Advances in Clinical Medicine
Vol. 11  No. 01 ( 2021 ), Article ID: 39992 , 5 pages
10.12677/ACM.2021.111036

高原地区代谢综合征与骨密度的相关性研究

吴玉香*,左小芹

青海大学,青海 西宁

收稿日期:2020年12月25日;录用日期:2021年1月19日;发布日期:2021年1月26日

摘要

高原地区骨质疏松症、代谢综合征发病率高,关于高原地区代谢综合征与骨密度的研究较少,笔者拟从高原地区肥胖、血糖异常、高血压、血脂异常与骨代谢的关系综述高原地区代谢综合征与骨密度的相关性。

关键词

高原地区,代谢综合征,骨质疏松,骨密度

Correlation between Metabolic Syndrome and Bone Mineral Density at High Altitude

Yuxiang Wu*, Xiaoqin Zuo

Qinghai University, Xining Qinghai

Received: Dec. 25th, 2020; accepted: Jan. 19th, 2021; published: Jan. 26th, 2021

ABSTRACT

The incidence rate of osteoporosis and metabolic syndrome is high in plateau area. There is less research on the metabolic syndrome and bone mineral density in plateau area. The author intends to summarize the relationship between bone mineral density and bone metabolism in plateau area from the relationship between obesity, pathoglycemia, hypertension, dyslipidemia and bone metabolism.

Keywords:Plateau Area, Metabolic Syndrome, Osteoporosis, Bone Mineral Density

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

高原地区低氧环境影响骨代谢,从而骨质疏松症(osteoporosis, OP)患病率高。代谢综合征(metabolic syndrome, MetS)主要与肥胖、血糖异常、高血压、血脂异常密切相关,已有大量关于OP与MetS关系的研究,但结论目前尚不明确。本文综合目前国内外文献,从高原低氧环境下MetS对骨密度(bone mineral density, BMD)的影响等方面进行探讨。

2. 高原地区骨质疏松发生机制

OP是由成骨细胞与破骨细胞的生成失衡引起。成骨细胞分化受Runx2控制,Runx2的表达可以诱导成骨细胞分化的早期标记,如碱性磷酸酶(ALP)和I型胶原(Colla1),以及晚期标记的合成,如骨钙素(OC) [1]。在控制Runx2基因表达的实验中 [2],予以短暂暴露(3~14天)低氧环境后Runx2基因表达增加,而持续低氧暴露1%~2%PiO2在5~21天后,Runx2基因表达下降,实验显示出矛盾的结果。不同的低氧持续时间可能决定mRNA表达不同的骨生物标记物,产生不同的影响。由此可见,缺氧对成骨分化的影响可能是时间依赖性的:成骨可以在早期加速,但是持续的长期缺氧可能导致成骨不良 [3]。一项模拟实验发现 [4],在用白介素-17 (IL-17)和氯化钴(CoCl2)模拟低氧环境情况下,破骨细胞分化增加。其机制为IL-17与CoCl2促进RANKL通路中破骨细胞前体细胞向破骨细胞分化。在模拟不同海拔高度持续性缺氧条件下,成年男性骨矿物质总量以及骨密度均下降 [5]。高原地区长期低氧,Runx2基因表达下降,成骨细胞生成减少,且破骨细胞的分化增加从而导致骨质疏松的发生。

