Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 63883 , 6 pages
10.12677/ACM.2023.134758

希氏束起搏研究进展

熊翠1,2,杨莹1,2*

1绍兴文理学院医学院,浙江 绍兴

2浙江大学医学院附属邵逸夫医院,浙江 杭州

收稿日期:2023年3月7日;录用日期:2023年4月1日;发布日期:2023年4月14日

摘要

希氏束起搏(His bundle pacing, HBP)是通过将起搏电极植入希氏束而实现的一种生理性起搏技术。它通过天然传导系统激动心室,可避免起搏器诱发的心肌病等并发症,是一种安全有效的起搏替代方式。HBP不仅适用于各种原因导致的心动过缓,还能实现心脏再同步及作为心力衰竭患者的替代疗法。现有数据表明,HBP在维持或恢复心室同步性方面具有明显优势。此外,与传统右心室起搏相比,HBP的心房颤动发生率降低。在需要高百分比起搏时,其临床益处尤其显著。近年来HBP的研究发展迅速,本文对国内外关于HBP的最新研究成果进行综述,以便掌握其最新的前沿动态。

关键词

希氏束起搏,生理性起搏,临床疗效,并发症

Research Progress of His Bundle Pacing

Cui Xiong1,2, Ying Yang1,2*

1School of Medicine, Shaoxing University, Shaoxing Zhejiang

2Sir Run Run Shaw Hospital Affiliated to College of Medicine of Zhejiang University, Hangzhou Zhejiang

Received: Mar. 7th, 2023; accepted: Apr. 1st, 2023; published: Apr. 14th, 2023

ABSTRACT

His bundle pacing (HBP) is a physiological pacing achieved by implanting pacing electrodes into his bundle. It stimulates the ventricle through the natural conduction system, which can avoid complications such as cardiomyopathy induced by the pacemaker, and is a safe and effective alternative to pacing. HBP is not only suitable for bradycardia caused by various reasons, but also can realize cardiac resynchronization and serve as an alternative therapy for patients with heart failure. Available data indicate that HBP has obvious advantages in maintaining or restoring ventricular synchronization. In addition, compared with conventional right ventricular pacing, the incidence of atrial fibrillation in HBP decreased. The clinical benefits are particularly significant when a high percentage of pacing is required. In recent years, the research on HBP has developed rapidly. This paper summarizes the latest research results of HBP at home and abroad in order to grasp its latest frontier trends.

Keywords:His Bundle Pacing, Physiological Pacing, Clinical Efficacy, Complication

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着人口老龄化的加重,对心脏起搏的需求越来越普遍。心脏起搏仍是不可逆缓慢性心律失常的最佳治疗方法。近些年来,大量研究发现由于诱发电和机械不同步,传统的右心室心尖起搏会对左心室功能产生不利的影响,如导致左室收缩和舒张功能障碍及心室重构等 [1] [2] 。由于这些原因,人们对直接激动自身传导系统的生理性起搏技术越来越感兴趣 [3] [4] [5] [6] 。在这方面,希氏束起搏(His bundle pacing, HBP)是最常用的方法 [7] [8] [9] 。由于产生正常的双心室电激动,HBP可以维持心电和机械同步 [10] [11] 。多项研究证明了该技术的可行性和临床益处 [12] - [17] 。在发生束支传导阻滞的患者中,特别是那些有左束支传导阻滞和心力衰竭的患者,HBP可以作为传统心脏再同步疗法(Cardiac resynchronization therapy, CRT)的替代方案 [18] 。作为一种生理性起搏方式,HBP仍有一些局限性,包括难以识别希氏束的精确位置、植入过程中对希氏束的损伤、起搏远端的心脏传导阻滞以及长期性能的潜在限制等 [10] [18] [19] [20] [21] 。尽管存在这些局限性,但最近几项观察性研究表明,HBP可在短期至中期随访中产生与传统双心室起搏相当的有益临床结局 [10] [20] 。然而,也有研究显示,几乎一半患者的QRS持续时间不能正常化,这表明在这部分患者中,HBP不能克服传导阻滞 [22] [23] [24] [25] [26] 。本文将从HBP植入技术的特点、适应症、临床疗效等方面对HBP的最新研究进展进行综述。

