Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59073 , 9 pages
10.12677/ACM.2022.12121608

呼吸与危重症医学科感染性肺炎患者痰培养 结果病原学分布及耐药分析

肖文华1,刘凤娟2,徐峰3,张晓峰1,焦小玲4,孙荣丽5*

1青岛大学医学部,山东 青岛

2青岛市中心医院GCP一期病房,山东 青岛

3青岛市中心医院基层医疗科,山东 青岛

4潍坊医学院第一临床医学院,山东 潍坊

5青岛大学第二临床医学院呼吸与危重症医学科,山东 青岛

收稿日期:2022年11月12日;录用日期:2022年12月6日;发布日期:2022年12月14日

摘要

目的:分析呼吸与危重症医学科普通病房与重症监护病房感染性肺炎患者痰培养阳性结果病原菌的分布特点及其耐药情况,为患者抗感染治疗提供合理用药依据。方法:采用BDPhoenix100全自动微生物分析仪和琼脂稀释法进行细菌鉴定和药物敏感测试。药敏结果根据美国临床实验室标准化协会(CLSI) 2021年版标准进行判读。对感染性肺炎患者痰标本进行病原菌的分离鉴定和药敏试验,利用WHONET5.6软件进一步分析病原菌的分布特点及其耐药情况。结果:2021年9月至2022年9月青岛市中心医院呼吸与危重症医学科送检痰标本共分离出298株非重复菌株,其中革兰阳性菌25株(8.39%),分别是金黄色葡萄球菌18株(6.04%)、肺炎链球菌6株(2.01%),停乳链球菌1株(0.34%);革兰阴性菌273株(91.61%),占比前5位分别是肺炎克雷伯菌77株(25.84%)、铜绿假单胞菌63株(21.14%)、鲍曼不动杆菌42株(14.09%)、大肠埃希菌25株(8.39%)和嗜麦芽寡养食单胞菌21株(7.05%)。金黄色葡萄球菌均对奎奴普丁/达福普汀、万古霉素、利福平、莫匹罗星、利奈唑胺、替考拉宁敏感。肺炎克雷伯菌对常见抗菌药物均存在不同程度耐药,对碳青霉烯类药物、阿米卡星、多粘菌素最为敏感,耐药率较高的分别是氯霉素、环丙沙星、头孢噻肟、氨苄西林/舒巴坦。铜绿假单胞菌对喹诺酮药物的耐药率较高,左氧氟沙星、环丙沙星的耐药率分别为28.57%、22.22%,对氨曲南的耐药率也较高,为26.98%。鲍曼不动杆菌耐药现象尤为严重,对各类常用抗生素耐药率均达40.00%以上。大肠埃希菌对喹诺酮类、头孢类抗生素耐药明显。嗜麦芽寡养食单胞菌对大多数常见抗菌药天然耐药药敏结果显示对复方新诺明耐药率最低,为14.29%,对左氧氟沙星、氯霉素、头孢他啶的耐药率分别为19.05%、28.57%、57.14%。结论:呼吸与危重症医学科痰标本分离菌对常见抗菌药物存在不同程度耐药,细菌耐药率仍在逐年上升,形势严峻,作为全球公共卫生问题应高度重视。依据药敏结果结合患者病情合理制定治疗方案、加强地方细菌耐药监控及医务人员院感意识尤为重要。

关键词

感染性肺炎,痰培养,多重耐药,细菌耐药性,革兰阴性菌

Etiological Distribution and Drug Resistance Analysis of Sputum Culture Results of Patients with Infectious Pneumonia in Department of Respiratory and Critical Care Medicine

Wenhua Xiao1, Fengjuan Liu2, Feng Xu3, Xiaofeng Zhang1, Xiaoling Jiao4, Rongli Sun5*

