Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 66738 , 6 pages
10.12677/ACM.2023.1361270

影像融合成像技术在结直肠癌肝转移微波消融治疗中的应用进展

刘志远1,阳丹才让2*

1青海大学研究生院,青海 西宁

2青海大学附属医院普通外科,青海 西宁

收稿日期:2023年5月7日;录用日期:2023年5月31日;发布日期:2023年6月8日

摘要

肝脏作为结直肠癌最常见的远处转移器官,而结直肠癌肝转移是结直肠癌患者最常见的死亡原因之一。近年来,影像学引导下的微波消融术常被用来治疗结直肠癌肝转移。目前,术中引导结直肠癌肝转移微波消融最主要的影像学手段为常规超声,但由于常规超声空间分辨率和穿透力较低,易受气体干扰,在引导消融方面存在局限性。影像融合成像技术通过将多种图像实时融合,在引导结直肠癌肝转移微波消融治疗中对比单一影像学手段具有较大的优势。

关键词

影像融合成像技术,结直肠癌肝转移,微波消融

Application of Image Fusion Imaging in Microwave Ablation of Liver Metastases in Colorectal Cancer

Zhiyuan Liu1, Randan Cairang2*

1Graduate School of Qinghai University, Xining Qinghai

2Department of General Surgery, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: May 7th, 2023; accepted: May 31st, 2023; published: Jun. 8th, 2023

ABSTRACT

Liver is the most common organ for distant metastasis of colorectal cancer, and colorectal liver metastasis is one of the most common causes of death in patients with colorectal cancer. Recently, image-guided microwave ablation has been used to treat liver metastases of colorectal cancer. At present, conventional ultrasound is the most important imaging method to guide microwave ablation of liver metastases in colorectal cancer. However, conventional ultrasound has limitations in guiding ablation due to its low spatial resolution and penetration, and its susceptibility to gas interference. Image fusion imaging technology, through real-time fusion of multiple images, has a great advantage in guiding the microwave ablation of liver metastases in colorectal cancer compared with a single imaging method.

Keywords:Image Fusion Imaging Technology, Liver Metastasis of Colorectal Cancer, Microwave Ablation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

结直肠癌(colorectal cancer, CRC)是我国最常见的消化道肿瘤之一 [1] ,肝脏是结直肠癌最常见的远处转移器官 [2] ,5%~25%患者在结直肠癌确诊时合并肝转移,15%~25%患者在结直肠癌根治术后发生肝转移 [3] 。其中,约90%结直肠癌肝转移(colorectal liver metastases, CRLM)患者由于肝转移肿瘤数目多、分布散、累及多个肝段而无法进行切除根治术 [4] 。近年来,影像学引导下的肿瘤消融成为临床治疗结直肠癌肝转移的重要手段之一 [5] ,为不能进行手术根治性切除的结直肠癌肝转移患者带来了一种新的治疗方式,包括射频消融、激光消融和冷冻消融等 [6] 。其中,微波消融(microware ablation, MWA)具有创伤小、热效率高、升温速度快、高温热场较均匀、凝固区坏死彻底以及坏死区边缘锐利等优点 [7] 。在微波消融术治疗中,影像学手段是其中必不可少的重要部分,在消融术当中该技术的主要作用是术中辅助定位消融针、监测病灶以及在消融期间进行实时调整 [8] 。目前,术中引导消融最常用的影像学技术为常规超声 [9] ,超声辅助下医生能够对消融针进行实时定位并检测肿瘤变化。但由于常规超声辅助消融易受气体干扰,且结直肠癌肝转移患者病灶数目多、分布散,常规超声显影困难,使术中定位和引导消融方面存在局限性 [10] 。

2. 影像融合成像技术

近年来,影像融合成像技术,即利用电磁定位系统和三维重建数据将CT/MRI或US图像重叠对齐 [11] ,为单种影像学技术在结直肠癌肝转移患者微波消融治疗中的存在的局限性提出了解决方案 [12] 。

影像融合成像技术是在磁导航系统的基础上进行融合成像 [13] [14] 。该系统允许协调两种不同的成像模式,并允许它们在同一屏幕上显示。磁导航系统包括一个磁场发生器和两个接收器(即位置传感器) [15] 。磁场发生器与位置传感器的距离应小于40 cm,以使传感器能接收到磁场发生器发出的信号。在手术前,需要为患者进行常规超声、增强CT或者MRI检查,获得清晰图像并导入融合系统,融合系统与US扫描仪连接后,患者以仰卧位躺在手术床上,操作员开始对患者进行扫描。在位置感应单元的帮助下,us图像跟随CT/MRI图像移动。两幅图像匹配良好后,即可根据CT/MRI图像定位US图像上的目标病灶 [16] 。