2. 希氏束的解剖

希氏束作为从房室结经束支传导到心室的通道,详细了解希氏束及其近端束分支等房室传导系统的解剖结构,对于施行永久性HBP和理解该区域对起搏的各种反应至关重要 [6] 。

希氏束起源于房室结前端,穿过室间隔膜部的下缘,然后在大多数个体中沿着室间隔肌部上缘的左侧行走。希氏束的近端部分位于室间隔的右心房–左心室部分,较远端部分沿着室间隔的左心室–右心室部分移动,接近主动脉根部的正下方。永久性HBP起搏电极可置于希氏束的心房和心室部分,植入的最终位置取决于疾病的严重程度或房室传导阻滞程度 [27] 。

3. HBP的植入特征

由于病变位置或解剖变异,HBP也面临着诸多挑战。远端希氏–浦肯野系统病变可能会对阻滞部位远端的导线固定产生影响。解剖变异包括右侧植入和右心房或右心室明显扩大,可导致希氏束移位。使用外冠状窦输送鞘或其他冠状窦输送鞘和C315 HIS鞘的伸缩式鞘套可能有助于在重构和扩张的心脏中提供更长的作用距离 [28] 。植入希氏束区域的导线的特性与植入心房或心室心肌组织的导线的特性具有较大差异。植入希氏束区域电极的感知R波通常低于传统右心室位置,报告的平均R波介于3.4 mV和6.8 mV之间 [29] [30] [31] 。使用SelectSecure 3830导联报告的平均希氏束夺获阈值约为1.4 V @ 1 ms,而束支传导阻滞时校正阈值通常更高,约为2 V @ 1 ms [32] 。随着工具的改进和术者经验的增加,永久性HBP的成功率从2000年的65%大幅提高到2018年的92% [19] [31] 。

4. HBP的适应症及禁忌症

与右心室起搏相比,HBP已被一致证明具有更好的临床结果,尤其是在房室传导阻滞的患者中 [30] [31] [33] [34] 。在一项前瞻性、随机、双盲、交叉试验中,对38例房室传导阻滞、窄QRS波和左心室射血分数 > 40%的患者进行了HBP与右心室间隔起搏的比较,在起搏术后的第12个月,室间隔起搏组患者的左室射血分数(Left ventricular ejection fraction, LVEF) (50% ± 11%)明显低于HBP组(55% ± 10%;p = 0.005) [35] 。

但在某些特殊的疾病状态下,应谨慎考虑施行HBP,甚至可能是禁忌证。这些情况包括但不限于为避免损伤瓣膜而行三尖瓣置换术的患者,经导管主动脉瓣置换术的患者,以及患有室间隔疾病的患者。对于有其他瓣膜疾病的患者,如三尖瓣成形术、主动脉瓣置换术、二尖瓣疾病或置换术等,HBP通常是成功的 [36] 。

5. HBP与心脏再同步治疗

传统的心脏再同步治疗(cardiac resynchronization therapy, CRT)是通过双心室起搏实现的,通过控制心室融合起搏以改善心室收缩同步 [37] 。近年来,使用HBP实现CRT (His-CRT)越来越受欢迎 [20] [32] [38] [39] [40] [41] [42] 。多组数据已经证明HBP可以实现心室再同步,HBP被认为是实现CRT的一种主要策略 [43] 。

永久性HBP在需要CRT的患者中成功率很高。在一项关于His-CRT多中心研究中,8名患者成功升级为HBP,其中6名患者有超声心动图参数的改善(75%),平均LVEF从30%  ±  10%提高至38%  ±  13% (P  = 0.07),这表明HBP可能是部分对传统CRT无应答患者的不错选择 [32] 。然而,仍需要进一步的研究以证明上述结论的准确性。

