Advances in Clinical Medicine
Vol. 13  No. 08 ( 2023 ), Article ID: 70360 , 9 pages
10.12677/ACM.2023.1381742

PCSK9抑制剂在脂质代谢和动脉粥样硬化中的应用

刘扬,罗健*

新疆医科大学第一附属医院综合内四科/特需内科,新疆 乌鲁木齐

收稿日期:2023年7月13日;录用日期:2023年8月3日;发布日期:2023年8月10日

摘要

自2003年在家族性高胆固醇血症中发现致病基因前蛋白转化酶枯草杆菌素9 (PCSK9)以来,以PCSK9为靶点的研究进展迅速。近年来PCSK9抑制剂被证实具有良好的降低血脂作用,还有潜在的抗炎、降低心血管风险作用,已经作为一种新型降脂药物应用于心血管疾病。现对PCSK9基因与脂质代谢的关系、PCSK9抑制剂的临床研究进展和PCSK9抑制剂的安全性等进行综述。

关键词

PCSK9抑制剂,低密度脂蛋白胆固醇(LDL-C),动脉粥样硬化,炎症

Application of PCSK9 Inhibitors in Lipid Metabolism and Arteriosclerosis

Yang Liu, Jian Luo*

Comprehensive Internal Medicine Department 4 (Special Internal Medicine), The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jul. 13th, 2023; accepted: Aug. 3rd, 2023; published: Aug. 10th, 2023

ABSTRACT

Since the discovery of the pathogenic gene proprotein convertase subtilisin 9 (PCSK9) in familial hypercholesterolemia in 2003, studies of targeting PCSK9 have progressed rapidly. In recent years, PCSK9 inhibitors have been proven to have good lipid-lowering effects, as well as potential anti-inflammatory and cardiovascular risk-reducing effects, and have been used as a new type of lipid-lowering drugs in cardiovascular diseases. This article reviews the relationship between PCSK9 gene and lipid metabolism, the clinical research progress of PCSK9 inhibitors and the safety of PCSK9 inhibitors.

Keywords:PCSK9 Inhibitors, Low-Density Lipoprotein Cholesterol (LDL-C), Arteriosclerosis, Inflammation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

据国家心血管中心公布的《中国心血管病报告2018》 [1] 数据显示,目前我国心血管病患病人数达2.9亿,总体来看,我国心血管病患病率及死亡率仍在不断增加。动脉粥样硬化性心血管疾病(Atherosclerotic Cardiovascular Disease, ASCVD)是世界范围内的一个主要健康问题,是世界各地发病率和死亡率高的原因。它与多种危险因素有关,其中,最重要的危险因素是脂质代谢紊乱。血浆低密度脂蛋白胆固醇(LDL-C)升高是动脉粥样硬化和心血管疾病(Cardiovascular Disease, CVD)的重要危险因素。他汀类药物是临床降脂治疗的基石,然而相当大一部分患者不能耐受他汀类药物,即使在最大耐受剂量他汀类药物治疗后,一些患者仍存在显著的心血管残余风险。动脉粥样硬化是由内皮细胞的功能改变引起的,伴随动脉壁内层LDL-C的积累,粘附分子的表达和趋化剂的释放。前蛋白转化酶枯草杆菌素/kexin9型(proprotein convertase subtilisin/kexin type9, PCSK9)是一种原蛋白转化酶,通过引导肝脏LDL受体进入溶酶体进行降解,来增加循环中LDL-C水平。阻断PCSK9对LDL受体影响的单克隆PCSK9抗体在心血管试验中显示了有益的结果。PCSK9在动脉粥样硬化斑块形成的每一步中都起着重要的作用。越来越多的证据表明,PCSK9是预防和治疗动脉粥样硬化新方法的分子靶点 [2] 。在此,我们将重点关注与PCSK9相关的主要认识,从其发现到其在脂质代谢的作用,参与动脉粥样硬化斑块的形成,以及PCSK9抑制剂在临床中的应用。

随着生活质量的提高,更多不良生活方式的形成,尽管过去几年内治疗方法取得了很大进展,降低了死亡率,但心血管疾病患者人数还在增加。动脉粥样硬化是一种慢性疾病,持续终生。在各种危险因素中,血脂异常,特别是LDL-C水平 [3] [4] ,在动脉粥样硬化过程的发生和进展中起着举足轻重的作用 [5] 。韩国一项研究表明 [6] ,LDL-C水平与心血管疾病病死率之间存在关联,LDL-C高于3.34 mmol/L的患者,死亡风险显著增加。人群和遗传学研究已经确定了LDL-C在动脉粥样硬化性心血管疾病中的因果关系 [7] 。动脉粥样硬化过程起始于内皮细胞的功能改变,致动脉粥样硬化LDL-C在巨噬细胞的作用下沉积在动脉壁内膜上,伴随着动脉壁内层LDL-C的积累、氧化和糖基化,粘附分子的表达和趋化剂的释放 [8] ,有助于斑块的形成和动脉粥样硬化。这个过程一般比较缓慢,其中最容易受累的就是脑动脉和冠状动脉,导致动脉硬化的原因很多,其中包括高血压病、糖尿病、不良生活方式(吸烟)、遗传因素等,ASCVD的发生发展给人类生活带来了很大影响,造成了沉重的经济负担,随着生活条件的向好,更应该注意改善生活方式、减少危险因素的摄入,尽早做好预防。