3. 高原地区MetS各组分与骨密度的关系

3.1. 肥胖

传统观点认为,肥胖是骨质疏松的保护因素,近年来,肥胖对骨骼健康起保护作用的观点已经受到质疑。有研究显示,高海拔地区的居民肥胖患病率更高 [6]。高原地区食物种类较平原地区少,主要以奶制品、牛羊肉为主,这种高脂肪、高蛋白、低膳食纤维的饮食结构易致肥胖。已有研究表明肥胖导致骨密度降低的原因是因为脂肪细胞释放炎性细胞因子增多,刺激破骨细胞分化和骨吸收,降低骨密度。此外,肥胖引起的内分泌水平的变化也促使骨密度的降低。有研究发现,肥胖动物或肥胖患者更高的表达肌肉生长抑制素 [7]。动物实验发现 [8],多克隆肌肉生长抑制素抗体可预防大鼠饮食引起的肥胖导致的骨丢失和微结构恶化,从而证实了肌肉生长抑制素对骨骼的负面影响。在肌肉生长抑制素缺乏症小鼠中,与年龄相关的BMD下降已减弱 [9]。表明肌肉生长抑制素对骨骼的影响更大。吴龙飞等人在最近的临床研究中也发现,中国老年女性的血清肌肉生长抑制素水平与BMD呈负相关 [10]。这也解释了体重的增加可以增加骨密度,而肥胖是骨密度的负相关因素,因为肥胖促使肌肉生长抑制素增加,导致骨丢失增加,引起骨密度下降。脂联素(APN)由白色脂肪组织分泌,APN通过核因子κB配体受体激活剂和OC的表达来刺激成骨细胞的分化和矿化。因此,APN直接抑制破骨细胞活性和骨吸收,而肥胖会减少APN的分泌 [11]。高原地区肥胖可导致骨密度的降低,从而引起骨质疏松。

3.2. 血糖异常

Hill等人发现 [12],海拔升高导致高血糖血症。随着海拔的升高,胰岛素抵抗和β细胞功能降低,胰岛素敏感性增加,从而血糖浓度增高。动物实验发现 [13],对大鼠进行不同血糖浓度处理后,高浓度葡萄糖组Sonic Hedgehog (Shh)通路表达、基质矿化结节形成、碱性磷酸酶活性及骨形态发生蛋白4 (BMP4)、骨涎蛋白(BSP)和骨桥蛋白(OPN)表达均明显低于低血糖组和相应对照组。高糖抑制成骨细胞中的Shh通路,导致成骨细胞分化和骨形成过程缺陷。另外一项动物实验发现 [14],高糖促进腺苷酸活化蛋白激酶(AMPK)的表达,抑制活化T细胞核因子1 (NFATc1)、脾脏酪氨酸激酶(SYK)、组织蛋白酶K (CTSK)和抗酒石酸酸性磷酸酶(TRAP)的表达,从而影响破骨细胞分化和骨吸收。另外,高血糖环境会影响骨修复的各个阶段,尤其是由氧化应激和晚期糖基化终产物诱导的成骨细胞分化受到抑制以及促使成骨细胞凋亡增加;再加上细胞外基质沉积和矿物质形成减少,最终导致体内的骨量减少和骨愈合延迟 [15]。高糖环境由于端粒长度缩短和早期复制减弱导致增殖能力降低,这影响了骨髓间充质干细胞的活性、多功能性、集落形成效率及成骨分化 [16]。高脂高糖微环境抑制骨再生,其机制可能与抑制Runx2TAZ基因的表达有关 [17]。顾丽娟等人 [18] 通过对一个社区居民的横断面调查发现,血糖控制不良的2型糖尿病患者脆性骨折的发生率明显高于非糖尿病患者。血糖导致骨密度降低的潜在机制可能是:1) 胰岛素分泌减少和(或)胰岛素敏感性降低,导致血糖水平升高。高血糖水平导致晚期糖基化终产物在胶原上堆积,破坏骨吸收和骨形成之间的平衡。2) 高血糖导致利尿,增加磷钙输出,进而刺激甲状旁腺激素的分泌,增加溶骨作用,导致骨密度降低。

