周知,但关于这种负面关系背后的机制,相关的文献还不够全面。本文将综述癫痫共患焦虑、抑郁的相关机制,进一步揭示其关联性,以便患者获得早期诊断、及时治疗。

2. 癫痫与抑郁、焦虑关系的研究现状

2.1. 癫痫与抑郁、焦虑的双向关系

癫痫共患情感障碍指的是癫痫与焦虑、抑郁等疾病同时出现,但不作为癫痫的后果。在临床表现上抑郁和焦虑发作与癫痫发作存在时间上的关联性。与焦虑或抑郁有关的症状可发生在癫痫发作前期、发作间期或发作后期。发作前期症状可出现在癫痫发作前的几个小时或几天内,表现为烦躁不安的情绪或焦虑情绪较前增加 [6] 。发作间期症状主要是癫痫发作前瞬时出现的恐惧、恐慌或痛苦先兆。而发作后的焦虑或抑郁常发生在癫痫发作后的几个小时内,也可长达7天,超过50%的癫痫患者诉有发作后期情感症状,其中抑郁和焦虑分别占43%和45% [7] 。这提示癫痫与抑郁、焦虑存在一些双向关系。

1990年Forsgren等人对癫痫发作的危险因素的流行病学研究已表明,在新诊断的癫痫患者中有相当一部分存在抑郁病史 [8] 。一项纳入3773名癫痫患者的纵向队列研究也证实了这种双向关系,即在癫痫诊断前后都能观察到抑郁、焦虑及其他精神疾病的发生率高于对照组,表明这些精神疾病与癫痫风险的增加有关,而诊断为癫痫后患者出现精神障碍的风险也升高 [9] 。此外,有研究已经确定了癫痫发作前的抑郁、焦虑病史会增加癫痫发作的控制难度 [10] ,抑郁和焦虑障碍的内源性神经生物学被认为是癫痫患者出现治疗抵抗的致病机制 [11] 。几项基于人群的研究表明,癫痫患者不仅罹患精神疾病的风险更高,而且存在原发精神疾病的患者患癫痫的风险也更高 [12] 。例如,老年抑郁症患者出现癫痫发作的风险是对照组的4倍 [7] 。

在遗传性和获得性癫痫动物模型中,癫痫与情感障碍的双向关系也得到了证实。不论是遗传性失神发作癫痫大鼠 [13] ,还是遗传性癫痫易感大鼠 [14] ,以及慢性癫痫模型、癫痫持续状态模型等获得性癫痫动物模型中都观察到了包括抑郁、焦虑在内的精神合并症,一些相关情感症状甚至出现在癫痫发作之前,这更加表明了这些情感障碍不是癫痫发作的继发症状。

2.2. 癫痫与抑郁、焦虑的共同危险因素

目前,大多数研究所发现的癫痫发作及抑郁、焦虑的危险因素主要有压力、睡眠障碍、疲劳、饮酒等 [15] [16] 。其中压力是癫痫发作最常见的诱因,有研究发现急性压力可以影响癫痫患者的脑电生理活动,使癫痫阈值降低 [17] 。同时,压力通过表观遗传机制使抑郁症的易感性增加 [18] 。在澳大利亚西部的一项怀孕队列(RAINE)研究中对孕期妇女和1岁至17岁的儿童进行了生活压力事件的研究,发现一些特定时期的慢性压力可以预测未来的抑郁和焦虑症状 [19] 。压力导致癫痫、焦虑及抑郁的原因可能与HPA轴的激活以及杏仁核不可逆的病理改变有关。睡眠障碍是抑郁既定但又可控的危险因素,睡眠的改善可预防重度抑郁发作 [20] 。长时间的睡眠剥夺增加癫痫发作的概率已被广泛证实,Dell等人对难治性局灶性癫痫患者的研究表明,睡眠时间增加1.6小时可能会在接下来的48小时内将癫痫发作的风险降低27% [21] 。在动物研究中,酒精暴露可诱发小鼠的焦虑、抑郁样行为,同时也降低癫痫发作的阈值 [22] 。