LDL-C的降低是降低心血管风险的重要目标。目前,他汀类药物仍然是降脂治疗的主要方法之一,他汀类药物是3-羟基-3-甲基戊二酰辅酶A (HMG-CoA)还原酶的抑制剂,是胆固醇生物合成的限速酶,它彻底改变了血脂异常的治疗,由于它在减少高胆固醇血症和减少LDL-C方面的巨大成功,它迅速成为这个指标一线治疗的选择 [9] 。但他汀类药物的治疗不能使高危患者LDL-C达标,尽管使用了最大耐受剂量,增加辅助降脂治疗,如依折麦布,某些患者也不能达到对血脂异常的满意控制,残余心血管风险仍然很高 [10] 。此外,许多患者甚至出现了对他汀类药物的不耐受性和耐药性 [11] 。2020年《超高危动脉粥样硬化性心血管疾病患者血脂管理中国专家共识》 [12] 建议,将超高危患者LDL-C目标降低到 < 1.4 mmol/L且较基线降幅 > 50%。有研究表明,每降低1 mmol/L低密度脂蛋白胆固醇,心肌梗死、冠状动脉死亡、缺血性卒中、冠状动脉重建等主要心血管事件风险按比例降低20%以上 [13] 。因此,对于需要进一步降低LDL-C的患者,需要额外的强效降脂药物。PCSK9的发现以及该蛋白突变与家族性高胆固醇血症的相关性 [14] ,导致了PCSK9作为降低LDL-C和血脂异常相关ASCVD的新的治疗靶点。最近受到了相当多的关注。

2. PCSK9及其作用机制

PCSK9,最初被称为神经凋亡调节转化酶1 (NARC-1),是由Seidah等人在2003年发现的 [15] 。对PCSK9的生理功能的深入了解,最初源于PCSK9基因功能突变导致显性家族性高胆固醇血症的发现。随后的研究表明,PCSK9基因功能缺失突变或变异的个体不仅表现出较低的血浆LDL-C水平,而且CVD的风险也较低 [16] [17] [18] 。PCSK9是人类1号染色体PCSK9基因编码的含有692个氨基酸的丝氨酸蛋白酶,是一个72 kDa的酶原,包括四个结构域,即N端前结构域、信号肽、催化结构域和C端结构域 [19] ,主要在肝细胞中合成,但包括肠道、大脑、肾脏、胰腺、肺等其他组织也表达这种蛋白,但肝脏中的表达最为丰富,它以自分泌形式与LDL受体(LDL-R)结合,参与调节肝脏载脂蛋白B的摄取和胆固醇代谢 [20] 。通过抑制LDL-R再循环回细胞表面,从而上调低密度脂蛋白水平,对低密度脂蛋白颗粒的代谢至关重要。反过来,LDLR介导了PCSK9从血浆中的清除,而不管PCSK9的组织来源如何。

PCSK9受多种因素的影响,如年龄、性别、饮食、运动、昼夜节律、肥胖、药物(如他汀类药物)、肾脏和肝脏疾病、2型糖尿病等 [21] [22] 。其中,转录因子甾醇调节元件结合蛋白2 (SREBP-2)受细胞内胆固醇浓度的影响,调节LDL-R基因和PCSK9编码基因的表达 [23] ,他汀类药物是SREBP-2的激动剂,当剂量加倍时,一方面会降低LDL-C水平,另一方面,也会增加PSCK9的表达,从而使LDL-C降解减少,基于以上机制,临床上使用他汀类药物剂量翻倍时,不能使降脂能力翻倍,而只能在原有基础上,LDL-C水平仅仅再下降6%,即所谓的他汀6%效应 [19] 。SREBP-2增加PCSK9的表达对原发性高胆固醇血症和杂合子家族性高胆固醇血症患者同样有害 [24] 。有研究表明,PCSK9基因的功能获得(GOF)突变是家族性高胆固醇血症的原因,血液中的胆固醇水平显著升高 [14] ,而功能丧失突变(LOF)与低胆固醇血症相关 [25] 。

PCSK9在调节胆固醇稳态中起着至关重要的作用。迄今为止,PCSK9的第一个也可能是研究最多和最重要的靶点是肝细胞表面的LDL-R,PCSK9通过与LDL-C和LDL-R结合形成复合物,介导LDL-R在溶酶体中的内化和降解,随后减少LDL-R的再循环,减少LDL-C的清除,导致LDL-C水平升高。在PCSK9缺失的情况下,LDL-R与肝细胞表面的LDL-C结合,将其转移到肝细胞内的溶酶体内,使血浆中的LDL-C降解,LDL-R重新循环回细胞表面,结合新的低密度脂蛋白颗粒 [26] 。因此,PCSK9抑制剂已经成为脂质管理的有效且新疗法,特别是对于最大耐受他汀类及依折麦布联合治疗下,不能达到足够的降脂效果的患者。PCSK9的核心作用仍然是调节胆固醇稳态,即使越来越多的研究表明,PCSK9可以发挥更多的作用 [27] 。