3.3. 高血压

岳乐等人 [19] 对居住在两个不同纬度地区超过20年的居民进行调查发现,高海拔地区高血压患病率增加。主要是由交感神经兴奋所致的心肌正性变力、正性变时作用,引起心率加快、心肌收缩力增加,外周血容量增加,从而导致血压增高。日本一项动物实验发现 [20],与普通大鼠相比,生长期自发性高血压大鼠腰椎和胫骨的骨密度较低。可能是高血压伴交感神经亢进导致血管紧张素II生成增加,血管紧张素II通过RANKL诱导激活破骨细胞,从而加速骨质疏松。其次,交感神经兴奋所致的肾素–血管紧张素–醛固酮(RAAS)系统活跃,醛固酮分泌增加刺激甲状旁腺激素的分泌,甲状旁腺激素刺激骨髓内的破骨细胞活动,导致骨质疏松的发生。基于高血压与脆性骨折的一项纵向研究发现 [21],高血压组股骨颈骨密度明显低于非高血压组,在调整了骨密度和协变量后,高血压是脆性骨折的独立危险因素。高血压和OP有共同的危险因素,如高龄、绝经和缺乏运动等。高血压与钙代谢异常有关,导致尿钙丢失增加,引起骨骼重塑的钙负平衡,最终导致骨丢失增加和骨密度降低。另外,高血压与高水平的甲状旁腺激素分泌有关,甲状旁腺激素加速骨转换,减少骨量,降低骨质量 [22]。高血压通过影响内分泌系统导致骨密度的降低。

3.4. 血脂异常

Gangwar等人通过一项间歇性低氧训练试验发现 [23],低氧引起血脂异常。李友等人通过对大鼠进行高胆固醇饮食喂养三个月后发现 [24],高胆固醇饮食显著降低大鼠骨密度和血清成骨细胞标志物(ALP和OC)浓度,而骨吸收标志物(Colla1)水平升高(P < 0.05)。这表明高胆固醇与骨吸收增加和骨形成减少有关。胆固醇以剂量依赖性方式抑制小鼠成骨细胞MC3T3-E的增殖和分化。胆固醇降低成骨基因的表达,如ALP、Colla1、骨形态发生蛋白(BMP2)和Runx2。这些发现提示游离胆固醇可能通过抑制TGF-β/BMP2来阻断成骨细胞中Runx2、ALP和Colla1的表达,进而抑制成骨细胞的分化,高胆固醇饮食还可以抑制Wnt信号通路,TGF-β/BMP2和Wnt信号通路在成骨过程中具有重要作用。Panahi等人对2426名伊朗居民调查发现 [25],腰椎骨密度和骨小梁评分与总胆固醇,高密度脂蛋白胆固醇和低密度脂蛋白胆固醇水平之间呈负相关。Zhou等人发现 [26],不管是高胆固醇饮食(HCD)诱导的外源性高胆固醇血症还是POE基因敲除诱导的内源性高胆固醇血症,均导致骨量降低。高胆固醇通过促进骨转化,破坏骨的微结构,降低骨的机械强度,导致骨密度的降低。

4. 总结展望

我国高海拔地区主要以少数民族为主,且多为牧民,物资匮乏,这决定了高原地区居民饮食结构的单一性,由此肥胖、高脂血症、高糖血症患病率增加。长期居住于高海拔地区,交感神经兴奋性的升高导致高血压的发生,因此高原地区代谢综合征发病率较高。而代谢综合征各组分通过不同的机制影响骨代谢从而导致骨质疏松。但是仍有一些研究结果与前述结论相反,可能与研究对象的样本含量、民族、性别、不同地区甚至饮食结构有关。高原地区长期低氧,OP发病率高,OP发生后不可逆转,且易导致脆性骨折的发生,而骨折后生活质量明显下降。降低高原地区OP的发生对居民健康具有重要意义。低氧环境不可改变,要降低高原地区骨质疏松症患病率,可以考虑从减少高原地区代谢综合征的发生入手,降低肥胖率、低脂低糖饮食减少代谢综合征的发生,从而减少骨密度降低的高危因素,降低骨质疏松的发生。

文章引用

吴玉香,左小芹. 高原地区代谢综合征与骨密度的相关性研究
Correlation between Metabolic Syndrome and Bone Mineral Density at High Altitude[J]. 临床医学进展, 2021, 11(01): 248-252. https://doi.org/10.12677/ACM.2021.111036

参考文献

  1. 1. Huang, Y.C., Zhu, H.M., Cai, J.Q., et al. (2012) Hypoxia Inhibits the Spontaneous Calcification of Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 113, 1407-1415. https://doi.org/10.1002/jcb.24014