1Department of Medicine, Qingdao University, Qingdao Shandong

2Phase I Ward of Good Clinic Pratic, Qingdao Central Hospital, Qingdao Shandong

3Department of Primary Medical, Qingdao Central Hospital, Qingdao Shandong

4The First Clinical College of Weifang Medical University, Weifang Shandong

5Department of Respiratory and Critical Care Medicine, The Second Clinical College of Qingdao University, Qingdao Shandong

Received: Nov. 12th, 2022; accepted: Dec. 6th, 2022; published: Dec. 14th, 2022

ABSTRACT

Objective: To analyze the distribution characteristics and drug resistance of pathogenic bacteria from sputum culture positive patients with infectious pneumonia in general wards and intensive care units of respiratory and critical care medicine departments, so as to provide rational drug use basis for anti infection treatment of patients. Methods: BDPhoenix100 automatic microbiological analyzer and agar dilution method were used for bacterial identification and drug sensitivity test. The drug sensitivity results were interpreted according to the 2021 edition of the American Association for Clinical Laboratory Standardization (CLSI). The sputum samples of patients with infectious pneumonia were isolated, identified and tested for drug sensitivity. The distribution characteristics and drug resistance of pathogens were further analyzed by WHONET5.6 software. Results: From September 2021 to September 2022, a total of 298 non repetitive strains were isolated from sputum samples submitted by the Department of Respiratory and Critical Care Medicine of Qingdao Central Hospital, including 25 strains of Gram-positive bacteria (8.39%), 18 strains of Staphylococcus aureus (6.04%), 6 strains of Streptococcus pneumoniae (2.01%), and 1 strain of Streptococcus lactis (0.34%); 273 strains of Gram-negative bacteria (91.61%), the top 5 were Klebsiella pneumoniae 77 strains (25.84%), Pseudomonas aeruginosa 63 strains (21.14%), Acinetobacter baumannii 42 strains (14.09%), Escherichia coli 25 strains (8.39%) and Maltrophomonas maltophilia 21 strains (7.05%). Staphylococcus aureus were sensitive to quinuputin/dafopratin, vancomycin, rifampicin, mupirocin, linezolid and teicoplanin. Klebsiella pneumoniae has different degrees of resistance to common antibacterial drugs, and is most sensitive to carbapenems, amikacin, and polymyxin. The high resistance rates are chloramphenicol, ciprofloxacin, cefotaxime, ampicillin/sulbactam, respectively. The resistance rate of Pseudomonas aeruginosa to quinolones was high, the resistance rates of levofloxacin and ciprofloxacin were 28.57% and 22.22% respectively, and the resistance rate to aztreonam was also high, 26.98%. The drug resistance of Acinetobacter baumannii is particularly serious, and the drug resistance rate to various commonly used antibiotics is more than 40.00%. Escherichia coli was resistant to quinolones and cephalosporins. The results of natural drug resistance of Stenotrophomonas maltophilia to most common antibiotics showed that the drug resistance rate to compound sulfamethoxazole was the lowest, 14.29%, and the drug resistance rates to levofloxacin, chloramphenicol, and ceftazidime were 19.05%, 28.57%, and 57.14%, respectively. Conclusion: The bacteria isolated from sputum samples of the respiratory and critical care medical department are resistant to common antibiotics to varying degrees, and the rate of bacterial resistance is still rising year by year. The situation is serious, and as a global public health problem, great attention should be paid to it. It is particularly important to formulate treatment plans based on drug sensitivity results and patients’ conditions, strengthen local bacterial resistance monitoring and hospital sense awareness of medical staff.