目前,影像融合成像技术在引导原发性肝癌微波消融术中的作用已得到广泛的肯定 [17] [18] ,已有多项研究报道了CT/MRI与US融合成像(CT/MRI-US融合成像)在原发性肝癌微波消融过程中的检测、指导和评价中的作用 [19] - [24] 。但影像融合成像技术在引导结直肠癌肝转微波消融方面仍缺乏足够的实验数据,存在一定的争议,本文就影像融合成像技术在结直肠癌肝转移微波消融治疗中的应用进展作一简要综述。

3. 影像融合成像技术的应用及优势

3.1. 影像融合成像技术应用于术前病灶定位

超声(US)由于其成本低、方便、实时显示、无辐射等优点,是目前最常用病灶定位工具 [25] 。但超声分辨率较低,且由于结直肠癌肝转移患者病灶的特殊性,部分病变在常规超声上显着性较差。与常规超声相比,造影增强超声(CEUS)、造影增强CT (CECT)或造影增强磁共振成像(CEMRI)等造影增强成像可提高注射造影剂后的信噪比(SNR),便于发现伴有或不伴有肝硬化背景的病灶 [26] 。然而,单纯的超声造影并不能完全避免传统超声的缺点,如气体干扰等 [27] 。超声造影有限的动脉期(通常小于10~15秒)也限制了其应用,RFA电极放置很难在如此短的时间内完成,有时需要反复使用造影剂 [28] 。

为了克服常规超声及造影增强超声应用于术前定位病灶上的局限性,融合成像系统被引入应用于术前病灶定位。影像融合成像技术已被证实在可发现在超声图像上不明显的病变。Bo [29] 等人在一项涉及45例患者,70个病灶的实验中。首先使用常规超声检查,70个病灶中25个(35.7%)病灶明显,45个(64.3%)病灶不明显。使用US-CECT/CEMRI融合成像检测到额外的24个病灶,因此明显病灶的数量增加到49个(70.0%) (70.0% vs. 35.7%; P < 0.001)。使用CEUS-CECT/CEMRI融合成像后,显著病变数量进一步增加到67个(95.7%) (95.7% vs. 70.0%, 95.7% vs. 35.7%;与US和US-CECT/CEMRI融合成像相比,P均 < 0.001)。结论:影像融合成像技术可发现常规超声及造影增强超声难以发现的病灶。

3.2. 影像融合成像技术术中引导微波消融

为了减少肿瘤复发,消融区必须包括病灶和安全边界 [30] 。局部复发率的差异显著取决于术中微波消融范围是否固定5 mm的消融边缘以确保肿瘤病灶被完全消除。然而,常规超声常常受到气化干扰,气泡在消融区域内引起强烈的散射;目标区域可能被不规则的高回声区所覆盖,导致消融期间无法准确评估消融范围。Kim [31] 等人在一项研究中发现,在未能建立足够消融边界的病灶中有三分之一发生了局部肿瘤复发,而在完全消融的94例中仅有5例。结论:未能建立足够的消融安全边界是局部肿瘤进展的独立危险因素,也是导致肝转移患者在消融后发生复发的主要原因之一。

影像融合成像技术的出现为确定消融安全边界这一问题提供了新的解决方案,Minami [32] 等人在一项肝继发恶性肿瘤的消融研究中,使用影像融合成像技术引导消融10名患者、共记12个靶向肿瘤进行消融。继发性肝恶性肿瘤包括结直肠癌(n = 4)、乳腺癌(n = 2)、肺癌(n = 1)、胃肠道间质瘤(n = 1)、胰腺神经内分泌瘤(n = 1)、肾上腺皮质癌(n = 1)。肿瘤最大直径0.8~4.0 cm (平均±标准差1.6 ± 0.9 cm)。结果:平均消融次数为1.6/次(范围1~3),所有患者都在一次治疗中获得了有效的消融,无严重不良事件或手术相关并发症发生。在随访期间(中位220天,31~417天),所有患者均无局部肿瘤复发。

