Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 83878 , 5 pages
10.12677/acm.2024.143975

支气管肺泡灌洗液及其mNGS对血液系统疾病造血干细胞移植后肺部感染的临床应用

李金泉,何元兵*

新疆医科大学第一附属医院呼吸病一科,新疆 乌鲁木齐

收稿日期:2024年2月27日;录用日期:2024年3月24日;发布日期:2024年3月31日

摘要

白血病是起源于造血干细胞的恶性克隆性疾病,白血病细胞大量的增值后抑制了骨髓中正常的白细胞、血小板和红细胞的生成。粒细胞缺乏所致的感染常见感染部位有上呼吸道、肺部、口腔、肛周及全身(败血症)。最常见的致病菌为革兰氏阴性杆菌,其次为革兰氏阳性球菌,还可能出现病毒、真菌(含卡氏肺孢子菌)感染等。造血干细胞移植(Hematopoietic stem cell transplantation, HSCT)是指对患者进行放疗、化疗及免疫抑制预处理,消除异常造血与免疫系统后,将供者或自身造血干细胞(HSC)经血管输注到患者体内,使之重建正常造血和免疫系统的一种治疗方法。自1959年美国E. D. Thomas医师实行全球首例同卵孪生提供造血干细胞进行HSCT后,HSCT已成为治疗多种血液系统恶性疾病有效乃至唯一的耿直方法。骨髓移植后由于全血细胞减少、粒细胞缺乏、留置导管、粘膜屏障受损及免疫功能低下等,感染相当常见。由于HSCT患者的特殊性导致抗生素的滥用以及感染病原体的不断产生、进化和编译,导致其脓毒血症、呼吸衰竭死亡的患者病死率高。临床常用检测方法为分离、生化、核酸等操作相对简单,成本较低的方式方法,然而这些传统方法检测耗时较长,且仅能对常见病原体检测,并且所送项目及标本更依赖临床医师执业水准和判断,因此对像HSCT这种免疫力低下的患者可能感染到的未知及罕见病原体识别困难。宏基因二代测序技术(metagenomics next generation sequencing, mNGS)比较上一代测序方法通量更高,测序速度更快,理论上能无偏倚地检测出细菌、真菌、病毒以及罕见致病微生物,因此,mNGS对疑难甚至复合感染的早期诊断,指导临床抗生素的合理使用和精准治疗提供了重大参考意见。

关键词

造血干细胞移植,肺部感染,mNGS,气管镜,支气管肺泡灌洗液

Clinical Application of Bronchoalveolar Lavage Fluid and Its mNGS in Pulmonary Infection after Hematopoietic Stem Cell Transplantation for Hematopoietic Diseases

Jinquan Li, Yuanbin He*

Department of Respiratory Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 27th, 2024; accepted: Mar. 24th, 2024; published: Mar. 31st, 2024

ABSTRACT

Leukemia is a malignant clonal disease originating from hematopoietic stem cells. The proliferation of leukemia cells inhibits the production of normal white blood cells, platelets, and red blood cells in the bone marrow. The common sites of infection caused by granulocyte deficiency include the upper respiratory tract, lungs, oral cavity, perianal area, and systemic (sepsis). The most common pathogenic bacteria are Gram negative bacilli, followed by Gram positive cocci, and there may also be viral, fungal (including Pneumocystis carinii) infections. Hematopoietic stem cell transplantation (HSCT) refers to a treatment method in which a patient undergoes radiotherapy, chemotherapy, and immunosuppressive pretreatment to eliminate abnormal hematopoiesis and immune systems. After that, donor or autologous hematopoietic stem cells (HSCs) are transfused into the patient’s body through blood vessels to rebuild normal hematopoiesis and immune systems. Since 1959, Dr. E. D. Thomas implemented the world’s first homozygous twin to provide hematopoietic stem cells for HSCT, HSCT has become an effective and even the only straightforward method for treating various hematological malignancies. After bone marrow transplantation, infections are quite common due to decreased whole blood cells, lack of granulocytes, indwelling catheters, damaged mucosal barriers, and weakened immune function. Due to the particularity of HSCT patients, the abuse of antibiotics and the continuous generation, evolution, and compilation of infectious pathogens lead to a high mortality rate in patients with sepsis and respiratory failure. The commonly used clinical testing methods include isolation, biochemistry, nucleic acid, and other relatively simple and low-cost methods. However, these traditional methods take a long time to detect and can only detect common pathogens. Moreover, the items and specimens sent rely more on the professional level and judgment of clinical physicians. Therefore, it is difficult to identify unknown and rare pathogens that may be infected by patients with low immunity, such as HSCT. Metagenomics next generation sequencing (mNGS) technology has a higher throughput and faster sequencing speed compared to the previous generation of sequencing methods. In theory, it can detect bacteria, fungi, viruses, and rare pathogenic microorganisms without bias. Therefore, mNGS provides significant reference opinions for the early diagnosis of suspected or even complex infections, guiding the rational use and precise treatment of clinical antibiotics.