6. HBP面临的挑战

首先是HBP的成功率。近些年来,HBP的手术成功率显著提高(高达92%),但这样的成功率是在经验丰富的临床中心实现的,是术者经验提高和使用先进工具的结果 [44] 。Bhatt及其同事的一项研究显示,在所有患者中HBP的成功率为75%,但在房室传导阻滞患者中仅为56%,而无房室传导阻滞患者为83% [45] 。目前需要改进现有的输送工具,以提高解剖变异和远端传导系统病变患者的HBP成功率。

夺获阈值增加是HBP面临的另一个挑战。尽管在记录到希氏束损伤电流的患者中,夺获阈值可以在最初的几个小时内得到改善,但在一定比例的患者中观察到希氏束夺获阈值的长期增加 [31] 。一项对332名患者进行的研究发现,约14%的患者在术后12个月时其希氏束夺获阈值 > 2.5 V,而在平均2年的随访期间,4.2%的患者出现了阈值的显著增加并需要修复导线 [31] 。希氏束起搏阈值延迟增加的机制尚不确定,但可能是由于固定不当、导线松弛、局部纤维化或微移位所致。

电池寿命也是影响HBP性能的重要方面。考虑到与传统的右心室起搏导联位置相比,希氏束夺获需要更高的起搏输出,因此存在HBP缩短电池寿命的问题。目前随着HBP特定设备算法的优化,较低的输出便可确保希氏束夺获,从而提高了电池寿命。一项对74名HBP患者进行的研究表明,脉冲发生器的5年生存率为91%,在一些患者中可以成功进行双腔系统CRT,从而降低了与植入相关的总成本 [46] 。

此外还存在感知问题。HBP导线通常植入希氏束区域,其感知R波振幅通常较低。这种情况可能会导致心房过度感知、希氏束过度感知而心室感知不足。所以必须在植入过程中评估这些特征,以避免这方面的影响。

7. 展望

HBP代表了最生理的心室激动形式。目前的数据表明,HBP优于传统的右心室起搏,具有更好的临床结果。此外,HBP是CRT适应症患者的一种有前景的替代选择。当然,HBP技术的广泛应用还取决于其在大型随机临床试验中的有效性的进一步验证以及导线设计、输送工具等的进一步改进。

基金项目

浙江省医学健康科技计划项目(2018KY492和2020KY165)、浙江省医学会临床科研基金项目(2018ZYC-A13)和浙江省自然科学基金项目(LY21H020006)。

文章引用

熊 翠,杨 莹. 希氏束起搏研究进展
Research Progress of His Bundle Pacing[J]. 临床医学进展, 2023, 13(04): 5354-5359. https://doi.org/10.12677/ACM.2023.134758

参考文献

  1. 1. Tops, L.F., Schalij, M.J. and Bax, J.J. (2009) The Effects of Right Ventricular Apical Pacing on Ventricular Function and Dyssynchrony Implications for Therapy. JACC: Journal of the American College of Cardiology, 54, 764-776. https://doi.org/10.1016/j.jacc.2009.06.006

  2. 2. Nahlawi, M., Waligora, M., Spies, S.M., et al. (2004) Left Ventric-ular Function during and after Right Ventricular Pacing. JACC: Journal of the American College of Cardiology, 44, 1883-1888. https://doi.org/10.1016/j.jacc.2004.06.074

  3. 3. Wu, S., Zhou, X. and Huang, W. (2022) Physiological Pacing with Conduction System Capture: How to Confirm Bundle Capture in Clinical Practice. Journal of Cardiovascular Electro-physiology, 33, 1332-1335. https://doi.org/10.1111/jce.15477

  4. 4. Vijayaraman, P., Zalavadia, D., Haseeb, A., et al. (2022) Clinical Outcomes of Conduction System Pacing Compared to Biventricular Pacing in Patients Requiring Cardiac Resynchronization Thera-py. Heart Rhythm, 19, 1263-1271. https://doi.org/10.1016/j.hrthm.2022.04.023