3.3. 影像融合成像技术应用于引导消融困难、复杂病灶

对于常规超声难以显示的病灶,影像融合成像技术融合有助于定位病灶区域,确定肿瘤的位置。此外,由于在CT/MR图像上标记了目标病灶,同时在实时超声图像上显示,后续电极或天线的插入可以在实时超声的引导下精确完成,避免了消融过程中的穿刺偏差和气体干扰,保证了结直肠癌肝转移患者病灶的完整消融。研究显示,对于大多数(95.9%)的病灶,只需要进行一次消融 [33] ,这不仅减少了患者的住院时间,而且减少了治疗费用及患者的心理负担。影像融合成像技术可以充分利用CT/MR和US成像的优势。通过CT/MR三维视图识别病灶及其周围重要结构,在消融过程中使用US进行实时引导和监测,有助于为高危部位的病灶提供更为安全的微波消融治疗,降低主要并发症的发生率。

3.4. 影像融合成像技术在应用于微波消融术后疗效评估

目前,有多种影像学技术应用于微波消融术后疗效评估,包括常规超声,造影增强超声以及CT等,但这些影像学技术因无法进行消融前后对比,导致难以评估术中消融是否达到安全范围。

影像融合成像技术的出现为微波消融术后疗效评估提供了新的方案,Ramesh [34] 等人最先将术前扫描的肝肿瘤分割图像与术后影像检查呈现的消融区进行影像融合,创建出显示消融边缘的合成图像。这项技术可以应用于对肿瘤周围消融边缘大小的评估,从而预测哪些患者更有可能发生局部肿瘤复发。在一项研究中,使用影像融合成像技术构建了39个病灶的38个融合图像,所有图像均识别了肝脏轮廓和内部标志,以检验融合图像的准确性。在所有病例中,病灶和消融区在融合图像上都很容易被识别。融合图像中的病灶在消融后的图像上也显示为低密度消融区内的轻度高密度肿块。这清晰的显示出了病灶的空间位置,所有病例均描绘了肿瘤与消融区边缘的空间关系。

总之,相对于单一影像学手段,影像融合成像技术更好地表示出了病灶和消融区之间的空间关系。影像融合成像技术可以根据消融边缘的接近程度来预测哪些病灶更有可能发生局部复发。

4. 应用前景与展望

影像融合成像技术弥补了单一影像学手段引导微波消融时的局限性,在术前病灶定位、制定手术方式、术中引导消融、术后疗效评估等方面展示了广阔的应用前景。对于病灶数目多、分布散,常规超声显影困难的病灶,影像融合成像技术在引导消融方面较单一影像学手段有明显的优势,降低了肿瘤复发的几率,减少了二次手术的需要,有效避免严重不良事件及手术相关并发症发生,降低了手术成功率对于术者经验及技术的依赖,相信随着影像融合成像技术的推广,该技术会发挥出更好的临床应用价值。

文章引用

刘志远,阳丹才让. 影像融合成像技术在结直肠癌肝转移微波消融治疗中的应用进展
Application of Image Fusion Imaging in Microwave Ablation of Liver Metastases in Colorectal Cancer[J]. 临床医学进展, 2023, 13(06): 9074-9079. https://doi.org/10.12677/ACM.2023.1361270

参考文献

  1. 1. Xia, C.F., Dong, X.S., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and De-terminants. Chinese Medical Journal, 135, 584-590. https://doi.org/10.1097/CM9.0000000000002108

  2. 2. Qin, H., Wu, Y.Q., Lin, P., et al. (2020) Ultrasound Image-Based Radiomics: An Innovative Method to Identify Primary Tumor-ous Sources of Liver Metastases. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultra-sound in Medicine, 40, 1229-1244. https://doi.org/10.1002/jum.15506

  3. 3. 邵赏, 李慧杰, 齐元富. 结直肠癌肝转移的中西医治疗进展[J]. 山东中医杂志, 2016, 35(1): 86-88. https://doi.org/10.16295/j.cnki.0257-358x.2016.01.035

  4. 4. Gómez Dorronsoro, M.L., Vera, R., Ortega, L., Plaza, C., Miquel, R., García, M., et al. (2014) Recommendations of a Group of Experts for the Pathological Assessment of Tumour Regression of Liver Metastases of Colorectal Cancer and Damage of Non-Tumour Liver Tissue after Neoadju-vant Therapy. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 16, 234-242. https://doi.org/10.1007/s12094-013-1104-3

  5. 5. Tinguely, P., Dal, G., Bottai, M., et al. (2020) Microwave Abla-tion versus Resection for Colorectal Cancer Liver Metastases—A Propensity Score Analysis from a Population-Based Nationwide Registry. European Journal of Surgical Oncology, 46, 476-485. https://doi.org/10.1016/j.ejso.2019.12.002

  6. 6. Hu, Y.R., Yang, Z.W. and Sun, Y.S. (2020) Analysis of the Feasi-bility of Microwave Ablation for Colorectal Liver Metastases: A Preliminary Report. Videosurgery and Other Miniinva-sive Techniques, 15, 30-35. https://doi.org/10.5114/wiitm.2019.86921

  7. 7. Boutros, C., Somasundar, P., Garrean, S., Saied, A. and Espat, N.J. (2009) Microwave Coagulation Therapy for Hepatic Tumors: Review of the Literature and Critical Analysis. Surgical Oncology, 19, e22-e32. https://doi.org/10.1016/j.suronc.2009.02.001

  8. 8. 刘晟, 沈强, 许赟, 等. 微波消融治疗结直肠癌根治术后肝转移患者的疗效分析[J]. 介入放射学杂志, 2016, 25(8): 689-694.