Keywords:Hematopoietic Stem Cell Transplantation, Lung Infection, mNGS, Bronchoscopy, Bronchoalveolar Lavage Fluid

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 结核分枝杆菌

由于HSCT患者免疫重建需要两年时间,HSCT患者感染结核菌是普通人的10~40倍 [1] [2] 。血液病患者在造血干细胞移植后的11~3337天里,均有感染结核菌的相关文献报导 [3] [4] 。我国血液病患者经造血干细胞移植后的结核菌感染大多发生于移植后1年,他们的临床症状并不典型,其中发热、咳嗽是最常见表现,因其免疫缺陷可表现出少见的结核菌感染的临床症状,包括表现出不典型的弥漫性肺泡内出血 [5] ,加之HSCT患者结核菌感染可被其他合并的感染,如细菌、真菌等其他病原体所掩盖,既往有行HSCT后感染结核菌行胸腔镜辅助活检术后指导治疗的报道 [6] 。且抗结核药物存在骨髓抑制、肝损伤等不良反应,治疗周期较长,其耐药也越来越常见 [7] 。早期行支气管镜肺泡灌洗液(Bronchoscopic alveolar lavage fluid, BALF) mNGS检测可在结核感染未进展时立即给与抗痨治疗,同时对于混合性感染,传统检测手段在送检标本中较难检测出多种病原体,而NGS可进行鉴别多种混合感染。但因抗结核药同时也有骨髓抑制、尿酸增多及肝损害等不良反应,加上耐药结核菌越加常见。HSCT的结核治疗目前也面临挑战。但无疑早期诊断HSCT患者的结核菌感染能提高HSCT患者生存率。

2. 真菌

随着不断扩大的免疫功能低下队伍:造血干细胞移植患者,中性粒细胞减少症患者、人类免疫缺陷病毒、慢性免疫抑制患者、留置假体患者、烧伤患者和糖尿病患者,真菌的感染率逐年增加 [8] 。侵袭性肺真菌病(invasive pulmonary fungal diseases, IPFD)目前仍是血液肿瘤患者化疗以及造血干细胞移植后的重大威胁,是导致造血干细胞移植后患者死亡的一个重要原因 [9] [10] 。由于患者感染曲霉菌后并没有特异的临床表现,大多患者就诊时多已存在I型呼吸衰竭,故其确诊常需病理活检,而病理活检又需要经皮肺穿刺、开胸肺活检等具有一定的创伤性、侵入性获取病理标本手段,在临床上因其风险与受益不成正比而极少应用于诊断,故容易造成漏诊和误诊。传统的痰液培养的阳性率低且培养周期长,真菌的特殊病理染色(六胺银染色、过碘酸-雪夫染色、革兰染色等) 能够提高诊断率 [11] ,但对检测人员的诊断水平要求较高。用G试验所诊断的侵袭性肺曲霉病(invasive pulmonary aspergillosis, IPA)、侵肺孢子菌肺炎,它们的敏感度和特异度不仅在阳性和阴性预测值各不相同,且能引起结果假阳性的因素较多 [12] 。支气管镜肺泡灌洗术与活检相比,操作快、风险低。支气管肺泡灌洗液的宏基因组二代测序技术在诊断真菌感染的敏感度和特异度均优于传统检测手段。我国上海 [13] 曾报道过一例BALF细菌、真菌培养、血液培养阴性,常规微生物检查均未检出致病菌而BALF mNGS检测出军团菌的报道。相信其应用可以为早期的诊断与治疗提供宝贵的意见。

