Nuclear Science and Technology
Vol. 10  No. 04 ( 2022 ), Article ID: 56530 , 6 pages
10.12677/NST.2022.104023

钯钇合金净化器的氢-氦分离性能

宋智蓉,熊义富,敬文勇

材料研究所,四川 江油

收稿日期:2022年8月11日;录用日期:2022年10月2日;发布日期:2022年10月9日

摘要

以钯-8%钇合金为净化器,进行了氢–氦分离性能研究。结果表明,该净化器具有操作模式简单、体积小、批处理能力大、工作温度低等特点,净化器的日处理能力约20 mol,经循环分离处理后,氢–氦混合气得到了较好的分离,氦气中氢气含量和氢气中氦气含量均低至0.1%。

关键词

钯钇合金,净化器,分离性能

Performance of Palladium Yttrium Alloy Purifier in Hydrogen and Helium Separation

Zhirong Song, Yifu Xiong, Wenyong Jing

Institute of Materials, Jiangyou Sichuan

Received: Aug. 11th, 2022; accepted: Oct. 2nd, 2022; published: Oct. 9th, 2022

ABSTRACT

Researches on hydrogen and helium separation performance were done at Pa-8%Y alloy purifier. The result shows that the purifier has many advantages such as simple operator schema, low volume, great batch processing ability and low operating temperature. The handling capacity of purifier is 20 mol/day. The hydrogen concentration in helium gas and the helium concentration in hydrogen gas are both lower than 0.1% after circulating separate process from hydrogen and helium mixture.

Keywords:Palladium- Yttrium Alloy, Purifier, Separation Performance

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

氢–氦快速分离是聚变反应堆氘氚核燃料循环的核心技术之一,通过氢–氦高效分离,不仅可使反应堆运行中大量未燃烧的氘氚气体得到重新利用,还可实现对聚变反应堆运行过程中氚的环境释放量的有效控制。为满足未来聚变反应堆运行对大规模氢同位素净化需求,目前已经发展了一系列的氢–氦分离技术,如钯合金膜氢扩散净化器等。Tong HD [1] 发现了钯膜的优良透氢性并利用钯膜提纯氢气,但一些学者研究发现纯钯膜不是一种好的渗氢膜 [2] [3] [4] [5] [6],其特征容破裂、抗压能力差,氢渗透速率低,从而限制了其广泛应用。一些研究者把目光投向了钯基合金膜最早商品化的钯基透氢膜是Pd-Ag (Pd77 atom%, A23 atom%)合金膜管 [7] [8],相同条件下,氢化导致的位错密度比纯钯低得多。可是,该合金膜的缺点是强度仅比纯钯膜稍高,这意味着高温下无支承的合金膜不能承受高的氢压力。钯合金膜一般采用滚轧法制备。膜的厚度多在50 μm~100 μm,过薄则无法维持足够的稳定性和机械强度;但膜过厚则成本急剧增加,并会降低膜的透氢率。为解决这一矛盾,研究者把目光投向了钯复合膜。膜的厚度可减少至10 μm甚至更薄,透氢量更是提高了一个数量级 [7],目前钯合金膜已经从单纯的二元合金膜发展到三元、四元甚至更高的合金膜 [9] [10] [11]。一些研究者采用钯合金膜进行氢同位素的净化工艺考核实验表明 [3] [12] - [18],钯稀土固溶合金是一类很好的氢净化材料,它们是未来聚变反应堆核燃料净化材料的主要侯选材料,此材料能有效地消除α相、b相的融合间隙,增强合金的抗氢脆、氦脆和抗杂质中毒能力及改善氢渗透性能。上述净化器普遍采用外压式进气方式,其主要缺点是无法确保净化器具有稳定的透氢速率,且分离过程中因压力波动较大影响净化器的使用寿命。

本文以钯-8%钇合金为分离材料并采用内压式进气方式并借助压力调节器及气体循环装置,实现氢–氦的高效分离,延长净化器使用寿命及确保其具有稳定的透氢速率,研究结果对聚变反应堆氘氚核燃料循环中大批量氢–氦的快速分离具有重要的参考价值。

2. 实验过程

2.1. 氢氦分离原理

氢氦分离原理为:在一定温度下,氢同位素气体能选择性地透过净化器,其它杂质气体则不能透过而保留在尾气中,使氢–氦混合气流经钯钇合金净化器并将氦滞留在钯钇合金管的内部,使氢透过钯钇合金,实现氢–氦分离。以Pd-8%Y (at.%)合金管为分离材料的净化器实物图见图1

2.2. 实验系统

采用图2所示的实验系统进行氢–氦混合气分离性能测试,该系统主要包含了真空泵、钯钯钇合金净化器、压力传感器、尾气罐、气体循环泵、流通式床、原料床、产品床和气体计量罐等组件。整个工艺系统的漏率小于1.0 × 10−9 Pa∙m3∙s−1,耐压范围为0 MPa~1.0 MPa。