PCSK9是脂质代谢的关键蛋白,参与炎症细胞因子的产生、内皮功能障碍、动脉粥样硬化斑块的发展、破裂和动脉粥样硬化血栓形成,导致急性心血管事件 [28] 。动脉粥样硬化斑块的形成是一种脂蛋白驱动的疾病,且随着身体的衰老,代谢的改变,动脉粥样硬化是一个终生的炎症过程。PCSK9可通过促进血小板活化、白细胞募集和血凝块形成,以及通过与全身脂质变化无关的机制,促进动脉粥样硬化斑块和血栓形成。炎症过程在动脉粥样硬化的病理生理过程中起着重要的作用 [29] 。PCSK9能够诱导促炎细胞因子的表达,如肿瘤坏死因子a (TNF-a)、白细胞介素-1β (IL-1β)或白细胞介素-6 (IL-6),并减少巨噬细胞中抗炎细胞因子的形成 [30] [31] ,降低了编码抗炎标志物如IL-10基因的表达。研究证实,PCSK9通过结合低密度脂蛋白受体,在斑块中的相互作用增强炎性单核细胞向血管壁的浸润和分化,这些细胞在激活过程中释放细胞因子并创造一个促炎环境,最终形成泡沫细胞,直接促进炎性动脉粥样硬化斑块的形成 [32] 。

PCSK9还通过toll样受体4或核因子κB [30] 和脂蛋白受体相关蛋白1通路介导心肌细胞自噬 [33] 并加重炎症反应。PCSK9在心肌梗死边界区的表达也表明,PCSK9可能通过诱导细胞凋亡和自噬在梗死的扩展中发挥作用,通过影响凋亡途径参与细胞的寿命。在全身炎症反应综合征和脓毒症患者中 [34] ,血清PCSK9水平较高。临床试验中,靶向治疗可能通过改变一些促炎机制来改善急性和慢性缺血患者 [35] 的心脏预后。内皮功能障碍是动脉粥样硬化的最早表现,与斑块进展和动脉粥样硬化并发症有关 [36] 。氧化低密度脂蛋白(ox-LDL)促内皮细胞凋亡增加了其功能障碍,内皮损伤和激活导致炎症细胞附着的表面分子的表达,为动脉粥样硬化的发展创造了有利条件 [37] 。PCSK9的过表达已被证明会增加动脉粥样硬化斑块的大小 [38] 。通过增加斑块的脆弱性,从而增加斑块破裂的风险,进一步增加急性心血管事件发生的风险。PCSK9可影响动脉粥样硬化病变的大小,在病变中的积累直接影响斑块组成,也独立于血脂水平。这一事实可以解释PCSK9和动脉粥样硬化之间的直接关系,以及为什么PCSK9过表达是致动脉粥样硬化的,而它的缺失是具有保护作用的,增加了抗PCSK9治疗研究的心血管益处。

3. PCSK9抑制剂

尽管他汀类药物治疗仍然是降低循环中LDL-C的基石,但他汀类药物单药治疗在临床实践中尚未取得更加满意的效果,因为超过70%的动脉粥样硬化CVD患者没有达到LDL-C < 70 mg/dL水平 [39] 。且他汀类药物带来的不良反应,导致患者停止此类药物的摄入,药物依从性差也是导致CVD患者风险增加的一个主要因素。因此,为应对降低LDL-C的需要,以及提高患者对药物治疗的依从性,促进了新的降脂治疗方法的研发。自PCSK9作为一种与脂质代谢相关的分子被发现不久,人们对其靶向高胆固醇血症的治疗方法兴趣剧增。相关研究表明,缺乏PCSK9表达或活性 [40] [41] 的人类和小鼠LDL-C水平低且没有有害后果,促进了PCSK9抑制剂的研发,该抑制剂阻断其在LDL-R上的功能,并显著降低循环中LDL-C水平。这些药物包括单克隆抗体(evolocumab和alirocumab)和一种小干扰RNA药物(inclisiran) [42] [43] 。

依洛尤单抗(evolocumab)和阿利西尤单抗(alirocumab)已经获得了美国食品和药品管理局(FDA)的批准,用于临床,可能作为他汀类药物的单药或附加治疗用于家族性高胆固醇血症和ASCVD患者,可显著降低低密度脂蛋白水平,降低心血管事件的发生率 [44] [45] 。依洛尤单抗的III期临床试验评估了依洛尤单抗对高脂血症和高心血管风险、纯合子家族性高胆固醇血症、杂合子家族性高胆固醇血症(HeFH)或他汀类药物不耐受患者的疗效 [46] - [51] 。这些试验表明,每周140 mg或每月420 mg的皮下注射剂量可显著降低60%的LDL-C水平。相关随机对照试验报告 [35] [52] 称,每月增加420 mg依洛尤单抗可使冠心病患者的LDL-C降低59%,导致心血管事件发生率比他汀类药物治疗降低9.8%。在FOURIER试验中,27,564例动脉粥样硬化性心血管疾病患者被随机分配到接受依洛尤单抗组(每2周140 mg或每月420 mg)或安慰剂组 [35] ,在第48周时,依洛尤单抗显著降低了LDL-C水平,并降低了心血管事件的风险。此外,依洛尤单抗治疗显著降低了主要心血管终点事件(MACE)的发生风险 [35] ,对糖尿病 [53] 、代谢综合征 [54] 或既往缺血性卒中患者 [55] 也有益处。