2.3. 药物治疗的交叉效应

情感障碍和癫痫之间的关联性也反映在某些抗癫痫药物(ASMs)对情绪及情感障碍的影响上。目前,有许多ASMs被发现具有一定的抗心境障碍作用。例如,拉莫三嗪(LTG)作为抗癫痫药于2021年在我国已被批准用于控制情感障碍发作及复发的维持治疗。一项随机、双盲、安慰剂对照研究证实了拉莫三嗪在控制中国I型双相情感障碍患者情绪发作和复发方面的有效性和安全性,尤其是对存在中、重度情绪症状的患者有治疗效果 [23] 。对于加巴喷丁(GBP)目前有多项RCT试验证实了其对各种形式的焦虑症的治疗有效 [24] 。抗抑郁药物中选择性5-羟色胺再摄取抑制剂(SSRI)和5-羟色胺–去甲肾上腺素再摄取抑制剂(SNRI)不仅被证实了在癫痫患者中的安全性,而且在癫痫动物模型中显示出抗惊厥特性,在随机接受SSRIs和安慰剂治疗的癫痫患者中,SSRIs组患者癫痫发作频率明显减少 [12] 。有研究者提出癫痫与精神疾病的共同生物机制可能是ASMs有情绪稳定剂和抗惊厥剂双重作用的根本原因 [25] 。

3. 癫痫与抑郁、焦虑共同机制的研究现状

3.1. 神经递质改变

与癫痫及抑郁、焦虑相关的神经递质主要有单胺类化合物、谷氨酸及γ-氨基丁酸(Gamma-aminobutyric acid, GABA),其中,单胺类化合物包括5-羟色胺、多巴胺和去甲肾上腺素。SSRIs、NRIs、多巴胺再摄取抑制剂、单胺氧化酶抑制剂作为一线抗抑郁药物已证实了单胺缺乏在抑郁症的病理生理机制中的作用。在癫痫动物模型中,也可以观察到单胺类化合物对疾病的影响,例如患有癫痫持续状态的大鼠在各个边缘区域出现去甲肾上腺素能神经元损失 [26] ,5-HT神经传递缺陷与癫痫大鼠出现SUDEP相关 [27] ,5-HT受体的缺乏在伴有抑郁、焦虑样行为的颞叶癫痫患者中更为明显 [28] 。

谷氨酸是脑内主要的兴奋性神经递质,对神经元细胞有兴奋性毒性,慢性癫痫发作可以改变神经元和神经胶质细胞谷氨酸受体和摄取转运蛋白的表达,进一步促进癫痫发生 [29] 。同时,谷氨酸代谢和神经传递,被认为在抑郁情绪和焦虑障碍中起主要作用,抑郁症患者在抑郁发作期间额叶皮质和扣带回区谷氨酸代谢物水平降低,在临床缓解期间又恢复正常 [30] 。GABA是一种抑制性神经递质可抵抗谷氨酸的兴奋作用,应激诱导的GABA能神经传递缺陷上,可能是导致情感障碍的一个主要病因 [31] 。GABA也调控了癫痫发作中神经元的同步活动,在癫痫模型中敲除GABA受体可导致癫痫发作。因此,癫痫共患情感障碍的机制也可能与谷氨酸/GABA比例变化导致的兴奋/抑制(E/I)平衡的破坏相关。

3.2. HPA轴功能障碍

下丘脑–垂体–肾上腺轴(The hypothalamic-pituitary-adrenal axis, HPA axis)是大脑应对压力的主要场所,调节身体对压力的生理反应,启动神经内分泌并导致应激激素水平上升。许多研究显示应激与HPA轴过度活跃是癫痫与抑郁、焦虑的交叉点。癫痫患者基础皮质醇水平偏高,而癫痫发作后皮质醇水平又将进一步升高 [32] [33] ,提示癫痫患者HPA轴的调节可能发生了根本改变。HPA轴的功能障碍在抑郁患者中也是显著的,在重度抑郁患者的血浆、脑脊液、尿液中均可以观察到皮质醇浓度增加,以及肾上腺增生 [34] [35] 。而当抑郁患者服用抗抑郁药物使病情好转后,皮质醇的浓度则会下降,这提示HPA轴的功能与抑郁症的严重程度呈正相关 [36] 。由此推测,癫痫发作时的HPA轴过度活跃可能在癫痫共病中发挥作用,而一部分动物实验也验证了这种推测。Wulsin等人用毛果芸香碱诱导的癫痫持续状态的小鼠在高架十字迷宫和开放场地测试中表现出焦虑样行为,且可观察到皮质醇水平的升高 [37] 。2017年,Hooper等人在HPA轴低反应性癫痫小鼠模型中观察到了自发性癫痫发作及抑郁样行为的减少,当给予外源性皮质醇后癫痫易感性和相关的抑郁样行为可以恢复到野生型水平 [38] 。这些研究提示癫痫患者HPA轴功能障碍促进了抑郁、焦虑等共病的发生,同时,长期的焦虑、抑郁情绪产生的高皮质醇环境有使癫痫发作更加频繁。