  2. 2. Ding, H., Chen, S., Yin, J.H., et al. (2014) Continuous Hypoxia Regulates the Osteogenic Potential of Mesenchymal Stem Cells in a Time-Dependent Manner. Molecular Medicine Reports, 10, 2184-2190. https://doi.org/10.3892/mmr.2014.2451

  3. 3. Camacho-Cardenosa, M., Camacho-Cardenosa, A., Timón, R., et al. (2019) Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. International Journal of Environmental Research and Public Health, 16, 1799. https://doi.org/10.3390/ijerph16101799

  4. 4. Snigdha, S., Madhuri, D.H., Ramamoorthi, G., et al. (2018) Interleukin 17 under Hypoxia Mimetic Condition Augments Osteoclast Mediated Bone Erosion and Expression of HIF-1α and MMP-9. Cellular Immunology, 332, 39-50. https://doi.org/10.1016/j.cellimm.2018.07.005

  5. 5. O’Brien, K.A., Pollock, R.D., Stroud, M., et al. (2018) Human Physiological and Metabolic Responses to an Attempted Winter Crossing of Antarctica: The Effects of Prolonged Hypobaric Hypoxia. Physiological Reports, 6, e13613. https://doi.org/10.14814/phy2.13613

  6. 6. Huang, X., Hu, Y., Du, L., et al. (2020) Metabolic Syndrome in Native Populations Living at High Altitude: A Cross-Sectional Survey in Derong, China. BMJ Open, 10, e032840. https://doi.org/10.1136/bmjopen-2019-032840

  7. 7. Lyons, J.A., Haring, J.S. and Biga, P.R. (2010) Myostatin Expression, Lymphocyte Population, and Potential Cytokine Production Correlate with Predisposition to High-Fat Diet Induced Obesity in Mice. PLoS ONE, 5, e12928. https://doi.org/10.1371/journal.pone.0012928

  8. 8. Tang, L., Yang, X., Gao, X., et al. (2016) Inhibiting Myostatin Signaling Prevents Femoral Trabecular Bone Loss and Microarchitecture Deterioration in Diet-Induced Obese Rats. Experimental Biology and Medicine (Maywood), 241, 308-316. https://doi.org/10.1177/1535370215606814

  9. 9. Morissette, M.R., Stricker, J.C., Rosenberg, M.A., et al. (2009) Effects of Myostatin Deletion in Aging Mice. Aging Cell, 8, 573-583. https://doi.org/10.1111/j.1474-9726.2009.00508.x

  10. 10. Wu, L.F., Zhu, D.C., Wang, B.H., et al. (2018) Relative Abundance of Mature Myostatin Rather than Total Myostatin Is Negatively Associated with Bone Mineral Density in Chinese. Journal of Cellular and Molecular Medicine, 22, 1329-1336. https://doi.org/10.1111/jcmm.13438

  11. 11. Bi, X., Loo, Y.T. and Henry, C.J. (2020) Relationships between Adiponectin and Bone: Sex Difference. Nutrition, 70, Article ID: 110489. https://doi.org/10.1016/j.nut.2019.04.004

  12. 12. Hill, N.E., Deighton, K., Matu, J., et al. (2018) Continuous Glucose Monitoring at High Altitude-Effects on Glucose Homeostasis. Medicine & Science in Sports & Exercise, 50, 1679-1686. https://doi.org/10.1249/MSS.0000000000001624

  13. 13. Jiang, Z.L., Jin, H., Liu, Z.S., et al. (2019) Lentiviral-Mediated Shh Reverses the Adverse Effects of High Glucose on Osteoblast Function and Promotes Bone Formation via Sonic Hedgehog Signaling. Molecular Medicine Reports, 20, 3265-3275. https://doi.org/10.3892/mmr.2019.10540

  14. 14. Dong, W., Qi, M., Wang, Y., Feng, X. and Liu, H. (2018) Zoledronate and High Glucose Levels Influence Osteoclast Differentiation and Bone Absorption via the AMPK Pathway. Biochemical and Biophysical Research Communications, 505, 1195-1202. https://doi.org/10.1016/j.bbrc.2018.10.059