ODYSSEY COMBO II期随机对照试验中,与依折麦布相比,阿利西尤单抗显著降低了apoB、非HDL-C、TC和Lp (a)水平 [56] [57] [58] ,且没有额外的不良事件。在ODYSSEY MONO试验中 [59] ,未接受他汀类药物或其他任何降脂治疗的且含有心血管风险因素的高胆固醇血症患者,随机分为接受阿利西尤单抗注射治疗组和接受依折麦布口服治疗组,经过24周的治疗,阿利西尤单抗组与依折麦布组相比,显著降低LDL-C水平。阿利西尤单抗组皮下注射部位不良反应发生率 < 2%。研究表明 [60] [61] ,阿利西尤单抗可减少急性冠脉综合征发生不良心血管事件风险,不会增加新发糖尿病的风险。LDL-C水平越低,预后越好,已经成为一种普遍趋势。FOURIER和ODISSEY研究结果,支持PCSK9抑制剂作为治疗血脂异常的辅助策略,美国心脏病学会临床实践指南 [62] 指出,应用最大耐受剂量他汀类药物和或依折麦布的CVD患者、LDL-C ≥ 90 mg/dL的患者,建议予以PCSK9抑制剂治疗。PCSK9抑制剂可显著降低LDL-C水平,进一步降低心血管风险。

真实世界研究中,PCSK9抑制剂每两周或每月皮下注射,理论上PCSK9抑制剂应该有良好的依从性。一种基于RNA干扰治疗的抑制PCSK9产生的新途径,小干扰RNA (siRNA) inclisiran,可迅速被肝脏吸收,减少PCSK9的表达,从而抑制LDL-C受体的溶酶体降解,增强其到达细胞膜的数量,降低循环中LDL-C水平,且每6个月皮下注射给药方式,进一步提高了患者依从性。ORION III期研究 [63] [64] 表明,在HeFH、LDL-C升高和最大耐受他汀类药物和或依折麦布患者中,与安慰剂组相比,inclisiran可以使大约80%高危患者的LDL-C水平降低47.9%,并且降低了血浆PCSK9水平,且患者耐受性良好,并使非高密度脂蛋白胆固醇、TG、Lp (a)显著降低,持久的降低LDL-C水平,并且没有造成严重的不良反应。另一种正在开发的PCSK9抑制剂 [65] 是口服制剂,这些制剂不同于目前基于单抗的治疗方法。MK-0616是一种口服的PCSK9抑制剂,1期数据显示,可以使LDL-C显著降低,且没有发生严重的不良安全事件。

4. PCSK9抑制剂的安全性

在降脂治疗过程中,最令人担忧的是他汀类药物对肝功能、血糖、横纹肌等不良反应。大型随机对照试验显示,PCSK9抑制剂总体上是安全且耐受性良好。PCSK9抑制剂可能会引发过敏反应、注射部位反应、肌肉酸痛、神经功能异常、头晕等不良反应 [66] ,但这些副作用通常是轻微的。PCSK9抑制剂的主要不良反应为上呼吸道感染、鼻咽炎、流感、背痛等,其发生率低于2% [49] 。相关研究表明 [67] ,早期应用PCSK9抑制剂加强降脂并没有增加他汀类药物常见不良反应的发生率。既往关于PCSK9抑制剂降脂的研究均未报道其对肝功能或神经认知功能的明显损害 [68] 。一项对59,733名患者的荟萃分析 [69] ,收集了关于PCSK9抑制剂对神经认知不良事件影响的RCT数据,发现PCSK9抑制剂没有显著增加神经认知不良反应的风险。研究表明 [54] ,在2.2年的随访中,PCSK9抑制剂依洛尤单抗显著降低了代谢综合征患者的低密度脂蛋白胆固醇和心血管风险,而不增加新发糖尿病、血糖恶化或其他重大安全事件风险。在真实世界中对PCSK9抑制剂进行长期监测是必要的。

5. 总结与展望

2003年发现PCSK9后,其知识在不到9年的时间里从实验室转移到临床,脂质领域出现了一个急剧的转变。PCSK9通路的治疗干预导致了新型降脂治疗药物的成功实施,显著改善了极高心血管风险患者的预后。此外,他汀类药物不耐受的患者也可能受益于PCSK9抑制剂。PCSK9抑制剂是一种有效的、通常耐受性良好的降低LDL-C的治疗药物,并已在心血管结局试验中被证明可以降低二级预防患者发生ASCVD的风险。目前的指南推荐,接受最大耐受他汀类药物和或依折麦布治疗的高风险患者,LDL-C仍不达标时,建议使用PCSK9抑制剂,进一步降低心血管风险。

文章引用

刘 扬,罗 健. PCSK9抑制剂在脂质代谢和动脉粥样硬化中的应用
Application of PCSK9 Inhibitors in Lipid Metabolism and Arteriosclerosis[J]. 临床医学进展, 2023, 13(08): 12430-12438. https://doi.org/10.12677/ACM.2023.1381742