  9. 9. Toshikuni, N., Tsutsumi, M., Takuma, Y., et al. (2014) Real-Time Image Fusion for Successful Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma. Journal of Ultrasound in Medicine, 33, 2005-2010. https://doi.org/10.7863/ultra.33.11.2005

  10. 10. 莫经刚, 冯一浮. 困难部位肝癌的微波消融治疗[J]. 浙江医学, 2017, 39(2): 80-81.

  11. 11. Wood, B.J., Kruecker, J., Abi-Jaoudeh, N., et al. (2010) Navigation Systems for Ablation. Journal of Vascular and Interventional Radiology, 21, S257-S263. https://doi.org/10.1016/j.jvir.2010.05.003

  12. 12. Lee, M.W. (2014) Fusion Imaging of Real-Time Ultrasonography with CT or MRI for Hepatic Intervention. Ultrasonography, 33, 227-239. https://doi.org/10.14366/usg.14021

  13. 13. Ding, J.M., Wang, D., Zhou, Y., Zhao, L., Zhou, H.Y., Jing, X. and Wang, Y.D. (2021) A Novel Mono-Modality Fusion Imaging Method Based on Three-Dimensional Contrast-Enhanced Ultrasound for the Evaluation of Ablation Margins after Microwave Ablation of Hepatocellular Carcinoma. Journal of Gastrointestinal Oncology, 12, 184-195. https://doi.org/10.21037/jgo-21-46

  14. 14. Pragati, R., Sarada, D., Julien, A. and Shidin, B. (2021) Feasibility and Ef-ficacy of Fusion Imaging Systems for Immediate Post Ablation Assessment of Liver Neoplasms: Protocol for a Rapid Systematic Review. International Journal of Surgery Protocols, 25, 209-215. https://doi.org/10.29337/ijsp.162

  15. 15. Townsend, D.W., Wensveen, M., Byars, L.G., et al. (1993) A Rotating PET Scanner Using BGO Block Detectors: Design, Performance and Applications. Journal of Nuclear Medicine, 34, 1367-1376.

  16. 16. 宗维, 孙尧, 王刚, 等. US-MRI影像融合容积导航技术在小肝癌微波消融中的临床应用[J]. 医学影像学杂志, 2019, 29(10): 1738-1741.

  17. 17. Yuki, M., Yasuharu, I., Takumi, I., et al. (2012) Usefulness of the Multimodality Fusion Imaging for the Diagnosis and Treatment of Hepatocellular Carcinoma. Digestive Diseases (Basel, Switzerland), 30, 580-587.

  18. 18. Woo, L.M., Hyunchul, R., Ik, C.D., et al. (2012) Percutaneous Radiofrequency Abla-tion of Hepatocellular Carcinoma: Fusion Imaging Guidance for Management of Lesions with Poor Conspicuity at Con-ventional Sonography. AJR. American Journal of Roentgenology, 198, 1438-1444. https://doi.org/10.2214/AJR.11.7568

  19. 19. Krücker, J., Xu, S., Venkatesan, A., et al. (2010) Clinical Utility of Re-al-Time Fusion Guidance for Biopsy and Ablation. Journal of Vascular and Interventional Radiology, 22, 515-524. https://doi.org/10.1016/j.jvir.2010.10.033

  20. 20. Sun, Z.Z., Liu, K., Zheng, R.Q. and Xu, J.R. (2012) A Feasibility Study for Determining Ablative Margin with 3D- CEUS-CT/MR Image Fusion after Radiofrequency Ablation of Hepa-tocellular Carcinoma. Ultraschall in der Medizin (Stuttgart, Germany: 1980), 33, E250-E255. https://doi.org/10.1055/s-0032-1325466

  21. 21. Jeong, P.H., Woo, L.M., Hee, L.M., et al. (2013) Fusion Imag-ing-Guided Percutaneous Biopsy of Focal Hepatic Lesions with Poor Conspicuity on Conventional Sonography. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 32, 1557-1564. https://doi.org/10.7863/ultra.32.9.1557

  22. 22. Yuki, M., Yasuharu, I., Takumi, I., et al. (2016) Feasibility of Extract-ed-Overlay Fusion Imaging for Intraoperative Treatment Evaluation of Radiofrequency Ablation for Hepatocellular Car-cinoma. Liver Cancer, 5, 269-279.