  15. 15. Notsu, M., Yamaguchi, T., Okazaki, K., et al. (2014) Advanced Glycation End Product 3 (AGE3) Suppresses the Mineralization of Mouse Stromal ST2 Cells and Human Mesenchymal Stem Cells by Increasing TGF-β Expression and Secretion. Endocrinology, 155, 2402-2410. https://doi.org/10.1210/en.2013-1818

  16. 16. Deorosan, B. and Nauman, E.A. (2011) The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells International, 2011, Article ID: 429187. https://doi.org/10.4061/2011/429187

  17. 17. Wu, X., Zhang, Y., Xing, Y., et al. (2019) High-Fat and High-Glucose Microenvironment Decreases Runx2 and TAZ Expression and Inhibits Bone Regeneration in the Mouse. Journal of Orthopaedic Surgery and Research, 14, 55. https://doi.org/10.1186/s13018-019-1084-2

  18. 18. Gu, L.J., Lai, X.Y., Wang, Y.P., Zhang, J.M. and Liu, J.P. (2019) A Community-Based Study of the Relationship between Calcaneal Bone Mineral Density and Systemic Parameters of Blood Glucose and Lipids. Medicine (Baltimore), 98, e16096. https://doi.org/10.1097/MD.0000000000016096

  19. 19. Yue, L., Fan, Z., Sun, L., Feng, W. and Li, J. (2017) Prevalence of Essential Hypertension and Its Complications among Chinese Population at High Altitude. High Altitude Medicine & Biology, 18, 140-144. https://doi.org/10.1089/ham.2016.0078

  20. 20. Uchikawa, Y., Hosomichi, J., Suzuki, J.I., et al. (2019) Differential Growth of Craniofacial and Tibial Bones to Sympathetic Hyperactivity-Related Hypertension in Rats. Archives of Oral Biology, 99, 73-81. https://doi.org/10.1016/j.archoralbio.2019.01.001

  21. 21. Yang, S., Nguyen, N.D., Center, J.R., Eisman, J.A. and Nguyen, T.V. (2014) Association between Hypertension and Fragility Fracture: A Longitudinal Study. Osteoporosis International, 25, 97-103. https://doi.org/10.1007/s00198-013-2457-8

  22. 22. Cappuccio, F.P., Kalaitzidis, R., Duneclift, S. and Eastwood, J.B. (2000) Unravelling the Links between Calcium Excretion, Salt Intake, Hypertension, Kidney Stones and Bone Metabolism. Journal of Nephrology, 13, 169-177.

  23. 23. Gangwar, A., Pooja, S.M., et al. (2019) Intermittent Normobaric Hypoxia Facilitates High Altitude Acclimatization by Curtailing Hypoxia-Induced Inflammation and Dyslipidemia. Pflügers Archiv, 471, 949-959. https://doi.org/10.1007/s00424-019-02273-4

  24. 24. You, L., Sheng, Z.Y., Tang, C.L., Chen, L., Pan, L. and Chen, J.Y. (2011) High Cholesterol Diet Increases Osteoporosis Risk via Inhibiting Bone Formation in Rats. Acta Pharmacologica Sinica, 32, 1498-1504. https://doi.org/10.1038/aps.2011.135

  25. 25. Panahi, N., Soltani, A., Ghasem-Zadeh, A., et al. (2019) Associations between the Lipid Profile and the Lumbar Spine Bone Mineral Density and Trabecular Bone Score in Elderly Iranian Individuals Participating in the Bushehr Elderly Health Program: A Population-Based Study. Archives of Osteoporosis, 14, 52. https://doi.org/10.1007/s11657-019-0602-5

  26. 26. Zhou, Y., Deng, T., Zhang, H., et al. (2019) Hypercholesterolaemia Increases the Risk of High-Turnover Osteoporosis in Men. Molecular Medicine Reports, 19, 4603-4612. https://doi.org/10.3892/mmr.2019.10131

期刊菜单