3.3. 神经免疫炎症

近年来,许多针对癫痫发病机制的研究表明,虽然癫痫发作的最终效应细胞是神经元细胞,但是神经炎症和免疫反应在癫痫的发生上也发挥着重要的作用 [39] 。神经炎症是由神经系统中活化的小胶质细胞、星形胶质细胞、神经元细胞、血脑屏障中的内皮细胞等合成和释放促炎症细胞因子而产生的具有炎症特性的免疫反应,同时神经胶质细胞还可引起外周T淋巴细胞招募和浸润到病理损害的脑组织中进一步加重炎症反应 [40] 。在癫痫患者和癫痫动物模型的大脑中均可发现神经胶质细胞的激活以及促炎细胞因子水平的升高。而免疫炎症反应主要受免疫细胞、细胞因子及趋化因子的调控。Vieira等人的研究表明,与健康对照相比,在颞叶癫痫(TLE)患者外周血中不仅有促炎细胞因子的升高,还可以观察到活化的T淋巴细胞的表达增加,这表明TLE患者免疫细胞呈活化状态,且存在持续的外周低级别炎症 [41] 。在对难治性癫痫患儿的研究中,可以发现活化的CD4+辅助T细胞和CD8+细胞毒性T细胞以及外周血中的炎性细胞显著地渗透到脑实质。

神经免疫炎症在精神疾病中发挥作用的证据也不在少数,例如,首发抑郁障碍患者在治疗前血清细胞因子显著高于对照组,通过抗抑郁药治疗后发挥促炎作用的IL-17等细胞因子显著下降 [42] ,因此IL-17可能与患者抑郁症状的严重程度相关。许多研究已证实,炎性T淋巴细胞亚型,特别是Th17细胞可增加抑郁的易感性。并且由于T细胞比瞬时表达的细胞因子更持久,可能导致重度抑郁的持续和反复发作 [43] 。一些研究发现在类抑郁状态下,小鼠大脑中的Th17细胞增加,而特异性地抑制Th17细胞的产生或功能则降低了对类抑郁行为的易感性 [44] 。2022年Choi等人首次确定IL-17A作为一个新的靶点可以导致TLE相关的焦虑,通过用匹罗卡品在IL-17A野生型(WT)和基因敲除(KO)小鼠中诱发癫痫发作后分别进行焦虑程度测试,结果表明IL-17A缺失可以减轻TLE相关的焦虑行为 [45] 。

3.4. 脑结构及网络异常

癫痫与焦虑、抑郁所涉及的结构损伤区域的相似性是脑网络异常作为共同机制的基础。另一有力证据是,同样作为阶段性发作的疾病,情感障碍可发生在癫痫发作的不同时期,但不总是作为癫痫发作的后果出现,因此有学者认为不论是癫痫发作还是抑郁、焦虑发作可能都是神经网络异常的表现形式 [46] 。在癫痫与精神共病的研究中,被提及最多的是内侧颞叶及边缘系统,包括海马和杏仁核,这也与大多数研究中得出的颞叶及额叶癫痫是精神共病患病率最高的癫痫类型的结论吻合。

成人局灶性癫痫患者常合并海马硬化,抑郁和焦虑的神经通路也常涉及内侧颞叶,表现为海马体萎缩和体积减少以及杏仁核体积增加。有研究发现海马硬化与颞叶癫痫患者共病抑郁的严重程度相关,内侧海马硬化可能增加患者抑郁的终生患病风险 [47] 。抑郁症的边缘–额叶网络功能障碍假说与Fang等人研究得出的颞叶癫痫患者边缘–额叶网络连接性降低一致 [48] 。

