Journal of Organic Chemistry Research
Vol. 07  No. 02 ( 2019 ), Article ID: 31024 , 10 pages
10.12677/JOCR.2019.72010

Synthesis of Polystyrene Supported Diarylprolinol and Its Catalytic Enantioselective Epoxidation of Chalcone

Ziran Liu1, Yunxiang Hu1, Xulong Zhang2*, Yan Huang1*

1The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi Xinjiang

2 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi Xinjiang

Received: June 5th, 2019; accepted: June 20th, 2019; published: June 27th, 2019

ABSTRACT

Polystyrene supported diarylprolinols were synthesized and applied them to catalytic enantioselective epoxidation of chalcones when TBHP as oxidant. A series of chiral epoxides was obtained with moderate yield (up to 69.7% yield) and good enantioselectivity (up to 78.7% ee). After two catalytic cycles, the performance of the catalyst basically remained.

Keywords:Polystyrene Supported Catalyst, Asymmetric Epoxidation

聚苯乙烯负载二芳基脯氨醇的合成及其催化查尔酮的对映选择性环氧化反应研究

刘子冉1,胡云翔1,张旭龙2*,黄艳1*

1新疆大学化学化工学院石油天然气精细化工教育部&自治区重点实验室,新疆 乌鲁木齐

2新疆维吾尔自治区产品质量监督检验研究院,新疆 乌鲁木齐

收稿日期:2019年6月5日;录用日期:2019年6月20日;发布日期:2019年6月27日

摘 要

合成了聚苯乙烯负载的二芳基脯氨醇,并在TBHP氧化条件下将其应用于催化查尔酮的对映选择性环氧化反应,以中等的产率(最高达70%)和较好的对映选择性(最高达79% ee)合成了系列手性环氧化合物。催化剂经过两次循环利用,其催化性能基本保持不变。

关键词 :聚苯乙烯负载催化剂,不对称环氧化反应

Copyright © 2019 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,负载型催化剂备受关注 [1] - [7] 。聚醚类树枝状大分子负载的脯氨醇和脯氨磺酰胺类化合物在叔丁基过氧化氢(TBHP)的氧化作用下分别用于催化α,β-不饱和酮的不对称环氧化反应、酮的不对称还原反应和不对称aldol反应 [8] [9] 。其中,不对称环氧化反应取得了较好的产率和中等的对映选择性(up to 78% ee),催化剂重复利用五次其催化产率和对映选择性基本保持不变;负载型催化剂在催化反应完成后可通过简单的沉降/过滤等方法将催化剂回收再利用,同时,随着催化剂的分离,催化反应产物也相应地易于纯化。负载型催化剂因自身比表面积远远大于相应的小分子单体催化剂,其催化反应的速率和转化率都有相应的提高,在一定程度上实现了化学反应中经济效益和环保理念的统一。

近些年,随着科研工作者对a,β-不饱和酮不对称环氧化反应的广泛研究,越来越多的催化体系被应用于a,β-不饱和酮的不对称环氧化反应 [10] [11] 。例如金属与手性配体络合物催化体系 [12] - [18] 、手性二氧杂环丙烷催化体系 [19] [20] 、相转移催化体系 [21] [22] [23] [24] [25] 及脯氨醇催化体系 [26] 等。鉴于二芳基脯氨醇类催化剂在催化查尔酮不对称环氧化反应中表现出较好的催化效果,本文将聚苯乙烯负载的二芳基L-脯氨醇应用于催化查尔酮的不对称环氧化反应。分别考察了催化剂的种类、反应溶剂、反应时间等因素对反应产率和对映选择性的影响,同时对反应底物的普适性进行了研究。催化剂在循环使用2次时其催化活性基本保持不变。

2. 实验部分

2.1. 仪器与试剂

熔点仪为日本Yanaco MP-S3型,1H NMR使用INOVA-400型核磁共振仪(以TMS为内标,CDCl3或DMSO-d为溶剂);Brucker Equinox 55 FT-IR型红外光谱仪(KBr压片);Quattro Premier XE型质谱仪(ESI电离技术);产物的对映体过量值由HPLC测定(岛津20 A型),手性柱是Chiralcel OD-H、AD-H和AS-H型分析柱,流动相为正己烷和异丙醇(Fisher Chemical)。所用石油醚沸程为60~90℃,试剂均为分析纯,其中THF、甲苯、乙醚经无水处理(钠沙)并使用二苯甲酮显色;甲醇经钠无水处理;二氯甲烷经五氧化二磷加热回流;薄层色谱用硅胶GF254(青岛海洋化学公司生产,加0.5% CMC自制),柱层析用硅胶G (青岛海洋化学公司生产),在UV灯下观察或磷钼酸加热显色。