参考文献

  1. 1. Saavedra, Y.G.L., Dufour, R., Davignon, J. and Baass, A. (2014) PCSK9 R46L, Lower LDL, and Cardiovascular Disease Risk in Familial Hypercholesterolemia: A Cross-Sectional Co-hort Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2700-2705. https://doi.org/10.1161/ATVBAHA.114.304406

  2. 2. Seidah, N.G., Awan, Z., Chrétien, M. and Mbikay, M. (2014) PCSK9: A Key Modulator of Cardiovascular Health. Circulation Research, 114, 1022-1036. https://doi.org/10.1161/CIRCRESAHA.114.301621

  3. 3. 郑祥珍, 王炳香, 秦树存. 前蛋白转化酶枯草溶菌素9参与动脉粥样硬化的研究进展[J]. 中华老年心脑血管病杂志, 2019, 21(1): 87-89.

  4. 4. Tavori, H., Fan, D., Blakemore, J.L., et al. (2013) Serum Proprotein Convertase Subtilisin/Kexin Type 9 and Cell Surface Low-Density Lip-oprotein Receptor: Evidence for a Reciprocal Regulation. Circulation, 127, 2403-2413. https://doi.org/10.1161/CIRCULATIONAHA.113.001592

  5. 5. Cui, C.-J., Li, S. and Li, J.-J. (2015) PCSK9 and Its Modulation. Clinica Chimica Acta, 440, 79-86. https://doi.org/10.1016/j.cca.2014.10.044

  6. 6. Schluter, K.-D., Wolf, A. and Schreckenberg, R. (2020) Coming Back to Physiology: Extra Hepatic Functions of Proprotein Convertase Subtilisin/Kexin Type 9. Frontiers in Physiology, 11, Article 598649. https://doi.org/10.3389/fphys.2020.598649

  7. 7. Goldstein, J.L. and Brown, M.S. (2015) A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell, 161, 161-172. https://doi.org/10.1016/j.cell.2015.01.036

  8. 8. Lambert, G., Petrides, F., Chatelais, M., et al. (2014) Elevated Plasma PCSK9 Level Is Equally Detrimental for Patients with Nonfamilial Hypercholesterolemia and Heterozygous Fa-milial Hypercholesterolemia, Irrespective of Low-Density Lipoprotein Receptor Defects. Journal of the American College of Cardiology, 63, 2365-2373. https://doi.org/10.1016/j.jacc.2014.02.538

  9. 9. Uribe, K.B., Chemello, K., Larrea-Sebal, A., et al. (2021) A Sys-tematic Approach to Assess the Activity and Classification of PCSK9 Variants. International Journal of Molecular Sci-ences, 22, Article No. 13602. https://doi.org/10.3390/ijms222413602

  10. 10. Shapiro, M.D., Tavori, H. and Fazio, S. (2018) PCSK9: From Basic Science Discoveries to Clinical Trials. Circulation Research, 122, 1420-1438. https://doi.org/10.1161/CIRCRESAHA.118.311227

  11. 11. Macchi, C., Ferri, N., Sirtori, C.R., et al. (2021) Propro-tein Convertase Subtilisin/Kexin Type 9: A View beyond the Canonical Cholesterol-Lowering Impact. The American Journal of Pathology, 191, 1385-1397. https://doi.org/10.1016/j.ajpath.2021.04.016

  12. 12. Wu, N.-Q., Shi, H.-W. and Li, J.-J. (2022) Proprotein Convertase Subtilisin/Kexin Type 9 and Inflammation: An Updated Review. Frontiers in Cardiovascular Medicine, 9, Article 763516. https://doi.org/10.3389/fcvm.2022.763516

  13. 13. Geovanini, G.R. and Libby, P. (2018) Atherosclerosis and Inflammation: Overview and Updates. Clinical Science, 132, 1243-1252. https://doi.org/10.1042/CS20180306

  14. 14. Tang, Z.-H., Peng, J., Ren, Z., et al. (2017) New Role of PCSK9 in Atherosclerotic Inflammation Promotion Involving the TLR4/NF-κB Pathway. Atherosclerosis, 262, 113-122. https://doi.org/10.1016/j.atherosclerosis.2017.04.023

  15. 15. Ricci, C., Ruscica, M., Camera, M., et al. (2018) PCSK9 Induces a Pro-Inflammatory Response in Macrophages. Scientific Reports, 8, Article No. 2267. https://doi.org/10.1038/s41598-018-20425-x

  16. 16. Badimon, L., Luquero, A., Crespo, J., Peña, E. and Bor-rell-Pages, M. (2021) PCSK9 and LRP5 in Macrophage Lipid Internalization and Inflammation. Cardiovascular Re-search, 117, 2054-2068. https://doi.org/10.1093/cvr/cvaa254

  17. 17. Ding, Z., Wang, X., Liu, S., et al. (2018) PCSK9 Expression in the Ischaemic Heart and Its Relationship to Infarct Size, Cardiac Function, and Development of Autophagy. Cardiovascular Research, 114, 1738-1751. https://doi.org/10.1093/cvr/cvy128

  18. 18. Boyd, J.H., Fjell, C.D., Russell, J.A., et al. (2016) Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis. Journal of Innate Immunity, 8, 211-220. https://doi.org/10.1159/000442976