Figure 1. Palladium alloy spiral tube and purification device

图1. 钯合金螺旋管及净化装置

1-Vacuum bump; 2-Gas metering vessel; 3-Production bed; 4-Palladium alloy tube; 5-Amortize vessel; 6-Exhaustive vessel; 7-Pressure transducer; 8, 9-Cycling bump; 10-Circulating bed; 11, 12-Feeding bed1-真空泵;2-气体计量罐;3-产品床;4-钯合金管;5-缓冲容器;6-尾气罐;7-压力传感器;8, 9-气体循环泵;10-流通式床;11, 12-原料床

Figure 2. Scheme for the assembly of experimental setup

图2. 实验系统简图

2.3. 净化器的漏率测试

净化器的漏率测试过程为:1) 将净化器接入检漏系统并进行抽空处理;2) 将净化器加热至设定温度并恒温4 h;3) 通入一定压力的高纯He-4并保持5 min后用氦质谱检漏仪进行漏率测试。

2.4. 氢氦分离实验

分离过程为:1) 用供气装置配制氢(1%~10%)氦的混合气体;2) 将净化器加热至500℃并用真空泵抽空至5 Pa以下;3) 从净化器入口端通入待氢-氦混合气并用气体流量控制仪进行控制;4) 尾气出口端与真空泵相连,用阀门控制抽空速率,处理一定时间后,关闭阀门并用取样单元取样并用气体质谱仪分析氢含量,用气相色谱仪分析氦含量;5) 为了让回收装置有较高的压力驱动力,产品气出口端也与真空泵相连,并维持真空度在5 Pa以下。6) 实验结束后,关闭供气装置阀门,继续用真空泵对系统及回收装置进行抽空处理。

3. 结果与讨论

3.1. 耐温耐压实验

为了考核净化器使用寿命,进行了不同温度、不同压力下的漏率测试。其测试结果见图3。结果表明:在低温段(室温~200℃)及相同温度下,随着压力的升高,漏率几乎没有变化;在高温段(300℃~600℃)及相同温度下,随着压力的升高,漏率有上升的趋势;测试过程中,净化器的漏率低于1.5 ´ 10−9 Pa∙m3∙s−1

Figure 3. The results of leakage on purification device at different temperature and pressure

图3. 在不同温度及压力下,净化器的漏率测试结果

3.2. 氢氦分离实验

表1给出了在相同的透氢温度和透氢面积下钯钇合金净化器对氢–氦分离结果,可以看出,在500℃的分离温度下,尾气中的氢含量小于0.1%,产品气中氦含量小于0.1%,表明,钯钇合金净化器对氢–氦混合气具有较好的分离效果,钯钇合金净化器的分离速率随原料气中的氦-4含量增加而逐渐降低,其主要原因是原料气中的氦-4在分离过程中在净化器的表面具有一定的覆盖效应,从而影响期透氢速率。

Table 1. The hydrogen and helium separation experimental results

表1. 钯合金净化器对氢-氦混合气分离实验结果

4. 结论

通过以上实验,得出以下结论:

1) 钯钇合金净化器具有较好的耐温抗压能力,在使用温度及压力范围内,其漏率小于1.5 × 10−9 Pa∙m3∙s−1

2) 采用钯钇合金净化器进行氢–氦分离时,分离效果明显,分离结束后,氦气中氢气含量和氢气中氦气含量均低于0.1%。

致谢

在项目实施过程中,陈亮、齐连柱等进行了气体质谱分析;雷强华、武志刚等进行气相色谱分析;杨鹏飞等进行了焊接工作;张光辉、蒋富冬等进行氢–氦分离实验,在此,一并感谢!

文章引用

宋智蓉,熊义富,敬文勇. 钯钇合金净化器的氢-氦分离性能
Performance of Palladium Yttrium Alloy Purifier in Hydrogen and Helium Separation[J]. 核科学与技术, 2022, 10(04): 219-224. https://doi.org/10.12677/NST.2022.104023

参考文献

  1. 1. Tong, H.D., Gielens, F.C., Gardeniers, J.G.E., Jansen, H.V., Van Rijin, C.J.M., Elwenspoek, M.C. and Nijdam, W. (2004) Microfabricated Palladium-Silver Alloy Membranes and Their Application in Hydrogen Separation. Journal of Chemical Engineering Science, 43, 4182-4187. https://doi.org/10.1021/ie034293r

  2. 2. Ryia, S.K., Parka, J.S., Kimb, S.H., Kimc, D.W. and Kimc, H.K. (2009) Low Temperature Diffusion Bonding of Pd-Based Composite Mem-branes with Metallic Module for Hydrogen Separation. Journal of Membrane Science, 326, 589-594. https://doi.org/10.1016/j.memsci.2008.10.040