杏仁核是大脑中参与情绪处理的关键站,与感知信息的处理有关,可以对传入的刺激施加情感意义,并且在恐惧状态下异常活跃,因此与抑郁及焦虑高度相关。研究发现,癫痫患者杏仁核增大或杏仁核相关神经通路异常与共病抑郁、焦虑的发生率增加相关 [49] [50] ,同时癫痫患者的杏仁核体积与癫痫共患焦虑的核心症状相关,包括情绪不稳定、烦躁不安、易怒和攻击性 [51] 。

3.5. 神经发生异常

海马齿状突的神经发生障碍也可以进一步验证癫痫与抑郁、焦虑存在双向关系。齿状颗粒细胞是位于海马区入口处的谷氨酸能兴奋性神经元,可限制进入海马体的兴奋性输入 [52] 。早在1997年研究者就已经在颞叶癫痫动物模型中观察到在癫痫发作前颗粒细胞神经发生急剧增加,直至出现发作事件 [53] 。后续的研究发现,在急性癫痫发作中增加的颗粒细胞神经发生存在异常整合,这使得慢性癫痫患者中神经发生是显著减少的,尤其是在颞叶癫痫的相关研究中,神经发生的减少将导致海马区神经元丢失及胶质增生最终发展为伴有海马硬化的颞叶癫痫 [54] 。而在抑郁症的动物模型中可以观察到神经发生的减少,且许多研究证实海马的神经发生受压力的负调节及抗抑郁、抗焦虑治疗的正调节,例如,长时间的睡眠剥夺作为应激源减少了神经发生 [55] ,而抗抑郁药氟西汀、电休克疗法 [56] 、体育锻炼等可激活海马齿状回中的成年神经发生起到情绪调节作用 [57] 。最近的一项研究通过敲除促凋亡基因选择性的增加大鼠的成年神经发生后诱发癫痫持续状态,可以观察到成年神经发生增加的小鼠慢性癫痫发作较少且治疗后抑郁情绪也有所减轻 [58] 。综上所述,虽然颗粒细胞的神经发生增加或减少在不同疾病,甚至疾病的不同阶段都不尽相同,但仍然支持它作为癫痫及情感障碍的共同机制之一。癫痫慢性期的海马神经发生减少是抑郁发作的风险之一,同时慢性压力及抑郁状态介导的海马区正常功能的神经发生减少不仅损害齿状突门区,导致癫痫发作的阈值降低,也使急性癫痫发作后增加的异常神经发生的破坏性放大。

4. 展望及前景

抑郁被认为是生活质量差的最强预测因子 [59] ,而“被遗忘的共病”也成为焦虑的代名词 [60] ,癫痫共患抑郁、焦虑的患者面临着双重病耻感,极高的自杀风险。2017年国际抗癫痫联盟发布的最新癫痫分类指南中就建议在癫痫诊治的各阶段都要考虑到共患病的存在,以便获得早期诊断、及时治疗 [61] 。临床上对癫痫患者抑郁、焦虑情绪的缺乏关注反映了对这些共患病背后机制的研究较为匮乏。目前对于上述几种可能的共同机制都有相关的研究支持,但仍缺乏统一的观念,这可能是因为不论是癫痫还是情感障碍的神经系统改变都是复杂多样的,因此任何一种单一机制都不太可能解释它们之间的双向关系,甚至在不同的患者中上述几种神经系统改变所发挥的作用也存在差异。综上,未来的研究因更加关注癫痫共患抑郁、焦虑的共同机制以便为患者提供更精准、个体化的治疗方案。

文章引用

迪丽菲娜尔·买买提玉素甫,韩登峰. 癫痫共患抑郁、焦虑相关机制的研究进展
Progress in the Study of Mechanisms Related to Depression and Anxiety in Epilepsy Co-Morbidity[J]. 临床医学进展, 2024, 14(01): 211-218. https://doi.org/10.12677/ACM.2024.141031

参考文献

  1. 1. GBD 2016 Healthcare Access and Quality Collaborators (2018) Measuring Performance on the Healthcare Access and Quality Index for 195 Countries and Territories and Selected Subnational Locations: A Systematic Analysis from the Global Burden of Disease Study 2016. The Lancet (London, England), 391, 2236-2271. https://doi.org/10.1016/S0140-6736(18)30994-2

  2. 2. Rashid, H., Upadhyay, A., Pandey, R., et al. (2021) Point Prevalence of Depression in Persons with Active Epilepsy and Impact of Methodological Moderators: A Systematic Re-view and Meta-Analysis. Epilepsy & Behavior: E&B, 125, Article ID: 108394. https://doi.org/10.1016/j.yebeh.2021.108394

  3. 3. 唐颖莹, 陆璐, 周东. 中国癫痫诊断治疗现状[J]. 癫痫杂志, 2019, 5(3): 161-164.