  19. 19. Sabatine, M.S., Giugliano, R.P., Keech, A.C., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. New England Journal of Medicine, 376, 1713-1722. https://doi.org/10.1056/NEJMoa1615664

  20. 20. Park, K.-H. and Park, W.J. (2015) Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. Journal of Korean Medical Science, 30, 1213-1225. https://doi.org/10.3346/jkms.2015.30.9.1213

  21. 21. Yurtseven, E., Ural, D., Baysal, K. and Tokgözoğlu, L. (2020) An Update on the Role of PCSK9 in Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 27, 909-918. https://doi.org/10.5551/jat.55400

  22. 22. Roche-Molina, M., Sanz-Rosa, D., Cruz, F.M., et al. (2015) Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus-Mediated Gene Transfer of Mutant hPCSK9. Arte-riosclerosis, Thrombosis, and Vascular Biology, 35, 50-59. https://doi.org/10.1161/ATVBAHA.114.303617

  23. 23. Adhyaru, B.B. and Jacobson, T.A. (2018) Safety and Effi-cacy of Statin Therapy. Nature Reviews Cardiology, 15, 757-769. https://doi.org/10.1038/s41569-018-0098-5

  24. 24. Lebeau, P.F., Wassef, H., Byun, J.H., et al. (2021) The Loss-of-Function PCSK9Q152H Variant Increases ER Chaperones GRP78 and GRP94 and Protects against Liver Injury Journal of Clinical Investigation, 131, e128650. https://doi.org/10.1172/JCI128650

  25. 25. Mayne, J., Dewpura, T., Raymond, A., et al. (2011) Novel Loss-of-Function PCSK9 Variant Is Associated with Low Plasma LDL Cholesterol in a French-Canadian Family and with Impaired Processing and Secretion in Cell Culture. Clinical Chemistry, 57, 1415-1423. https://doi.org/10.1373/clinchem.2011.165191

  26. 26. Rosenson, R.S., Hegele, R.A. and Koenig, W. (2019) Choles-terol-Lowering Agents. Circulation Research, 124, 364-385. https://doi.org/10.1161/CIRCRESAHA.118.313238

  27. 27. Seidah, N.G., Prat, A., Pirillo, A., Catapano, A.L. and Norata, G.D. (2019) Novel Strategies to Target Proprotein Convertase Subtilisin Kexin 9: Beyond Monoclonal Antibod-ies. Cardiovascular Research, 115, 510-518. https://doi.org/10.1093/cvr/cvz003

  28. 28. Sabatine, M.S., Giugliano, R.P., Wiviott, S.D., et al. (2015) Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine, 372, 1500-1509. https://doi.org/10.1056/NEJMoa1500858

  29. 29. Robinson, J.G., Farnier, M., Krempf, M., et al. (2015) Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine, 372, 1489-1499. https://doi.org/10.1056/NEJMoa1501031

  30. 30. Raal, F.J., Stein, E.A., Dufour, R., et al. (2015) PCSK9 Inhibition with Evolocumab (AMG 145) in Heterozygous Familial Hypercholesterolaemia (RUTHERFORD-2): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet, 385, 331-340. https://doi.org/10.1016/S0140-6736(14)61399-4

  31. 31. Koren, M.J., Giugliano, R.P., Raal, F.J., et al. (2014) Effi-cacy and Safety of Longer-Term Administration of Evolocumab (AMG 145) in Patients with Hypercholesterolemia: 52-Week Results from the Open-Label Study of Long-Term Evaluation against LDL-C (OSLER) Randomized Trial. Circulation, 129, 234-243. https://doi.org/10.1161/CIRCULATIONAHA.113.007012

  32. 32. Blom, D.J., Hala, T., Bolognese, M., et al. (2014) A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia. New England Journal of Medicine, 370, 1809-1819. https://doi.org/10.1056/NEJMoa1316222

  33. 33. Robinson, J.G., Nedergaard, B.S., Rogers, W.J., et al. (2014) Effect of Evolocumab or Ezetimibe Added to Moderate- or High-Intensity Statin Therapy on LDL-C Lowering in Patients with Hypercholesterolemia: The LAPLACE-2 Randomized Clinical Trial. JAMA, 311, 1870-1882. https://doi.org/10.1001/jama.2014.4030

  34. 34. Stroes, E., Colquhoun, D., Sullivan, D., et al. (2014) Anti-PCSK9 Antibody Effectively Lowers Cholesterol in Patients with Statin Intolerance: The GAUSS-2 Randomized, Place-bo-Controlled Phase 3 Clinical Trial of Evolocumab. Journal of the American College of Cardiology, 63, 2541-2548. https://doi.org/10.1016/j.jacc.2014.03.019

  35. 35. Blom, D.J., Djedjos, C.S., Monsalvo, M.L., et al. (2015) Effects of Evolocumab on Vitamin E and Steroid Hormone Levels: Results from the 52-Week, Phase 3, Double-Blind, Randomized, Placebo-Controlled DESCARTES Study. Circulation Research, 117, 731-741. https://doi.org/10.1161/CIRCRESAHA.115.307071

  36. 36. 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.