2.2. 聚苯乙烯负载型催化剂的合成

2.2.1. 聚苯乙烯负载羟脯氨醇B的合成

聚苯乙烯负载羟脯氨醇B的合成 [27] 如图1所示。

1) 化合物1-2的合成

在无水无氧处理及的氩气保护下,于反应瓶中依次加入化合物1-1 (0.58 mmol),NaH (16.9 mg, 0.7 mmol)和无水四氢呋喃(5 mL),冰浴冷却下缓慢滴加入溴苄(119 mg, 0.7 mmol),体系继续于室温下搅拌至反应完全,加入饱和氯化铵溶液(2 mL)淬灭反应。减压浓缩,剩余物溶于二氯甲烷,水洗,水相用二氯甲烷萃取(3 × 20 mL),合并有机相,无水硫酸钠干燥。过滤,减压浓缩除溶剂,粗产物柱层析纯化(PE: EA = 5:1)得化合物1-2 (淡黄色油状物,产率79%)。

2) 化合物1-3的合成

于单口圆底瓶中,依次加入化合物1-2 (2 mmol)、氢氧化钾饱和溶液(1.12 g, 20 mmol)和乙醇(30 mL),混合物加热搅拌回流至反应完全。减压浓缩,剩余物溶于二氯甲烷,水洗,水相用CH2Cl2萃取(3 × 20 mL),合并有机相,无水硫酸钠干燥。过滤,滤液浓缩,快速柱层析纯化得化合物1-3 (黄色油状物,产率81%)。

3) 聚合物B的合成

在经无水无氧操作及氩气保护的反应器中,依次加入化合物1-3 (2.4 g, 5.44 mmol)、苯乙烯(9.4 mL, 82.1 mmol)、AIBN (163.5 mg, 1.15 mmol)及环己烷,反应体系于氩气保护下加热搅拌回流48 h,将混合液倒入200 mL甲醇中,过滤,得聚合物B (8.9 g),聚合物的负载量0.611 mmol/g。

Figure 1. Synthesis of polystyrene supported diarylprolinols B

图1. 聚苯乙烯负载羟脯氨醇B的合成

2.2.2. 聚苯乙烯负载脯氨醇C的合成

聚苯乙烯负载脯氨醇C的合成 [27] 如图2所示。

1) 化合物1-4的合成

在水无氧处理和氩气保护条件下,向含有镁屑(2.1 g)的无水THF (100 mL)体系中缓慢滴加(4-溴苯氧基)叔丁基二甲基硅烷(9 mL)的THF(20 mL)溶液,滴毕,加热回流至镁屑基本消失。在冰水冷却条件下,将上述制备的格氏试剂THF溶液滴加入到N-乙氧羰基-L-脯氨酸甲酯(8.5 g, 42.2 mmol)的THF (30 mL)溶液中,滴毕,加热回流4 h。放置至室温,滴加饱和氯化铵溶液,加水使沉淀溶解完全。分出有机相,水相用乙醚(4 × 25 mL)萃取,合并有机相,无水硫酸钠干燥,减压浓缩得粗品,甲醇重结晶,得到化合物1-4 (白色固体,7.9 g,产率42%,m.p. 166℃~167℃)。

Figure 2. Synthesis of polystyrene supported diarylprolinols C

图2. 聚苯乙烯负载羟脯氨醇C的合成

2) 化合物1-5的合成

于圆底烧瓶中依次加入化合物1-4 (4.8 g,9.12 mmol)和THF (50 mL),搅拌溶解。在冰浴冷却条件下滴加TBAF (30 mL),滴加完成后反应体系缓慢升至室温,继续搅拌至反应完成。在冰浴冷却下加水淬灭反应,分液,水相用二氯甲烷萃取(3 × 25 mL),合并有机相,无水硫酸钠干燥。过滤,滤液减压浓缩得粗品,柱层析纯化得白色固体化合物1-5 (2.5 g,产率 90%)。