  4. 4. 李劲梅. 癫痫伴抑郁诊断治疗的中国专家共识(2022修订版) [J]. 癫痫杂志, 2022, 8(6): 488-493.

  5. 5. Giambarberi, L. and Munger, C.H. (2022) Suicide and Epilepsy. Current Neurology and Neuroscience Reports, 22, 441-450. https://doi.org/10.1007/s11910-022-01206-6

  6. 6. Kanner, A. (2016) Most Antidepressant Drugs Are Safe for Patients with Epilepsy at Therapeutic Doses: A Review of the Evidence. Epilepsy & Behavior: E&B, 61, 282-286. https://doi.org/10.1016/j.yebeh.2016.03.022

  7. 7. Salpekar, J., Basu, T., Thangaraj, S., et al. (2020) The Intersections of Stress, Anxiety and Epilepsy. International Review of Neurobiology, 152, 195-219. https://doi.org/10.1016/bs.irn.2020.02.001

  8. 8. Forsgren, L. and Nyström, L. (1990) An Incident Case-Referent Study of Epileptic Seizures in Adults. Epilepsy Research, 6, 66-81. https://doi.org/10.1016/0920-1211(90)90010-S

  9. 9. Hesdorffer, D., Ishihara, L., Mynepalli, L., et al. (2012) Epi-lepsy, Suicidality, and Psychiatric Disorders: A Bidirectional Association. Annals of Neurology, 72, 184-191. https://doi.org/10.1002/ana.23601

  10. 10. Forthoffer, N., Tarrada, A., Brissart, H., et al. (2021) Anxiety and Depres-sion in Newly Diagnosed Epilepsy: A Matter of Psychological History? Frontiers in Neurology, 12, Article ID: 744377. https://doi.org/10.3389/fneur.2021.744377

  11. 11. Kanner, A. (2012) Can Neurobiological Pathogenic Mechanisms of Depression Facilitate the Development of Seizure Disorders? The Lancet Neurology, 11, 1093-1102. https://doi.org/10.1016/S1474-4422(12)70201-6

  12. 12. Kanner, A. (2016) Management of Psychiatric and Neuro-logical Comorbidities in Epilepsy. Nature Reviews Neurology, 12, 106-116. https://doi.org/10.1038/nrneurol.2015.243

  13. 13. Jones, N., Salzberg, M., Kumar, G., et al. (2008) Elevated Anxiety and Depressive-Like Behavior in a Rat Model of Genetic Generalized Epilepsy Suggesting Common Causation. Experi-mental Neurology, 209, 254-260. https://doi.org/10.1016/j.expneurol.2007.09.026

  14. 14. Aguilar, B., Malkova, L., N’gouemo, P., et al. (2018) Genet-ically Epilepsy-Prone Rats Display Anxiety-Like Behaviors and Neuropsychiatric Comorbidities of Epilepsy. Frontiers in Neurology, 9, Article No. 476. https://doi.org/10.3389/fneur.2018.00476

  15. 15. Samsonsen, C., Mestvedthagen, G., Uglem, M., et al. (2023) Dis-entangling the Cascade of Seizure Precipitants: A Prospective Observational Study. Epilepsy & Behavior: E&B, 145, Ar-ticle ID: 109339. https://doi.org/10.1016/j.yebeh.2023.109339

  16. 16. Balamurugan, E., Aggarwal, M., Lamba, A., et al. (2013) Per-ceived Trigger Factors of Seizures in Persons with Epilepsy. Seizure, 22, 743-747. https://doi.org/10.1016/j.seizure.2013.05.018

  17. 17. Berkhout, J., Walter, D. and Adey, W. (1969) Alterations of the Human Electroencephalogram Induced by Stressful Verbal Activity. Electroencephalography and Clinical Neurophysi-ology, 27, 457-469. https://doi.org/10.1016/0013-4694(69)90186-2