  5. 5. Shen, S., Sewanan, L.R., Shao, S., et al. (2022) Physiological Calcium Combined with Electrical Pacing Accelerates Maturation of Human Engineered Heart Tissue. Stem Cell Reports, 17, 2037-2049. https://doi.org/10.1016/j.stemcr.2022.07.006

  6. 6. Scheetz, S.D. and Upadhyay, G.A. (2022) Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: A Review of the Literature. Current Cardiology Reports, 24, 959-978. https://doi.org/10.1007/s11886-022-01723-3

  7. 7. Ye, Y., Zhang, K., Yang, Y., et al. (2021) Feasibility and Safety of both His Bundle Pacing and Left Bundle Branch Area Pacing in Atrial Fibrillation Patients: Intermediate Term Fol-low-Up. Journal of Interventional Cardiac Electrophysiology, 66, 271-280. https://doi.org/10.1007/s10840-021-00964-6

  8. 8. Hu, Y., Li, H., Gu, M., et al. (2021) Comparison between His-Bundle Pacing and Left Bundle Branch Pacing in Patients with Atrioventricular Block. Journal of Interventional Cardiac Electrophysiology, 62, 63-73. https://doi.org/10.1007/s10840-020-00869-w

  9. 9. Grieco, D., Bressi, E., Curila, K., et al. (2021) Impact of His Bundle Pacing on Right Ventricular Performance in Patients Undergoing Permanent Pacemaker Implantation. Pacing and Clinical Electrophysiology, 44, 986-994. https://doi.org/10.1111/pace.14249

  10. 10. Vijayaraman, P., Chung, M.K., Dandamudi, G., et al. (2018) His Bundle Pacing. JACC: Journal of the American College of Cardiology, 72, 927-947. https://doi.org/10.1016/j.jacc.2018.06.017

  11. 11. Vijayaraman, P., Bordachar, P. and Ellenbogen, K.A. (2017) The Continued Search for Physiological Pacing: Where Are We Now? JACC: Journal of the American College of Cardiology, 69, 3099-3114. https://doi.org/10.1016/j.jacc.2017.05.005

  12. 12. Zanon, F., Marcantoni, L., Centioni, M., et al. (2022) His Bundle Pacing: My Experience, Tricks, and Tips. Cardiac Electrophysiology Clinics, 14, 141-149. https://doi.org/10.1016/j.ccep.2021.12.016

  13. 13. Zweerink, A., Zubarev, S., Bakelants, E., et al. (2021) His-Optimized Cardiac Resynchronization Therapy with Ventricular Fusion Pacing for Electrical Resynchronization in Heart Failure. JACC: Clinical Electrophysiology, 7, 881-892. https://doi.org/10.1016/j.jacep.2020.11.029

  14. 14. Whinnett, Z.I., Shun-Shin, M.J., Tanner, M., et al. (2023) Effects of Haemodynamically Atrio-Ventricular Optimized His Bundle Pacing on Heart Failure Symptoms and Exercise Capaci-ty: The His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) Randomized, Double-Blind, Cross-Over Trial. European Journal of Heart Failure, 25, 274-283. https://doi.org/10.1002/ejhf.2736

  15. 15. Vinther, M., Risum, N., Svendsen, J.H., et al. (2021) A Randomized Trial of His Pacing versus Biventricular Pacing in Symptomatic HF Patients with Left Bundle Branch Block (His-Alternative). JACC: Clinical Electrophysiology, 7, 1422-1432. https://doi.org/10.1016/j.jacep.2021.04.003

  16. 16. Upadhyay, G.A., Vijayaraman, P., Nayak, H.M., et al. (2019) On-Treatment Comparison between Corrective His Bundle Pacing and Biventricular Pacing for Cardiac Resynchroniza-tion: A Secondary Analysis of the His-SYNC Pilot Trial. Heart Rhythm, 16, 1797-1807. https://doi.org/10.1016/j.hrthm.2019.05.009