  37. 37. Nicholls, S.J., Kataoka, Y., Nissen, S.E., et al. (2022) Effect of Evolocumab on Coronary Plaque Phe-notype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC: Cardiovascular Imaging, 15, 1308-1321. https://doi.org/10.1016/j.jcmg.2022.03.002

  38. 38. Koren, M.J., Sabatine, M.S., Giugliano, R.P., et al. (2017) Long-Term Low-Density Lipoprotein Cholesterol-Lowering Efficacy, Persistence, and Safety of Evolocumab in Treat-ment of Hypercholesterolemia: Results up to 4 Years from the Open-Label OSLER-1 Extension Study. JAMA Cardiolo-gy, 2, 598-607. https://doi.org/10.1001/jamacardio.2017.0747

  39. 39. Khatana, C., Saini, N.K., Chakrabarti, S., et al. (2020) Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5245308. https://doi.org/10.1155/2020/5245308

  40. 40. Sabatine, M.S., Leiter, L.A., Wiviott, S.D., et al. (2017) Cardi-ovascular Safety and Efficacy of the PCSK9 Inhibitor Evolocumab in Patients with and without Diabetes and the Effect of Evolocumab on Glycaemia and Risk of New-Onset Diabetes: A Prespecified Analysis of the FOURIER Randomised Controlled Trial. The Lancet Diabetes and Endocrinology, 5, 941-950. https://doi.org/10.1016/S2213-8587(17)30313-3

  41. 41. Deedwania, P., Murphy, S.A., Scheen, A., et al. (2021) Ef-ficacy and Safety of PCSK9 Inhibition with Evolocumab in Reducing Cardiovascular Events in Patients with Metabolic Syndrome Receiving Statin Therapy: Secondary Analysis from the FOURIER Randomized Clinical Trial. JAMA Cardi-ology, 6, 139-147. https://doi.org/10.1001/jamacardio.2020.3151

  42. 42. Giugliano, R.P., Wiviott, S.D., Blazing, M.A., et al. (2017) Long-Term Safety and Efficacy of Achieving Very Low Levels of Low-Density Lipoprotein Cholesterol: A Prespecified Analysis of the IMPROVE-IT Trial. JAMA Cardiology, 2, 547-555. https://doi.org/10.1001/jamacardio.2017.0083

  43. 43. Giugliano, R.P., Pedersen, T.R., Saver, J.L., et al. (2020) Stroke Prevention with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients with Stable Atherosclerosis. Stroke, 51, 1546-1554. https://doi.org/10.1161/STROKEAHA.119.027759

  44. 44. Cannon, C.P., Cariou, B., Blom, D., et al. (2015) Efficacy and Safety of Alirocumab in High Cardiovascular Risk Patients with Inadequately Controlled Hypercholesterolaemia on Maximally Tolerated Doses of Statins: The ODYSSEY COMBO II Randomized Controlled Trial. European Heart Journal, 36, 1186-1194. https://doi.org/10.1093/eurheartj/ehv028

  45. 45. Yusuf, S., Hawken, S., Ounpuu, S., et al. (2004) Effect of Potentially Modifiable Risk Factors Associated with Myocardial In-farction in 52 Countries (the INTERHEART Study): Case-Control Study. Lancet, 364, 937-952. https://doi.org/10.1016/S0140-6736(04)17018-9

  46. 46. Sung, K.-C., Huh, J.H., Ryu, S., et al. (2019) Low Levels of Low-Density Lipoprotein Cholesterol and Mortality Outcomes in Non-Statin Users. Journal of Clinical Medicine, 8, Ar-ticle No. 1571. https://doi.org/10.3390/jcm8101571

  47. 47. Ying, Q., Chan, D.C., Pang, J., et al. (2022) PCSK9 Inhibition with Alirocumab Decreases Plasma Lipoprotein(a) Concentration by a Dual Mechanism of Action in Statin-Treated Patients with Very High Apolipoprotein(a) Concentration. Journal of Internal Medicine, 291, 870-876. https://doi.org/10.1111/joim.13457

  48. 48. Villard, E.F., Thedrez, A., Blankenstein, J., et al. (2016) PCSK9 Modu-lates the Secretion but Not the Cellular Uptake of Lipoprotein(a) ExVivo: An Effect Blunted by Alirocumab. JACC: Basic to Translational Science, 1, 419-427. https://doi.org/10.1016/j.jacbts.2016.06.006

  49. 49. Roth, E.M., Taskinen, M.R., Ginsberg, H.N., et al. (2014) Mon-otherapy with the PCSK9 Inhibitor Alirocumab versus Ezetimibe in Patients with Hypercholesterolemia: Results of a 24week, Double-Blind, Randomized Phase 3 Trial. International Journal of Cardiology, 176, 55-61. https://doi.org/10.1016/j.ijcard.2014.06.049

  50. 50. Goodman, S.G., Aylward, P.E., Szarek, M., et al. (2019) Effects of Alirocumab on Cardiovascular Events after Coronary Bypass Surgery. Journal of the American College of Cardiology, 74, 1177-1186. https://doi.org/10.1016/j.jacc.2019.07.015

  51. 51. Damask, A., Steg, P.G., Schwartz, G.G., et al. (2020) Patients with High Genome-Wide Polygenic Risk Scores for Coronary Artery Disease May Receive Greater Clinical Benefit from Alirocumab Treatment in the Odyssey Outcomes Trial. Circulation, 141, 624-636. https://doi.org/10.1161/CIRCULATIONAHA.119.044434