  18. 18. Torres-Berrío, A., Issler, O., Parise, E., et al. (2019) Unravel-ing the Epigenetic Landscape of Depression: Focus on Early Life Stress. Dialogues in Clinical Neuroscience, 21, 341-357. https://doi.org/10.31887/DCNS.2019.21.4/enestler

  19. 19. Herbison, C., Allen, K., Robinson, M., et al. (2017) The Impact of Life Stress on Adult Depression and Anxiety Is Dependent on Gender and Timing of Exposure. Development and Psychopathology, 29, 1443-1454. https://doi.org/10.1017/S0954579417000372

  20. 20. Plante, D. (2021) The Evolving Nexus of Sleep and Depression. The American Journal of Psychiatry, 178, 896-902. https://doi.org/10.1176/appi.ajp.2021.21080821

  21. 21. Dell, K., Payne, D., Kremen, V., et al. (2021) Seizure Likeli-hood Varies with Day-to-Day Variations in Sleep Duration in Patients with Refractory Focal Epilepsy: A Longitudinal Electroencephalography Investigation. EClinicalMedicine, 37, Article ID: 100934. https://doi.org/10.1016/j.eclinm.2021.100934

  22. 22. Xu, C., Xiong, Q., Tian, X., et al. (2022) Alcohol Exposure In-duces Depressive and Anxiety-Like Behaviors via Activating Ferroptosis in Mice. International Journal of Molecular Sciences, 23, Article No. 13828. https://doi.org/10.3390/ijms232213828

  23. 23. Zhang, L., Zhang, H., Lv, L., et al. (2022) A Randomised, Dou-ble-Blind, Placebo-Controlled Study to Evaluate the Safety and Efficacy of Lamotrigine in the Maintenance Treatment of Chinese Adult Patients with Bipolar I Disorder. International Journal of Bipolar Disorders, 10, Article No. 20. https://doi.org/10.1186/s40345-022-00266-4

  24. 24. Ahmed, S., Bachu, R., Kotapati, P., et al. (2019) Use of Gabapentin in the Treatment of Substance Use and Psychiatric Disorders: A Systematic Review. Frontiers in Psychiatry, 10, Article No. 228. https://doi.org/10.3389/fpsyt.2019.00228

  25. 25. Mazza, M., Della Marca, G., Di Nicola, M., et al. (2007) Oxcarba-zepine Improves Mood in Patients with Epilepsy. Epilepsy & Behavior: E&B, 10, 397-401. https://doi.org/10.1016/j.yebeh.2007.01.003

  26. 26. Giorgi, F., Ferrucci, M., Lazzeri, G., et al. (2003) A Damage to Locus Coeruleus Neurons Converts Sporadic Seizures into Self-Sustaining Limbic Status Epilepticus. The European Journal of Neuroscience, 17, 2593-2601. https://doi.org/10.1046/j.1460-9568.2003.02692.x

  27. 27. Zhang, H., Zhao, H., Zeng, C., et al. (2018) Optogenetic Activation of 5-HT Neurons in the Dorsal Raphe Suppresses Seizure-Induced Respiratory Arrest and Produces Anti-convulsant Effect in the DBA/1 Mouse SUDEP Model. Neurobiology of Disease, 110, 47-58. https://doi.org/10.1016/j.nbd.2017.11.003

  28. 28. Parsons, L., Kerr, T. and Tecott, L. (2001) 5-HT(1A) Receptor Mutant Mice Exhibit Enhanced Tonic, Stress-Induced and Fluoxetine-Induced Serotonergic Neurotransmission. Journal of Neurochemistry, 77, 607-617. https://doi.org/10.1046/j.1471-4159.2001.00254.x

  29. 29. Barker-Haliski, M. and White, H. (2015) Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 5, a022863. https://doi.org/10.1101/cshperspect.a022863

  30. 30. Yüksel, C. and Öngür, D. (2010) Magnetic Resonance Spec-troscopy Studies of Glutamate-Related Abnormalities in Mood Disorders. Biological Psychiatry, 68, 785-794. https://doi.org/10.1016/j.biopsych.2010.06.016