  23. 23. Ahn, S.J., Lee, J.M., Lee, D.H., et al. (2017) Real-Time US-CT/MR Fusion Imaging for Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma. Journal of Hepatology, 66, 347-354. https://doi.org/10.1016/j.jhep.2016.09.003

  24. 24. Mauri, G., Cova, L., De Beni, S., et al. (2015) Real-Time US-CT/MRI Image Fusion for Guidance of Thermal Ablation of Liver Tumors Undetectable with US: Results in 295 Cases. Cardiovascular and Interventional Radiology, 38, 143-151. https://doi.org/10.1007/s00270-014-0897-y

  25. 25. Rhim, H., Lee, M.H., Kim, Y.-S., et al. (2008) Planning Sonog-raphy to Assess the Feasibility of Percutaneous Radiofrequency Ablation of Hepatocellular Carcinomas. AJR. American Journal of Roentgenology, 190, 1324-1330. https://doi.org/10.2214/AJR.07.2970

  26. 26. Xu, H.X. (2009) Contrast-Enhanced Ultrasound: The Evolving Applica-tions. World Journal of Radiology, 1, 15-24. https://doi.org/10.4329/wjr.v1.i1.15

  27. 27. Albrecht, T., Blomley, M.J., Burns, P.N., Wilson, S., Harvey, C.J., Leen, E., et al. (2003) Improved Detection of Hepatic Metastases with Pulse-Inversion US during the Liver-Specific Phase of SHU 508A: Multicenter Study. Radiology, 227, 361-370. https://doi.org/10.1148/radiol.2272011833

  28. 28. Liu, G.J., Xu, H.X., Lu, M.D., Xie, X.Y., Xu, Z.F., Zheng, Y.L., et al. (2006) Enhancement 20 Pattern of Hepatocellular Carcino-ma: Comparison of Real-Time 21 Contrast-Enhanced Ultrasound and Contrast-Enhanced Computed Tomography. Clini-cal Imaging, 30, 315-321. https://doi.org/10.1016/j.clinimag.2006.03.031

  29. 29. Bo, X.W., Xu, H.X., Wang, D., et al. (2016) Fusion Imaging of Contrast-Enhanced Ultrasound and Contrast-Enhanced CT or MRI before Radiofrequency Ablation for Liver Cancers. The British Journal of Radiology, 89, Article ID: 20160379. https://doi.org/10.1259/bjr.20160379

  30. 30. Kim, K.W., Lee, J.M., Klotz, E., et al. (2011) Safety Margin Assessment after Radiofrequency Ablation of the Liver Using Registration of Preprocedure and Postprocedure CT Images. American Journal of Roentgenology, 196, 565-572. https://doi.org/10.2214/AJR.10.5122

  31. 31. Kim, C.K., Choi, D., Lim, H.K., et al. (2005) Therapeutic Response Assessment of Percutaneous Radiofrequency Ablation for Hepatocellular Carcinoma: Utility of Contrast-Enhanced Agent Detection Imaging. European Journal of Radiology, 56, 66-73. https://doi.org/10.1016/j.ejrad.2005.03.023

  32. 32. Minami, Y., Minami, T., Chishina, H., et al. (2016) US-US Fu-sion Imaging in Radiofrequency Ablation for Liver Metastases. Digestive Diseases (Basel, Switzerland), 34, 687-691.

  33. 33. Nakai, M., Sato, M., Sahara, S., et al. (2009) Radiofrequency Ablation Assisted by Real-Time Virtual Sonography and CT for Hepatocellular Carcinoma Undetectable by Conventional Sonography. Cardiovascular and In-terventional Radiology, 32, 62-69. https://doi.org/10.1007/s00270-008-9462-x

  34. 34. Iyer, R.S., Timm, B.A., Mitsumori, L.M. and Kolokythas, O. (2010) Image Fusion as a New Postprocessing Method to Evaluate the Radiofre-quency Ablation Zone after Treatment of Malignant Liver Tumors. Journal of Computer Assisted Tomography, 34, 226-228. https://doi.org/10.1097/RCT.0b013e3181c4f797

  35. NOTES

    *通讯作者。

期刊菜单