  52. 52. Arnett, D.K., Blumenthal, R.S., Albert, M.A., et al. (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140, e596-e646. https://doi.org/10.1161/CIR.0000000000000678

  53. 53. Raal, F.J., Kallend, D., Ray, K.K., et al. (2020) Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. New England Journal of Medicine, 382, 1520-1530. https://doi.org/10.1056/NEJMoa1913805

  54. 54. Ray, K.K., Wright, R.S., Kallend, D., et al. (2020) Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. New England Journal of Medicine, 382, 1507-1519. https://doi.org/10.1056/NEJMoa1912387

  55. 55. Tucker, T.J., Embrey, M.W., Alleyne, C., et al. (2021) A Series of Novel, Highly Potent, and Orally Bioavailable Next-Generation Tricyclic Peptide PCSK9 Inhibitors. Journal of Medicinal Chemistry, 64, 16770-16800. https://doi.org/10.1021/acs.jmedchem.1c01599

  56. 56. Chaudhary, R., Garg, J., Shah, N. and Sumner, A. (2017) PCSK9 inhibitors: A New Era of Lipid Lowering Therapy. World Journal of Cardiology, 9, 76-91. https://doi.org/10.4330/wjc.v9.i2.76

  57. 57. Hao, Y., Yang, Y.-L., Wang, Y.-C. and Li, J. (2022) Effect of the Early Application of Evolocumab on Blood Lipid Profile and Cardiovascular Prognosis in Patients with Extremely High-Risk Acute Coronary Syndrome. International Heart Journal, 63, 669-677. https://doi.org/10.1536/ihj.22-052

  58. 58. Squizzato, A., Suter, M.B., Nerone, M., et al. (2017) PCSK9 Inhibitors for Treating Dyslipidemia in Patients at Different Cardiovascular Risk: A Systematic Review and a Meta-Analysis. Internal and Emergency Medicine, 12, 1043-1053. https://doi.org/10.1007/s11739-017-1708-7

  59. 59. Ference, B.A., Ginsberg, H.N., Graham, I., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472. https://doi.org/10.1093/eurheartj/ehx144

  60. 60. Libby, P., Buring, J.E., Badimon, L., et al. (2019) Atherosclerosis. Nature Reviews Disease Primers, 5, Article No. 56. https://doi.org/10.1038/s41572-019-0106-z

  61. 61. Koo, B.K. (2014) Statin for the Primary Prevention of Cardiovas-cular Disease in Patients with Diabetes Mellitus. Diabetes & Metabolism Journal, 38, 32-34. https://doi.org/10.4093/dmj.2014.38.1.32

  62. 62. Page, M.M. and Watts, G.F. (2018) PCSK9 in Context: A Contem-porary Review of an Important Biological Target for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Diabetes, Obesity and Metabolism, 20, 270-282. https://doi.org/10.1111/dom.13070

  63. 63. Pijlman, A.H., Huijgen, R., Verhagen, S.N., et al. (2010) Evaluation of Cholesterol Lowering Treatment of Patients with Familial Hypercholesterolemia: A Large Cross-Sectional Study in the Netherlands. Atherosclerosis, 209, 189-194. https://doi.org/10.1016/j.atherosclerosis.2009.09.014

  64. 64. 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中华心血管病杂志编辑委员会. 超高危动脉粥样硬化性心血管疾病患者血脂管理中国专家共识[J]. 中华心血管病杂志, 2020, 48(4): 280-286.

  65. 65. Mihaylova, B., Emberson, J., Blackwell, L., et al. (2012) The Effects of Lowering LDL Cholesterol with Statin Therapy in People at Low Risk of Vascular Disease: Meta-Analysis of Individual Data from 27 Randomised Trials. Lancet, 380, 581-590. https://doi.org/10.1016/S0140-6736(12)60367-5

  66. 66. Abifadel, M., Varret, M., Rabes, J.-P., et al. (2003) Muta-tions in PCSK9 Cause Autosomal Dominant Hypercholesterolemia. Nature Genetics, 34, 154-156. https://doi.org/10.1038/ng1161

  67. 67. Seidah, N.G., Benjannet, S., Wickham, L., et al. (2003) The Secretory Propro-tein Convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): Liver Regeneration and Neuronal Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 928-933. https://doi.org/10.1073/pnas.0335507100

  68. 68. Abifadel, M., Elbitar, S., El Khoury, P., et al. (2014) Living the PCSK9 Adventure: From the Identification of a New Gene in Familial Hypercholesterolemia towards a Potential New Class of Anticholesterol Drugs. Current Atherosclerosis Reports, 16, Article No. 439. https://doi.org/10.1007/s11883-014-0439-8

  69. 69. Raccah, B.H., Yanovsky, A., Treves, N., et al. (2021) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors and the Risk for Neurocognitive Adverse Events: A Systematic Review, Meta-Analysis and Meta-Regression. International Journal of Cardiology, 335, 7-14. https://doi.org/10.1016/j.ijcard.2021.04.025

  70. NOTES

    *通讯作者。

期刊菜单