3. 病毒

巨细胞病毒是异基因移植后最重要的病毒性感染病原之一。以及因移植后监测CMV抗原血症,一旦出现即应立即进行抢先治疗。CMV病可表现为间质性肺炎、肠炎、肝炎和视网膜炎。间质性肺炎起病急、进展快,表现为发热及快速进展的低氧症状,胸部影像学呈弥漫性间质改变 [14] 。必须迅速高流量面罩或正压给氧、同时进行抗病毒治疗。所以对CMV快速做出诊断是治疗的关键。我国对CMV的检测主要是以实验室检测为主,包括对CMVIgG、CMVIgM以及CMVDNA的检测,其中CMVIgG、CMVIgM主要提示既往存在感染,对早期诊断仅起到进一定的检测的参考意见,CMV病毒在人类血清中的阳性率约为30%~97% [15] ,而BALF中对CMV-DNA的PCR检测有较高的敏感性及特异性,其病毒载量能够明确对CMV的诊断 [16] [17] 。其中对同源造血干细胞移植后感染CMV后其病毒载量的相关研究有报道出 [18] ,BALF的灌洗液病毒载量在最优临界载量(454.5 IU/mL)下的诊断灵敏度与特异度分别达到91%、77%,相比之下,血浆内CMVDNA载量在最优临界载量(274 IU/mL)下的诊断灵敏度与特异度分别为63%、76%。这和杨瑞红 [19] 等研究结果相符合,都提示取BALF进行CMVDNA载量测量,能够对造血干细胞移植患者的高效的诊断CMV肺炎,以及早期合理用药控制病情进展。肺泡灌洗液的CMVDNA水平在一个较宽的范围内(670~410 × 106拷贝/mL),平均在5 × 104拷贝/mL左右,而且明显高于血清CMVDNA水平 [20] 。肺泡灌洗液CMVDNA定量检测速度快,敏感性高,2017年美国感染性疾病协会将其纳入到巨细胞病毒肺炎临床诊断的证据中。BALF标本的获取依赖操作人员、DNA检测设备以及各个患者感染情况,最终各个试验最终数据同质性并不完全相同。若能将mNGS加入检测手段,则可对传统检测手段进行补充,或将成为一种快捷准确的辅助诊断手段 [16] [18] 。这可为临床用药时机提供参考,使移植术后患者获益。

4. 其他细菌

细菌性肺炎患者占免疫功能低下患者急性低氧性呼吸衰竭病例的1/3,但因免疫低下患者早期即积极抗感染,使病原体的识别几率降低至约50% [21] 。造血干细胞移植患者在中性粒细胞植入之前因粒细胞缺乏及大剂量化疗导致黏膜屏障受损,细菌感染进展迅速,如不能即使控制,在短期内可危及生命,故一旦发现HSCT后早期患者感染则需立即启动抗感染方案。并且因早期广谱抗感染方案的选用,造血干细胞患者的病原微生物识别率仅仅约为30%~40% [22] 。由于大部分患者对于留取痰液标本存在误区,传统的痰液留取,有大量的口水以及口咽部的菌群污染,加上抗生素的使用,导致最终检测的特异性不高,同时传统的培养需要3~4天才初步获取培养结果。支气管肺泡灌洗液及mNGS技术无须对微生物进行培养,通过对核酸的高通量测序,分析样本中的微生物种类及丰度信息,所以其受抗生素暴露的影响也更小。有国内报道 [23] 指出,在肺部感染的患者中经mNGS诊断后有82.1%的患者调整了治疗,包括更换、增减抗感染药物的使用,在国外也有通过mNGS来调整抗感染方案,而张硕等人的对mNGS指导抗生素的调整率则高于国外peng的调整率 [24] 。BALF mNGS对于肺部感染疾病的早诊断,早治疗,在更早期就能明确病原菌,从而针对性抗感染治疗,能够有效控制感染,防止疾病进一步进展。