Keywords:Infectious Pneumonia, Sputum Culture, Multidrug Resistance, Antibiotic Resistance of Bacteria, Gram-Negative Bacteria

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着广谱抗菌药物的使用,细菌耐药愈加严峻的情况受到全球广泛研究关注。尽管我国卫生相关部门及医疗机构已开展科学的医院感染管理控制,细菌耐药率和多重耐药菌检出率仍逐年升高 [1],泛耐药现象日益增多,给临床上抗感染治疗工作带来了严峻挑战 [2]。本研究分析2021年9月至2022年9月青岛市中心医院呼吸与危重症医学科感染性肺炎患者痰培养标本结果病原学分布特点及耐药情况,以期为临床抗感染治疗合理用药提供依据。

2. 材料与方法

2.1. 材料

细菌来源

2021年9月至2022年9月青岛市中心医院呼吸与危重症医学科普通病房与重症监护病房临床送检痰标本中分离细菌共353株,剔除同一患者分离出的重复菌株以及口腔正常定植菌群如凝固酶阴性葡萄球菌、草绿色链球菌、奈瑟球菌等,共纳入298株致病菌株。

2.2. 方法

2.2.1. 痰标本采集与培养

患者多次漱口后咳出气道深处痰液留置于无菌痰杯中,培养前进行痰涂片镜检,不合格标本重新采集合格后再进行培养。合格标本标准:白细胞:上皮细胞比值超大于2.5或每低倍镜视野上皮细胞 < 10个且WBC > 25个。

2.2.2. 细菌分离鉴定与药敏试验

通过BDPhoenix100全自动微生物分析仪和药敏分析仪,利用琼脂稀释法进行药敏试验,根据2021年美国临床实验室标准协会(CLSI) [3] 标准对药敏结果进行判读。质控菌株:金黄色葡萄球菌ATCC25923、大肠埃希菌ATCC25922、鲍曼不动杆菌ATCC19606、铜绿假单胞菌ATCC27853、嗜麦芽寡养食单胞菌ATCC17666、肺炎克雷伯杆菌ATCC70063。

2.3. 数据统计分析

采用WHONET5.6软件对细菌鉴定及药敏结果进行分析;计数数据用频数或百分比(%)表示。

3. 结果

3.1. 痰培养分离细菌的分布及构成

298株非重复菌株中202株(67.69%)分离于呼吸与危重症普通病房患者标本,96株分离于呼吸与危重症监护病房(32.32%),其中革兰阳性菌25株(8.39%),分别是金黄色葡萄球菌18株(6.04%)、肺炎链球菌6株(2.01%),停乳链球菌1株(0.34%);革兰阴性菌273株(91.61%),占比前5位分别是肺炎克雷伯菌77株(25.84%)、铜绿假单胞菌63株(21.14%)、鲍曼不动杆菌42株(14.09%)、大肠埃希菌25株(8.39%)和嗜麦芽寡养食单胞菌21株(7.05%),其他具体见表1

Table 1. Distribution and constituent ratio of 299 pathogenic bacteria

表1. 299株病原菌分布及构成比

3.2. 革兰阳性菌药敏试验结果

25株革兰阳性菌中16株分离于呼吸与危重症普通病房患者标本,9株分离于呼吸与危重症监护病房,其中多重耐药菌(Multi-drug resistant bacteria, MDROS)共22株(88.00%),分别是金黄色葡萄球菌16株(64.00%),肺炎链球菌6株(24.00%)。18株金黄色葡萄球菌菌株中多重耐药率为88.88%,甲氧西林耐药株(Methicillin-resistant Staphylococcus aureus, MRSA)4株,甲氧西林敏感株(Methicillin-sensitive Staphylococcus aureus, MSSA)14株,均对奎奴普丁/达福普汀、万古霉素、利福平、莫匹罗星、利奈唑胺、替考拉宁敏感,未发现上述药物耐药株。MRSA对大部分常见抗菌药物的耐药率均高于MSSA,然而未发现对甲氧苄啶/磺胺甲恶唑耐药的MRSA,14株MSSA中有2株对甲氧苄啶/磺胺甲恶唑耐药,不排除MRSA菌株标本较少所导致,有待纳入更多MRSA菌株进一步分析。6株肺炎链球菌均为多重耐药菌,停乳链球菌1株,因菌株较少,未进行耐药分析。详见表2

Table 2. Resistance and susceptibility of Staphylococcus aureus to antimicrobial agents (%)