  31. 31. Luscher, B., Shen, Q. and Sahir, N. (2011) The GABAergic Deficit Hypothesis of Major Depressive Disorder. Molecular Psychiatry, 16, 383-406. https://doi.org/10.1038/mp.2010.120

  32. 32. Culebras, A., Miller, M., Bertram, L., et al. (1987) Differential Response of Growth Hormone, Cortisol, and Prolactin to Seizures and to Stress. Epilepsia, 28, 564-570. https://doi.org/10.1111/j.1528-1157.1987.tb03689.x

  33. 33. Abbott, R., Browning, M. and Davidson, D. (1980) Se-rum Prolactin and Cortisol Concentrations after Grand Mal Seizures. Journal of Neurology, Neurosurgery, and Psychia-try, 43, 163-167. https://doi.org/10.1136/jnnp.43.2.163

  34. 34. Dorovini-Zis, K. and Zis, A. (1987) Increased Adrenal Weight in Victims of Violent Suicide. The American Journal of Psychiatry, 144, 1214-1215. https://doi.org/10.1176/ajp.144.9.1214

  35. 35. Holsboer, F. (2000) The Corticosteroid Receptor Hypothesis of De-pression. Neuropsychopharmacology, 23, 477-501. https://doi.org/10.1016/S0893-133X(00)00159-7

  36. 36. Asadi-Pooya, A., Kanemoto, K., Kwon, O., et al. (2018) Depression in People with Epilepsy: How Much Do Asian Colleagues Acknowledge It? Seizure, 57, 45-49. https://doi.org/10.1016/j.seizure.2018.03.012

  37. 37. Wulsin, A., Franco-Villanueva, A., Romancheck, C., et al. (2018) Functional Disruption of Stress Modulatory Circuits in a Model of Temporal Lobe Epilepsy. PLOS ONE, 13, e0197955. https://doi.org/10.1371/journal.pone.0197955

  38. 38. Hooper, A., Paracha, R. and Maguire, J. (2018) Seizure-Induced Activation of the HPA Axis Increases Seizure Frequency and Comorbid Depression-Like Behaviors. Epilepsy & Behav-ior: E&B, 78, 124-133. https://doi.org/10.1016/j.yebeh.2017.10.025

  39. 39. 张伊佳, 秦炯. 免疫炎症因素在癫痫中的作用机制[J]. 中国免疫学杂志, 2019, 35(8): 1024-1026.

  40. 40. Weidner, L., Kannan, P., Mitsios, N., et al. (2018) The Expression of In-flammatory Markers and Their Potential Influence on Efflux Transporters in Drug-Resistant Mesial Temporal Lobe Epi-lepsy Tissue. Epilepsia, 59, 1507-1517. https://doi.org/10.1111/epi.14505

  41. 41. Vieira, É., De Oliveira, G., Lessa, J., et al. (2016) Peripheral Leukocyte Pro-file in People with Temporal Lobe Epilepsy Reflects the Associated Proinflammatory State. Brain, Behavior, and Immun-ity, 53, 123-130. https://doi.org/10.1016/j.bbi.2015.11.016

  42. 42. Ethemoglu, O., Calık, M., Koyuncu, I., et al. (2021) Interleukin-33 and Oxidative Stress in Epilepsy Patients. Epilepsy Research, 176, Article ID: 106738. https://doi.org/10.1016/j.eplepsyres.2021.106738

  43. 43. Beurel, E., Harrington, L. and Jope, R. (2013) Inflammatory T Helper 17 Cells Promote Depression-Like Behavior in Mice. Biological Psychiatry, 73, 622-630. https://doi.org/10.1016/j.biopsych.2012.09.021

  44. 44. Beurel, E. and Lowell, J. (2018) Th17 Cells in Depression. Brain, Behavior, and Immunity, 69, 28-34. https://doi.org/10.1016/j.bbi.2017.08.001

  45. 45. Choi, I., Cho, M. and Cho, K. (2022) Interleukin-17A Mediates Hippocampal Damage and Aberrant Neurogenesis Contributing to Epilepsy-Associated Anxiety. Frontiers in Molecular Neuroscience, 15, Article ID: 917598. https://doi.org/10.3389/fnmol.2022.917598

  46. 46. Colmers, P. and Maguire, J. (2020) Network Dysfunction in Comorbid Psychiatric Illnesses and Epilepsy. Epilepsy Currents, 20, 205-210. https://doi.org/10.1177/1535759720934787