3) 化合物1-6的合成

参考化合物1-2的合成。得化合物1-6,产率65%。

4) 化合物1-7的合成

参考化合物1-3的合成。得化合物1-7,产率72%。

5) 聚合物C的合成

参考聚合物B的合成。得聚苯乙烯负载的脯氨醇催化剂C (0.49 g),负载量0.463 mmol/g。

2.3. 聚苯乙烯负载脯氨醇类催化剂催化查尔酮的不对称环氧化反应

1) 外消旋体环氧化合物的合成

将查尔酮(3.0 mmol)溶解于10 mL甲醇中,加入氢氧化钠溶液(1.2 mL,10%),冰浴冷却下滴加双氧水(1.0 mL,30%),随后体系缓慢升至于室温反应。减压浓缩除甲醇,剩余物用乙酸乙酯溶解,水洗,水相用乙酸乙酯萃取,合并有机相,无水硫酸钠干燥。过滤,减压浓缩,得无色油状物,柱层析纯化(PE: EA = 30:1)。

2) 不对称环氧化合物的合成

在室温条件下,在反应瓶中依次加入聚苯乙烯负载的二芳基脯氨醇(0.3 g,0.18 mmol)、查尔酮(0.2 mmol)和四氯化碳(2 mL),搅拌溶解。搅拌下滴加TBHP (5-6 M癸烷溶液,33 mL,0.18 mmol),继续搅拌至反应完成。相反应体系中加入甲醇使催化剂沉降,过滤,滤液浓缩,剩余物经柱层析纯化。

3. 结果讨论

3.1. 条件筛选

化合物2a为底物,在室温条件下,以TBHP为氧化剂,正己烷为溶剂,探索催化剂结构和反应时间对环氧化反应产率及立体选择性的影响。首先,考察了不同取代的化合物A对催化反应的影响,从表1可以看出,苯环上的取代基类型、取代位次对催化反应及产物的对映选择性均有一定程度的影响。苯环对位上带有给电子取代基(Entries 1, 3)较拉电子基(Entry 2)具有较好的催化效果;位阻大的取代基(Entry 3)较位阻小的取代基(Entry 1)具有较好的催化选择性。当苯环取代基为间位二甲基取代时,其催化查尔酮环氧化反应的对映性大幅度提高 (90%ee, Entry 4)。芳环上具有相同取代基时,羟脯氨酸衍生催化剂催化反应的对映选择性略有提高,但反应时间延长(92%ee, Entry 5)。随后,以CH2Cl2为溶剂,将苯乙烯负载的催化剂B和C应用于化合物2a的不对称环氧化反应,实验研究结果表明,聚合物B和C催化反应均获得较低产率的环氧化合物,聚合物B相对表现出更好的催化反应对映选择性(47% ee, Entry6)。选用聚合物B为催化剂,对反应溶剂进行优化(Entries 8-12)。以正己烷为溶剂时,几乎没有得到相应的环氧化合物(Entry 8);以Toluene、m-Xylene及CCl4为溶剂时(Entries8-10),催化反应的产率及对映选择性都有所提高,其中,以CCl4为溶剂时催化效果最好(34%产率,67% ee)。在以CCl4为溶剂进行反应时发现,反应时间对产率及对映选择性有很大程度的影响,随着反应时间延长,环氧化反应产率有所提高,但对映选择性略有降低(Entry 11)。当催化剂的量从30 mol%增加到90 mol%时,反应产率和对映选择性都有明显提高(Entry 13),但反应时间依然对反应产率及对映选择性有影响。以催化剂量为90 mol%进行反应底物适用性研究。

Table 1. Optimization of epoxidationconditionsa

表1. 环氧化反应条件优化a

a反应条件:催化剂(0.18 mmol)、苯亚甲基苯乙酮(0.2 mmol)、CCl4 (2 mL),TBHP (0.18 mmol);b柱层析分离产率;cHPLC,大赛璐手性OD-H柱分析;d48 h;e72 h;f96 h;g120 h;h144 h;DCE: 2-dichloroethane。