表2. 金黄色葡萄球菌对常用抗菌药物的耐药率和敏感率(%)

3.3. 革兰阴性菌药敏试验结果

274株革兰阴性菌中,186株分离于呼吸与危重症普通病房患者标本,88株分离于呼吸与危重症监护病房,MDROS共129株(47.08%)。肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌、大肠埃希菌和嗜麦芽寡养食单胞菌共229株占所有革兰阴性菌株的83.58%,该组细菌中多重耐药菌株共105株(38.32%),此外还分离出其他克雷伯菌属、沙雷菌属、阴沟肠杆菌、假单胞菌属、不动杆菌、奇异变形杆菌、伯克霍尔德氏菌属、雷氏普罗威登斯菌等细菌共45株,约占16.42%,但由于数据分布分散,不具备统计意义,因此不对此类细菌作耐药分析。详见表3

Table 3. Resistance and susceptibility of Gram-negative bacteriums to antimicrobial agents (%)

表3. 革兰阴性菌对常用抗菌药物的耐药率和敏感率(%)

3.3.1. 肺炎克雷伯菌

77株肺炎克雷伯菌中59株分离于普通病房患者痰标本,18株分离于RICU患者痰标本,MDROS占总数的36.36%,耐碳青霉烯类肺炎克雷伯杆菌(Carbapenem-resistant Klebsiella pneumonia, CRKP) 5株,检出率为6.49%。整体对碳青霉烯类药物、阿米卡星、多粘菌素最为敏感,耐药较明显的药物及其耐药率的分别是氯霉素22.08%、环丙沙星24.68%、头孢噻肟24.68%、氨苄西林/舒巴坦24.68%,其他药物的耐药率均在10%~20%之间。

3.3.2. 铜绿假单胞菌

63株铜绿假单胞菌中45株分离于普通病房患者痰标本,18株分离于RICU患者痰标本,MDROS占总数的39.68%,耐碳青霉烯类铜绿假单胞菌(Carbapenem-resistant Pseudomonas aeruginosa, CRPA) 8株,检出率为12.70%。铜绿假单胞菌对喹诺酮药物及氨曲南的耐药率较高,对左氧氟沙星、环丙沙星的耐药率分别为28.57%、22.22%,氨曲南的耐药率为26.98%,除碳青霉烯类外对氨基糖苷类最为敏感,暂未发现阿米卡星或多粘菌素耐药菌。

3.3.3. 鲍曼不动杆菌

42株鲍曼不动杆菌中24株分离于普通病房患者痰标本,18株分离于RICU患者痰标本,MDROS占总数的57.14%,耐碳青霉烯类鲍曼不动杆菌(Carbapenem-resistant Acinetobacter baumanii, CRAB) 21株,检出率为50.00%。鲍曼不动杆菌的耐药现象尤为严重,对临床常用各类抗生素耐药率均达40.00%以上,对阿米卡星较为敏感,耐药率为26.19%,暂未发现多粘菌素耐药株。

3.3.4. 大肠埃希菌

25株大肠埃希菌中17株分离于普通病房患者痰标本,8株分离于RICU患者痰标本,MDROS占总数的88.00%,耐碳青霉烯类肠杆菌(Carbapenem-resistant Enterobacteriaceae, CRE) 1株,检出率为4.00%。大肠埃希菌的耐药现象非常严重,对喹诺酮类、头孢类抗生素耐药明显;氨基糖苷类抗生素中,庆大霉素耐药率为32.00%,而未发现阿米卡星耐药菌,氨苄西林/舒巴坦耐药率为84.00%,而哌拉西林他唑巴坦耐药率为20.00%。检出CRE1株,且该株为多粘菌素耐药株。

3.3.5. 嗜麦芽寡养食单胞菌

21株嗜麦芽寡养食单胞菌中11株分离于普通病房患者痰标本,10株分离于RICU患者痰标本。嗜麦芽寡养食单胞菌对大多数常见抗菌药天然耐药,本院药敏结果显示对复方新诺明耐药率最低,为14.29%,对左氧氟沙星、氯霉素、头孢他啶的耐药率分别为19.05%、28.57%、57.14%。