5. 结论

综上所述,虽然造血干细胞移植早已普及,但其治疗技术难度大、预处理强度大。虽然现在已经纳入医保,但患者仍需要支付较高的经济成本,有统计表明HSCT患者平均住院费用约为13万元 [25] ,若因移植后感染导致患者死亡,无论对患者的家庭及主治医师都是一种不尽人意的结局。所以BALF mNGS对于明确造血干细胞移植患者肺部感染有重要价值,传统的微生物培养检测敏感性低,而将传统的微生物培养法联合非培养法以及细胞学等多参数检测手段,显著提高不同感染病因诊断的敏感性和特异性。支气管镜肺泡灌洗液mNGS有望将来为移植后特发性肺炎的鉴别及诊断提供一个快速有效的鉴别手段。现阶段在细菌、病毒、真菌的混合感染感染上肺部并发症的死亡率仍然较高,需要在未来快速明确诊断后推进治疗手段的革新,以及肺部感染病原谱的统计,支气管镜肺泡灌洗液mNGS对于今后采取预防措施降低细菌、结核、真菌和巨细胞病毒感染的发生率指明方向。

文章引用

李金泉,何元兵. 支气管肺泡灌洗液及其mNGS对血液系统疾病造血干细胞移植后肺部感染的临床应用
Clinical Application of Bronchoalveolar Lavage Fluid and Its mNGS in Pulmonary Infection after Hematopoietic Stem Cell Transplantation for Hematopoietic Diseases[J]. 临床医学进展, 2024, 14(03): 2298-2302. https://doi.org/10.12677/acm.2024.143975

参考文献

  1. 1. Chang, Y.J., Zhao, X.Y. and Huang, X.J. (2014) Immune Reconstitution after Haploidentical Hematopoietic Stem Cell Transplantation. Transplantation and Cellular Therapy, 20, 440-449. https://doi.org/10.1016/j.bbmt.2013.11.028

  2. 2. Porrata, L.F., Litzow, M.R. and Markovic, S.N. (2001) Immune Reconstitution after Autologous Hematopoietic Stem Cell Transplantation. Mayo Clinic Proceedings, 76, 407-412. https://doi.org/10.1016/S0025-6196(11)62388-4

  3. 3. Al-Anazi, K.A., Al-Jasser, A.M. and Alsaleh, K. (2014) Infections Caused by Mycobacterium Tuberculosis in Recipients of Hematopoietic Stem Cell Transplantation. Frontiers in Oncology, 4, Article 231. https://doi.org/10.3389/fonc.2014.00231

  4. 4. Pena, T. and Klesney-Tait, J. (2017) Mycobacterial Infections in Solid Organ and Hematopoietic Stem Cell Transplantation. Clinics in Chest Medicine, 38, 761-770. https://doi.org/10.1016/j.ccm.2017.07.011

  5. 5. Keung, Y.K., Nugent, K., Jumper, C. and Cobos, E. (1999) Mycobacterium Tuberculosis Infection Masquerading as Diffuse Alveolar Hemorrhage after Autologous Stem Cell Transplant. Bone Marrow Transplantation, 23, 737-738. https://doi.org/10.1038/sj.bmt.1701648

  6. 6. 李静, 赖永榕. 地中海贫血患儿异基因造血干细胞移植术后结核分支杆菌感染1例报告[J]. 临床儿科杂志, 2017, 35(1): 50-53.

  7. 7. 中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版) [J].中华结核和呼吸杂志, 2019, 42(10): 733-749.

  8. 8. Fernández-García, O.A. and Cuellar-Rodríguez, J.M. (2021) Immunology of Fungal Infections. Infectious Disease Clinics of North America, 35, 373-388. https://doi.org/10.1016/j.idc.2021.03.006

  9. 9. Godoy, M.C.B., Ferreira Dalla Pria, H.R., Truong, M.T., Shroff, G.S. and Marom, E.M. (2022) Invasive Fungal Pneumonia in Immunocompromised Patients. Radiologic Clinics, 60, 497-506. https://doi.org/10.1016/j.rcl.2022.01.006

  10. 10. Teh, B.W., Yeoh, D.K., Haeusler, G.M., Yannakou, C.K., Fleming, S., Lindsay, J., et al. (2021) Consensus Guidelines for Antifungal Prophylaxis in Haematological Malignancy and Haemopoietic Stem Cell Transplantation, 2021. Internal Medicine Journal, 51, 67-88. https://doi.org/10.1111/imj.15588

  11. 11. Kain, R. (2017) Histopathology. Methods in Molecular Biology, 1508, 185-193. https://doi.org/10.1007/978-1-4939-6515-1_9

  12. 12. Persat, F., Ranque, S., Derouin, F., Michel-Nguyen, A., Picot, S. and Sulahian, A. (2008) Contribution of the (1→3)-β-D-Glucan Assay for Diagnosis of Invasive Fungal Infections. Journal of Clinical Microbiology, 46, 1009-1013. https://doi.org/10.1128/JCM.02091-07

  13. 13. 巴福元, 田文杰, 轩乾坤. mNGS检出嗜肺军团菌肺炎1例及文献复习[J]. 检验医学与临床, 2023, 20(22): 3416-3418.