3.2. 底物普适性研究

以聚合物B为催化剂、催化剂用量为90 mol%、TBHP (90 mol%)为氧化剂、CCl4 (2 mL)为溶剂,考察了不同反应底物参与的环氧化反应。鉴于反应时间对反应产率和对映选择性的影响,在实验过程中对每个反应底物都考察了最佳反应时间。从表2中可以看出,反应时间对每个底物的影响是不同的。一般而言,随着反应时间的延长反应产率增加,但增加值随着反应时间的增大而减小;随着反应时间的延长,反应对映选择性先增大后减小,但产物3 h例外,其对映选择性随着反应时间的延长一直呈上升趋势。

Table 2. Substrate scope of epoxidationsa

表2. 环氧化反应底物普适性研究a

a反应条件:聚苯乙烯负载的二芳基脯氨醇(0.18 mmol)、查尔酮(0.2 mmol)、四氯化碳(2 mL),TBHP(0.18 mmol);b分离收率;cHPLC,大赛璐手性OD-H柱及AD-H柱分析。

3.3. 催化剂循环使用性

聚苯乙烯负载催化剂较有机小分子而言有一个重要优点就是反应结束后向体系中加入甲醇等不良溶剂能够使其沉降,过滤分离后便可重复循环使用。我们考察了催化剂B反应时间为120 h时,其在催化苯亚甲基苯乙酮环氧化反应中的循环再利用情况。从实验结果看出(表3),在催化剂循环使用两次时,催化剂的活性没有明显的改变,但在之后的三次使用中,催化剂的活性与对映选择性都有一定程度的降低。可能原因是因为聚苯乙烯负载催化剂在循环使用过程中形貌发生变化,以至于催化剂活性位点被阻挡或催化剂骨架扭转,导致反应活性降低。

Table 3. Recycling test of polystyrene supported Catalysta

表3. 聚苯乙烯负载催化剂的循环研究a

a反应条件:催化剂B (0.18 mmol)、苯亚甲基苯乙酮(0.2 mmol)、CCl4 (2 mL),TBHP (0.18 mmol);b分离收率;cHPLC,大赛璐手性OD-H柱分析。

4. 催化剂及产物表征

4.1. 催化剂B

1H NMR (400 MHz, CDCl3) δ 7.51-6.46 (m, 48H),4.82 (br, 2H),4.34 (br, 3H),4.02 (br, 3H),3.27 (br, 2H),2.28 (br, 12H),2.17-0.89 (m, 32H)。

4.2. 催化剂C

1H NMR (400 MHz, CDCl3) δ 7.78-6.50 (m, 93H),5.72-5.78 (m, 2H),5.27-5.22 (m, 2H),5.12-4.99 (m, 6H),4.46-4.25 (m, 5H),3.26 (br, 2H),2.80-0.74 (m, 78H)。

4.3. 化合物3a

C15H12O2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.02-8.00 (m, 2H),7.69-7.63 (m, 8H),4.47 (d, J = 1.3 Hz, 1H),4.46 (d, J = 1.3 Hz, 1H)。HPLC:DAICEL CHIALCEL OD-H,hexane/isopropanol = 98:2,flow rate = 1 mL/min,tr(2S, 3R) = 19.1 min,tr(2R, 3S) = 21.5 min。

4.4. 化合物3b

C16H14O2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.01-7.98 (m, 2H),7.63-7.19 (m, 7H),4.29 (d, J = 1.6 Hz, 1H),4.03 (d, J = 1.6 Hz, 1H),2.37 (s, 3H)。HPLC:DAICEL CHIALCEL OD-H,hexane/isopropanol = 95:5,flow rate = 0.8 mL/min,tr(2S, 3R) = 13.2 min,tr(2R, 3S) = 15.2 min。

4.5. 化合物3c

C16H14O2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.02-7.99 (m, 2H),7.64-7.16 (m, 7H),4.29 (d, J = 1.6 Hz, 1H),4.04 (d, J = 1.6 Hz, 1H),2.37 (s, 3H)。HPLC: DAICEL CHIALCEL OD-H,hexane/isopropanol = 95:5,flow rate = 1 mL/min,tr (2S,3R) = 10.7 min,tr (2R,3S) = 11.5 min。