4. 讨论

痰培养结果统计显示:青岛市中心医院呼吸与危重症医学科2021年9月~2022年9月送检痰标本共分离出298株非重复病原菌,其中革兰阳性菌25株,以金黄色葡萄球菌为主,革兰阴性菌273株,主要以肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌为主,其次是大肠埃希菌和嗜麦芽寡养食单胞菌。

金黄色葡萄球菌中MRSA检出率为22.22%,低于2021年CHINET中国细菌耐药监测结果 [1] 30.00%。MRSA对β-内酰胺类抗菌药物高度耐药,对大环内酯类、四环素类、磺胺类、氨基糖苷类与喹诺酮类等抗菌药物表现出不同程度的耐药,未发现万古霉素、利福平、莫匹罗星、甲氧苄啶/磺胺甲恶唑、利奈唑胺、替考拉宁耐药株。本研究MRSA菌株检出较少,因此对于MRSA的耐药分析存在局限性,根据2021年CHINET检测结果显示同样未发现有万古霉素、替考拉宁、利奈唑胺耐药株,而对替加环素、利福平、甲氧苄啶/磺胺甲恶唑的耐药率分别为0.1%、5.2%、7.6%,但国内外已有利奈唑胺 [4] 和万古霉素 [5] 耐药的报道。金黄色葡萄球菌在医院获得性肺炎和呼吸机相关性肺炎 [6] 的致病率在8.9%~16.0%,社区获得性肺炎中MRSA致病菌较为少见,多在年轻健康个体淋雨后发生且起病迅速,与高死亡率和并发症风险相关 [7],由于MRSA地方耐药率的差异性,其经验性治疗应充分考虑MRSA地方耐药特征及药物可选择性等因素 [8],并根据药敏试验结果调整用药,改善MRSA肺炎患者临床结局并减少细菌耐药可能。

下呼吸道感染的主要致病菌是革兰阴性菌,特别是在医院获得性肺炎和呼吸机相关性肺炎中,本研究中革兰阴性菌占分离菌株总数的91.61%,以肠杆菌属和非发酵革兰阴性杆菌为主。肠杆菌属对常见抗菌药物均存在不同程度耐药,大肠杆菌对各药物耐药率均明显高于肺炎克雷伯杆菌,对碳青霉烯类、阿米卡星、多粘菌素的耐药现象较少见。CHINET监测结果表明肺炎克雷伯菌对碳青霉烯类药物耐药呈逐年上升趋势,自2019年呈下降趋势,2021年监测结果显示对美罗培南和亚胺培南的耐药率分别为24.4%、23.1%,而本研究分离出的肺炎克雷伯菌对美罗培南和亚胺培南的耐药率均为6.49%,小于2021 CHINET监测结果。近年来CRAP的检出率近年来也呈下降趋势,本研究中铜绿假单胞菌中对美罗培南和亚胺培南的耐药率分别为12.70%和9.52%,也明显低于2021 CHINET监测结果;本研究中CRAB的检出率为50.00%,小于2021 CHINET监测结果的72.3%。嗜麦芽寡养食单胞菌对头孢他啶、左氧氟沙星、复方新诺明、氯霉素的耐药率均高于2021 CHINET监测结果。

近年来随着呼吸与危重症医学科插管与机械通气等有创侵袭性操作的增加,革兰阴性杆菌已经成为临床感染的主要致病菌,随着广谱抗菌药的使用,细胞耐药率仍居高难下,MDROS及泛耐药菌株的检出率逐年上升,细菌耐药成为世界关注的重大卫生问题 [9]。产超广谱β内酰胺酶(Extended-Spectrum β-Lactamases, ESBL)和碳青霉烯酶(Carbapenemase) [10] 是对革兰阴性杆菌耐药性的产生最为重要,耐碳青霉烯类药物致病菌通常对大部分临床常用抗菌药物耐药,导致患者临床不良预后风险增加 [11]。嗜麦芽寡养食单胞菌对大部分常用抗生素天然耐药,临床应用广谱抗菌药物治疗时可能筛选出嗜麦芽寡养食单胞菌优势菌种,引起混合感染进而导致病情进展加重 [12]。