  47. 47. Gilliam, F., Maton, B., Martin, R., et al. (2007) Hippocampal 1H-MRSI Correlates with Severity of Depression Symptoms in Temporal Lobe Epilepsy. Neurology, 68, 364-368. https://doi.org/10.1212/01.wnl.0000252813.86812.81

  48. 48. Fang, P., An, J., Zeng, L., et al. (2017) Mapping the Convergent Temporal Epileptic Network in Left and Right Temporal Lobe Epilepsy. Neuroscience Letters, 639, 179-184. https://doi.org/10.1016/j.neulet.2016.12.029

  49. 49. Briellmann, R., Hopwood, M. and Jackson, G. (2007) Major De-pression in Temporal Lobe Epilepsy with Hippocampal Sclerosis: Clinical and Imaging Correlates. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 1226-1230. https://doi.org/10.1136/jnnp.2006.104521

  50. 50. Lv, R., Sun, Z., Cui, T., et al. (2014) Temporal Lobe Epilepsy with Amygdala Enlargement: A Subtype of Temporal Lobe Epilepsy. BMC Neurology, 14, Article No. 194. https://doi.org/10.1186/s12883-014-0194-z

  51. 51. Elst, L., Groffmann, M., Ebert, D., et al. (2009) Amygdala Vol-ume Loss in Patients with Dysphoric Disorder of Epilepsy. Epilepsy & Behavior: E&B, 16, 105-112. https://doi.org/10.1016/j.yebeh.2009.06.009

  52. 52. Hsu, D. (2007) The Dentate Gyrus as a Filter or Gate: A Look Back and a Look Ahead. Progress in Brain Research, 163, 601-613. https://doi.org/10.1016/S0079-6123(07)63032-5

  53. 53. Bengzon, J., Kokaia, Z., Elmér, E., et al. (1997) Apoptosis and Proliferation of Dentate Gyrus Neurons after Single and Intermittent Limbic Seizures. Proceedings of the National Academy of Sciences of the United States of America, 94, 10432-10437. https://doi.org/10.1073/pnas.94.19.10432

  54. 54. Hattiangady, B., Rao, M. and Shetty, A. (2004) Chronic Temporal Lobe Epilepsy Is Associated with Severely Declined Dentate Neurogenesis in the Adult Hippocampus. Neurobiology of Disease, 17, 473-490. https://doi.org/10.1016/j.nbd.2004.08.008

  55. 55. Mirescu, C., Peters, J., Noiman, L., et al. (2006) Sleep Deprivation Inhibits adult Neurogenesis in the Hippocampus by Elevating Glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 103, 19170-19175. https://doi.org/10.1073/pnas.0608644103

  56. 56. Madsen, T., Treschow, A., Bengzon, J., et al. (2000) Increased Neurogenesis in a Model of Electroconvulsive Therapy. Biological Psychiatry, 47, 1043-1049. https://doi.org/10.1016/S0006-3223(00)00228-6

  57. 57. Micheli, L., Ceccarelli, M., D’andrea, G., et al. (2018) De-pression and Adult Neurogenesis: Positive Effects of the Antidepressant Fluoxetine and of Physical Exercise. Brain Re-search Bulletin, 143, 181-193. https://doi.org/10.1016/j.brainresbull.2018.09.002

  58. 58. Jain, S., Lafrancois, J., Gerencer, K., et al. (2023) Increas-ing Adult Neurogenesis Protects Mice from Epilepsy. eLife, 12, RP90893. https://doi.org/10.7554/eLife.90893

  59. 59. 陈艳艳, 桑红, 林卫红. 成人癫痫与抑郁[J]. 癫痫杂志, 2020, 6(1): 26-33.

  60. 60. 李志艳, 姚丽芬. 癫痫共患焦虑的临床研究[J]. 脑与神经疾病杂志, 2018, 26(1): 57-61.

  61. 61. Scheffer, I., Berkovic, S., Capovilla, G., et al. (2017) ILAE Classification of the Epilepsies: Position Paper of the ILAE Commission for Classification and Terminology. Epi-lepsia, 58, 512-521. https://doi.org/10.1111/epi.13709

  62. NOTES

    *通讯作者。

期刊菜单