4.6. 化合物3d

C15H11ClO2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.02-8.00 (m, 2H),7.65-7.26 (m, 7H),4.25 (d, J = 2 Hz, 1H),4.05 (d, J = 2 Hz, 1H)。HPLC:DAICEL CHIALCEL OD-H,hexane/isopropanol = 80:20,flow rate = 1 mL/min,tr (2S, 3R) = 8.1 min,tr (2R, 3S) = 8.7 min。

4.7. 化合物3e

C15H11FO2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.03-7.99 (m, 2H),7.65-7.07 (m, 7H),4.26 (d, J = 1.6 Hz, 1H),4.07 (d, J = 1.6 Hz, 1H)。HPLC:DAICEL CHIALCEL AD-H,hexane/isopropanol = 95:5,flow rate = 0.3 mL/min,tr (2S, 3R) = 58.3 min,tr (2R, 3S) = 63.2 min。

4.8. 化合物3f

C15H11ClO2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 8.06-8.04 (m, 2H),7.65-7.26 (m, 7H),4.49 (d, J = 1.6 Hz, 1H),4.17 (d, J = 1.6 Hz, 1H)。HPLC:DAICEL CHIALCEL AD-H,hexane/isopropanol = 98.5:1.5,flow rate = 1 mL/min,tr (2S, 3R) = 18.5 min,tr (2R, 3S) = 20.0 min。

4.9. 化合物3g

C15H11ClO2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 7.98-7.96 (m, 2H),7.48-7.26 (m, 7H),4.24 (d, J = 1.6 Hz, 1H),4.08 (d, J = 1.6 Hz, 1H)。HPLC:DAICEL CHIALCEL AD-H,hexane/isopropanol = 90:10,flow rate = 1 mL/min,tr (2S, 3R) = 8.1 min,tr (2R, 3S) = 8.7 min。

4.10. 化合物3h

C16H14O2,无色油状液体。1H NMR (400 MHz, CDCl3) δ 7.93-7.91 (m, 2H),7.41-7.26 (m, 7H),4.28 (d, J = 1.6 Hz, 1H),4.07 (d, J = 1.6 Hz, 1H),2.43 (s, 3H)。HPLC:DAICEL CHIALCEL AD-H,hexane/isopropanol = 90:10,flow rate = 0.8 mL/min,tr (2S,3R) = 16.0 min,tr (2R,3S) = 17.5 min。

5. 总结

在小分子催化剂的芳环及吡咯环上进行聚苯乙烯负载,实现了聚苯乙烯负载脯氨醇类催化剂的合成。催化了聚苯乙烯负载的二芳基脯氨醇催化查尔酮的不对称环氧化反应,获得了中等的产率和较好的对映选择性。负载催化剂重复使用两次其催化性能基本不发生改变,该方法丰富和发展了查尔酮的不对称环氧化反应。

基金项目

自治区高技术项目(No. 201416101)。

文章引用

刘子冉,胡云翔,张旭龙,黄艳. 聚苯乙烯负载二芳基脯氨醇的合成及其催化查尔酮的对映选择性环氧化反应研究
Synthesis of Polystyrene Supported Diarylprolinol and Its Catalytic Enantioselective Epoxidation of Chalcone[J]. 有机化学研究, 2019, 07(02): 70-79. https://doi.org/10.12677/JOCR.2019.72010

参考文献

  1. 1. Meng, H. and Zhang, X.-J. (2010) Application Research Progress of Polymer-Supported Catalyst. Chemical Propellants &Polymeric Materials, 8, 45.

  2. 2. uchmeiser, M.R. (2009) Polymer-Supported Well-Defined Metathesis Catalysts. Chemical Reviews, 109, 303-321. https://doi.org/ 10.1021/cr800207n

  3. 3. Lu, J. and Toy, P.H. (2009) Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews, 109, 815-838. https://doi.org/ 10.1021/cr8004444

  4. 4. Li, Z.-W. and Li, J.-S. (2013) Dendrimer-Supported Catalysts for Organic Synthesis. Current Organic Chemistry, 17, 1334-1349. https://doi.org/ 10.2174/1385272811317120008