通过对呼吸与危重症医学科痰标本分离出的病原菌的耐药监测分析得知:病原菌的耐药形势仍十分严峻,不同地区的细菌耐药差异明显。因此,对于感染性肺炎患者的经验性治疗依据不能仅依靠指南或专家共识,若经验性治疗效果欠佳时应依据药敏结果结合患者病情调整用药,合理配伍优化治疗方案。此外,应对如此挑战应当加强地方对细菌耐药的监控,对抗菌药物规范化管理应用以减少细菌耐药产生,同时严格按照医院感染管理的规章制度和技术规范加强对医务人员院感意识的培养,减少耐药菌的传播。

文章引用

肖文华,刘凤娟,徐 峰,张晓峰,焦小玲,孙荣丽. 呼吸与危重症医学科感染性肺炎患者痰培养结果病原学分布及耐药分析
Etiological Distribution and Drug Resistance Analysis of Sputum Culture Results of Patients with Infectious Pneumonia in Department of Respiratory and Critical Care Medicine[J]. 临床医学进展, 2022, 12(12): 11154-11162. https://doi.org/10.12677/ACM.2022.12121608

参考文献

  1. 1. 胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530.

  2. 2. 吴安华. 医院感染控制当前面临的严峻挑战及对策[J]. 华西医学, 2019, 34(3): 227-232.

  3. 3. Wayne, P.A. (2021) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. M100-S31.CSCL.

  4. 4. 方颍, 黄永禄, 蔡加昌, 等. 金黄色葡萄球菌临床株对利奈唑胺耐药性及耐药机制[J]. 中国感染与化疗杂志, 2016, 16(4): 477-480.

  5. 5. Cong, Y., Yang, S. and Rao, X. (2020) Vanco-mycin Resistant Staphylococcus aureus Infections: A Review of Case Updating and Clinical Features. Journal of Ad-vanced Research, 21, 169-176. https://doi.org/10.1016/j.jare.2019.10.005

  6. 6. 施毅. 中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版) [J]. 中华结核和呼吸杂志, 2018, 41(4): 255-280.

  7. 7. Rubinstein, E., Kollef, M.H. and Nathwani, D. (2008) Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus. Clinical Infectious Diseases, 46, S378-S385. https://doi.org/10.1086/533594

  8. 8. Khan, A., Wilson, B. and Gould, I.M. (2018) Current and Future Treatment Options for Community-Associated MRSA Infection. Expert Opinion on Phar-macotherapy, 19, 457-470. https://doi.org/10.1080/14656566.2018.1442826

  9. 9. Logan, L.K. and Weinstein, R.A. (2017) The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases, 215, S28-S36. https://doi.org/10.1093/infdis/jiw282

  10. 10. Cassini, A., Högberg, L.D., Plachouras, D., et al. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. The Lancet Infectious Diseases, 19, 56-66. https://doi.org/10.1016/S1473-3099(18)30605-4

  11. 11. Wang, M., Earley, M., Chen, L., et al. (2022) Clinical Out-comes and Bacterial Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Complex among Patients from Dif-ferent Global Regions (CRACKLE-2): A Prospective, Multicentre, Cohort Study. The Lancet Infectious Diseases, 22, 401-412. https://doi.org/10.1016/S1473-3099(21)00399-6

  12. 12. 蒙光义, 王冬晓, 王春媚, 等. 嗜麦芽窄食单胞菌感染相关死亡危险因素分析[J]. 中国药业, 2022, 31(15): 121-124.

  13. NOTES

    *通讯作者。

期刊菜单