  3. 3. Pizzi, D., Worth, R., Baschetti, M.G., Sarti, G. and Noda, K.I. (2008) Hydrogen Permeability of 2.5 μm Palladium-Silver Membranes Deposited on Ceramic Supports. Journal of Membrane Science, 325, 446-453. https://doi.org/10.1016/j.memsci.2008.08.020

  4. 4. Ma, Y.H., Mardilovich, I. and Engwall, E. (2003) Thin Compo-site Palladium and Palladium / Alloy Membranes Forhydrogen Separation. Annals of the New York Academy of Science, 984, 346-360. https://doi.org/10.1111/j.1749-6632.2003.tb06011.x

  5. 5. Sieverts, A. and Zapf, G. (1935) Solubility of H and D in Soild Pd(I). Zeitschrift für Physikalische Chemie, 174, 359-364. https://doi.org/10.1515/zpch-1935-17433

  6. 6. Holleck, G.C. (1970) Diffusion and Solubility of Hydrogen in Pal-ladium and Palladium—Sliver Alloys. Journal of Physical Chemistry, 74, 503-511. https://doi.org/10.1021/j100698a005

  7. 7. Rosset, A.J. (1960) Diffusion of Hydrogen through Palladium Mem-branes. Industrial and Engineering Chemistry, 52, 525-528. https://doi.org/10.1021/ie50606a035

  8. 8. Ward, T.L. and Dao, T. (1999) Model of Hydrogen Permeation Behavior in Palladium Membrane. Journal of Membrane Science, 153, 211-231. https://doi.org/10.1016/S0376-7388(98)00256-7

  9. 9. Zheng, W. and Wu, L. (2000) Preparation and Pore Size Shrinkage of Palladium-Ceramic Composite Membrane by Electroless Plating under Hydrothermal conditions. Materials Science and Engineering A, 283, 122-125. https://doi.org/10.1016/S0921-5093(99)00799-6

  10. 10. Rothernberger, K.S., Cugini, A.V., Howard, B.H., Killmeryer, R.P., Michael, V.C., Bryan, D.M., Robert, M.E., Felipe, B., Ivan, P.M. and Ma, Y.H. (2004) High Pressure Hydrogen Permeance of Porous Stainless Steel Coated with a Thin Palladium Film via Electroless Plating. Journal of Membrane Science, 244, 55-68. https://doi.org/10.1016/j.memsci.2004.06.036

  11. 11. Chen, S.C., Tu, G.C., Caryat, C.Y., Hung, C.A. and Rei, M.H. (2008) Preparation of Palladium Membrane Byelectroplating on AISI 316Lporous Stainless Steel Supports and Its Use for Methanol steam Reformer. Journal of Membrane Science, 314, 5-14. https://doi.org/10.1016/j.memsci.2007.12.066

  12. 12. Nam, S.E. and Lee, K.H. (2001) Hydrogen Separation by Pd Alloy Composite Membranes: Introduction of Diffusion Barrier. Journal of Membrane Science, 192, 177-185. https://doi.org/10.1016/S0376-7388(01)00499-9

  13. 13. Xie, D.L., Adris, A.M., Lim, C.J. and Grance, J.R. (2009) Test on a Modular Fluidized Bed Membrane Reactor Forautothermal Steam Methane Reforming. Acta Energiae Solaris Sinica, 30, 704-707.

  14. 14. Chen, Z., Grace, J.R., Lim, C.J. and Li, A. (2007) Experimental Studies of Pure Hydrogen Production in a Commercialized Fluidized Bed Membrane Reactor with SMR and ATR Catalysts. International Journal of Hydrogen Energy, 32, 2359-2366. https://doi.org/10.1016/j.ijhydene.2007.02.036

  15. 15. Xie, D.L., Grace, J.R. and Lim, C. (2006) Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas. Journal of Wuhan University of Technology, 28, 252-257.

  16. 16. Mahecha-Botero, A., Boyd, T., Gu-lamhusein, A., Comyn, N., Jim Lim, C., Grace, J.R., et al. (2008) Pure Hydrogen Generation in a Fluidized-Bed Mem-brane Reactor: Experimental Findings. Chemical Engineering Science, 63, 2752-2762. https://doi.org/10.1016/j.ces.2008.02.032

  17. 17. Shirasakia, Y., Tsunekia, T., Otaa, Y., Yasuda, I., Tachibana, S., Nakajima, H., et al. (2009) Development of Membrane Reformer System for Highly Efficient Hydrogen Production from Natural Gas. International Journal of Hydrogen Energy, 34, 4482-4487. https://doi.org/10.1016/j.ijhydene.2008.08.056

  18. 18. Patil, C.S., Annaland, M. and Kuipers, J.A.M. (2007) Fluid-ised Bed Membrane Reactor for Ultrapure Hydrogenproduction via Methane Steam Reforming: Experimental Demon-stration and Model Validation. Chemical Engineering Science, 62, 2989-2930. https://doi.org/10.1016/j.ces.2007.02.022

期刊菜单