  5. 5. Jia, X.-F., Liang, Z.-Y., Chen, J.B., Lv, J.H., Zhang, K., Gao, M.J., Zong, L.B. and Xie, C.X. (2019) Porous Organic Polymer Supported Rhodium as a Reusable Heterogeneous Catalyst for Hydroformylation of Olefins. Organic Letters, 21, 2147-2150. https://doi.org/ 10.1021/acs.orglett.9b00459

  6. 6. Ju, P.Y., Wu, S.J., Su, Q., Li, X.D., Liu, Z.Q., Li, G.H. and Wu, Q.L. (2019) Salen-Porphyrin-Based Conjugated Mi-croporous Polymer Supported Pd Nanoparticles: Highly Efficient Heterogeneous Catalysts for Aqueous C-C Coupling Reactions. Journal of Materials Chemistry A, 7, 2660-2666. https://doi.org/ 10.1039/C8TA11330K

  7. 7. Sadhasivam, V., Mariyappan, M. and Siva, A. (2018) Porous Triazine Containing Covalent Organic Polymer Supported Pd Nanoparticles: A Stable and Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling and the Reduction of Nitroarenes. Chemistryselect, 3, 13442-13455. https://doi.org/ 10.1002/slct.201802977

  8. 8. Liu, X.Y., Li, Y.W., Wang, G.Y., Chai, Z., Wu, Y.Y. and Zhao, G. (2006) Effective and Recyclable Dendritic Ligands for the Enantioselective Epoxidation of Enones. Tetrahedron: Asymmetry, 17, 750-755. https://doi.org/ 10.1016/j.tetasy.2006.02.019

  9. 9. Wu, Y.Y., Zhang, Y.Z., Yu, M.L., Zhao, G. and Wang, S.W. (2006) Highly Efficient and Reusable Dendritic Catalysts Derived from N-Prolylsulfonamide for the Asymmetric Direct Aldol Reaction in Water. Organic Letters. 8, 4417-4420. https://doi.org/ 10.1021/ol061418q

  10. 10. Zhu, Y.G., Wang, Q., Cornwall, R.G. and Shi, Y. (2014) Organocatalytic Asymmetric Epoxidation and Aziridination of Olefins and Their Synthetic Applications. Chemical Reviews, 114, 8199-8256. https://doi.org/ 10.1021/cr500064w

  11. 11. Bryliakov, K.P. (2017) Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chemical Reviews, 117, 11406-11459. https://doi.org/ 10.1021/acs.chemrev.7b00167

  12. 12. Nishikawa, Y. and Yamamoto, H. (2011) Iron-Catalyzed Asymmetric Epoxidation of β,β-Disubstituted Enones. Journal of the American Chemical Society, 133, 8432-8435. https://doi.org/ 10.1021/ja201873d

  13. 13. Claraso, C., Vicens, L., Polo, A. and Costas, M. (2019) Enantioselective Epoxidation of β,β-Disubstituted Enamides with a Manganese Catalyst and Aqueous Hydrogen Peroxide. Organic Letters, 21, 2430-2435. https://doi.org/ 10.1021/acs.orglett.9b00729

  14. 14. Karaman, H.S., Kilic, H. and Sahin, E. (2017) Asymmetric Epoxidation of Enones Using Cumyl Hydroperoxide and in Situ Generated Zinc Complexes of Chiral Pyrrolidinyl Alcohols. Tetrahedron: Asymmetry, 28, 1626-1632. https://doi.org/ 10.1016/j.tetasy.2017.09.004

  15. 15. Zhang, H., Yao, Q., Lin, L.L., Xu, C.R., Liu, X.H. and Feng, X.M. (2017) Catalytic Asymmetric Epoxidation of Elec-tron-Deficient Enynes Promoted by Chiral N,N’-Dioxide-Scandium(III) Complex. Advanced Synthesis & Catalysis, 359, 3454-3459. https://doi.org/ 10.1002/adsc.201700555

  16. 16. Chu, Y.Y., Liu, X.H., Li, W., Hu, X.L., Lin, L.L. and Feng, X.M. (2012) Asymmetric Catalytic Epoxidation of α, β-Unsaturated Carbonyl Compounds with Hydrogen Peroxide: Additive-Free and Wide Substrate Scope. Chemical Science, 3, 1996-2000. https://doi.org/ 10.1039/c2sc20218b