  14. 14. Bouros, D., Nicholson, A.C., Polychronopoulos, V. and Du Bois, R.M. (2000) Acute Interstitial Pneumonia. European Respiratory Society, 15, 412-418. https://doi.org/10.1034/j.1399-3003.2000.15b31.x

  15. 15. Beam, E. and Razonable, R.R. (2012) Cytomegalovirus in Solid Organ Transplantation: Epidemiology, Prevention, and Treatment. Current Infectious Disease Reports, 14, 633-641. https://doi.org/10.1007/s11908-012-0292-2

  16. 16. Saksirisampant, G., Kawamatawong, T., Promsombat, K., Sukkasem, W., Liamsombut, S., Pasomsub, E., et al. (2022) A Prospective Study of Plasma and Bronchoalveolar Lavage Fluid CMV DNA Load Quantification for the Diagnosis and Outcome of CMV Pneumonitis in Immunocompromised Hosts. Journal of Clinical Virology, 155, Article ID: 105243. https://doi.org/10.1016/j.jcv.2022.105243

  17. 17. Yang, A., Chen, C., Hu, Y., Zheng, G., Chen, P., Xie, Z., et al. (2022) Application of Metagenomic Next-Generation Sequencing (MNGS) Using Bronchoalveolar Lavage Fluid (BALF) in Diagnosing Pneumonia of Children. Microbiology Spectrum, 10, e0148822. https://doi.org/10.1128/spectrum.01488-22

  18. 18. 李肃. 异基因造血干细胞移植后巨细胞病毒肺炎34例临床研究[J]. 中华血液学杂志, 2020, 41(10): 843-847.

  19. 19. 杨瑞红, 等. 纤维支气管镜及支气管肺泡灌洗检查对免疫功能低下合并肺炎病原学诊断价值[J]. 中华医院感染学杂志, 2008, 18(1): 33-36.

  20. 20. Li, S., Wan, L.P., Xie, G.G., Bao, A.H., Sun, Y., Shu, W., et al. (2019) Application of Bronchoalveolar Lavage Fluid in Patients with Pulmonary Complications after Allogeneic Hematopoietic Stem Cell Transplantation. Chinese Journal of Hematology, 40, 822-826.

  21. 21. Mori, M., Tsunemine, H., Imada, K., Ito, K., Kodaka, T. and Takahashi, T. (2014) Life-Threatening Hemorrhagic Pneumonia Caused by Stenotrophomonas Maltophilia in the Treatment of Hematologic Diseases. Annals of Hematology, 93, 901-911. https://doi.org/10.1007/s00277-014-2028-x

  22. 22. Beam, E., Germer, J.J., Lahr, B., Yao, J.D.C., Limper, A.H., Binnicker, M.J., et al. (2018) Cytomegalovirus (CMV) DNA Quantification in Bronchoalveolar Lavage Fluid of Immunocompromised Patients with CMV Pneumonia. Clinical Transplantation, 32, e13149. https://doi.org/10.1111/ctr.13149

  23. 23. 张硕, 孙培培, 向平超. 宏基因二代测序技术在重症社区获得性肺炎患者中的应用[J]. 中国医学前沿杂志(电子版), 2023, 15(8): 48-55.

  24. 24. Peng, J.M., Du, B., Qin, H.Y., Wang, Q. and Shi, Y. (2021) Metagenomic Next-Generation Sequencing for the Diagnosis of Suspected Pneumonia in Immunocompromised Patients. Journal of Infection, 82, 22-27. https://doi.org/10.1016/j.jinf.2021.01.029

  25. 25. 林杉, 王玮, 辛梅英. 119例造血干细胞移植治疗白血病住院费用调查分析[J]. 中国医院统计, 2001, 8(1): 45-46.

  26. NOTES

    *通讯作者。

期刊菜单