  17. 17. Dai, W., Li, J., Li, G.S., Yang, H., Wang, L.Y. and Gao, S. (2013) Asymmetric Epoxidation of Alkenes Catalyzed by a Porphyrin-Inspired Manganese Complex. Organic Letters, 15, 4138-4141. https://doi.org/ 10.1021/ol401812h

  18. 18. Kobayashi, Y., Obayashi, R., Watanabe, Y., Miyazaki, H., Miyata, I., Suzuki, Y., Yoshida, Y., Shioiri, T. and Matsugi, M. (2019) Unprecedented Asymmetric Epoxidation of Isolated Carbon-Carbon Double Bonds by a Chiral Fluorous Fe(III) Salen Complex: Exploiting Fluorophilic Effect for Catalyst Design. European Journal of Organic Chemistry, 2019, 2401-2408. https://doi.org/ 10.1002/ejoc.201900146

  19. 19. Hajra, S. and Bhowmick, M. (2010) Asymmetric Epoxidation of Cinnamic Acid Derivatives by in Situ Generated Di-oxiranes of Chloroacetones: Scope and Limitations. Tetrahedron: Asymmetry, 21, 2223-2229. https://doi.org/ 10.1016/j.tetasy.2010.07.012

  20. 20. Fearraigh, M.P.O., Matlock, J.V., Illa, O., McGarrigle, E.M. and Aggarwal, V.K. (2018) Synthesis of Isothiocineole and Application in Multigram-Scale Sulfur Ylide Mediated Asymmetric Epoxidation and Aziridination. Synthesis, 50, 3337-3343. https://doi.org/ 10.1055/s-0037-1609580

  21. 21. Helder, R., Hummelen, J.C., Laane, Rwpm, Wiering, J.S. and Wynberg, H. (1976) Catalytic Asymmetric Induction in Oxidation Reactions-Synthesis of Optically-Active Epoxides. Tetrahedron Letters, 12, 1831-1834. https://doi.org/ 10.1016/S0040-4039(00)93796-1

  22. 22. Lygo, B. and Wainwright, P.G. (1999) Phase-Transfer Catalysed Asymmetric Epoxidation of Enones Using N-Anthracenylmethyl-Substituted Cinchona Alkaloids. Tetrahedron, 55, 6289-6300. https://doi.org/ 10.1016/S0040-4020(99)00205-7

  23. 23. Corey, E.J. and Zhang, F.Y. (1999) Mechanism and Conditions for Highly Enantioselective Epoxidation of α, β-Enones Using Charge-Accelerated Catalysis by a Rigid Quaternary Ammonium Salt. Organic Letters, 1, 1287-1290. https://doi.org/ 10.1021/ol990964z

  24. 24. Berkessel, A., Guixà, M., Schmidt, F., Neudörfl, J.M. and Lex, J. (2007) Highly Enantioselective Epoxidation of 2-Methylnaphthoquinone (Vitamin K3) Mediated by New Cinchona Alkaloid Phase-Transfer Catalysts. Chemistry: A European Journal, 13, 4483-4498. https://doi.org/ 10.1002/chem.200600993

  25. 25. Yoo, M.S., Kim, D.G., Ha, M.W., Jew, S., Park, H. and Jeong, B.S. (2010) Synthesis of (αR, βS)-Epoxyketones by Asymmetric Epoxidation of Chalcones with Cinchona Phase-Transfer Catalysts. Tetrahedron Letters, 51, 5601-5603. https://doi.org/ 10.1016/j.tetlet.2010.08.056

  26. 26. Li, Y.W., Liu, X.Y., Yang, Y.Q. and Zhao, G. (2007) 4-Substituted-α, α-Diaryl-Prolinols Improve the Enantioselective Catalytic Epoxidation of α, β-Enones. Journal of the Organic Chemistry, 72, 288-291. https://doi.org/ 10.1021/jo0617619

  27. 27. Wöltinger, J., Bommarius, A.S., Drauz, K. and Wandrey, C. (2001) The Chemzyme Membrane Reactor in the Fine Chemicals Industry. Organic Process Research & Development, 5, 241-248. https://doi.org/ 10.1021/op000111i

  28. NOTES

    *通讯作者。

期刊菜单