  17. 17. Huang, W., Wang, S., Su, L., et al. (2022) His-Bundle Pacing vs Biventricular Pacing Following Atrioventricular Nodal Ablation in Patients with Atrial Fibrillation and Reduced Ejection Fraction: A Multicenter, Randomized, Crossover Study—The ALTERNATIVE-AF Trial. Heart Rhythm, 19, 1948-1955. https://doi.org/10.1016/j.hrthm.2022.07.009

  18. 18. Subzposh, F.A. and Vijayaraman, P. (2018) Long-Term Results of His Bundle Pacing. Cardiac Electrophysiology Clinics, 10, 537-542. https://doi.org/10.1016/j.ccep.2018.05.011

  19. 19. Zanon, F., Ellenbogen, K.A., Dandamudi, G., et al. (2018) Perma-nent His-Bundle Pacing: A Systematic Literature Review and Meta-Analysis. Europace, 20, 1819-1826. https://doi.org/10.1093/europace/euy058

  20. 20. Lustgarten, D.L., Crespo, E.M., Arkhipova-Jenkins, I., et al. (2015) His-Bundle Pacing versus Biventricular Pacing in Cardiac Resynchronization Therapy Patients: A Crossover Design Comparison. Heart Rhythm, 12, 1548-1557. https://doi.org/10.1016/j.hrthm.2015.03.048

  21. 21. Barba-Pichardo, R., Moriña-Vázquez, P., Fernández-Gómez, J.M., et al. (2010) Permanent His-Bundle Pacing: Seeking Physiological Ventricular Pacing. Europace, 12, 527-533. https://doi.org/10.1093/europace/euq038

  22. 22. Zhang, S., Zhou, X. and Gold, M.R. (2019) Left Bundle Branch Pacing: JACC Review Topic of the Week. JACC: Journal of the American College of Cardiology, 74, 3039-3049. https://doi.org/10.1016/j.jacc.2019.10.039

  23. 23. Žižek, D., Antolič, B., Mežnar, A.Z., et al. (2022) Biventricular versus His Bundle Pacing after Atrioventricular Node Ablation in Heart Failure Patients with Narrow QRS. Acta Cardi-ologica, 77, 222-230. https://doi.org/10.1080/00015385.2021.1903196

  24. 24. Tokavanich, N., Prasitlumkum, N., Mongkonsritragoon, W., et al. (2021) A Network Meta-Analysis and Systematic Review of Change in QRS Duration after Left Bundle Branch Pacing, His Bundle Pacing, Biventricular Pacing, or Right Ventricular Pacing in Patients Requiring Permanent Pacemak-er. Scientific Reports, 11, 12200. https://doi.org/10.1038/s41598-021-91610-8

  25. 25. Teng, A.E., Massoud, L. and Ajijola, O.A. (2016) Physiological Mechanisms of QRS Narrowing in Bundle Branch Block Patients Undergoing Permanent His Bundle Pacing. Journal of Electrocardiology, 49, 644-648. https://doi.org/10.1016/j.jelectrocard.2016.07.013

  26. 26. Bastian, D., Gregorio, C., Buia, V., et al. (2022) His Bundle Pacing Guided by Automated Intrinsic Morphology Matching Is Feasible in Patients with Narrow QRS Complexes. Sci-entific Reports, 12, 3606. https://doi.org/10.1038/s41598-022-07516-6

  27. 27. Zaidi, S.M.J., Sohail, H., Satti, D.I., et al. (2022) Tricuspid Re-gurgitation in His Bundle Pacing: A Systematic Review. Annals of Noninvasive Electrocardiology, 27, e12986. https://doi.org/10.1111/anec.12986

  28. 28. Vijayaraman, P. and Ellenbogen, K.A. (2018) Approach to Permanent His Bundle Pacing in Challenging Implants. Heart Rhythm, 15, 1428-1431. https://doi.org/10.1016/j.hrthm.2018.03.006

  29. 29. Zanon, F., Svetlich, C., Occhetta, E., et al. (2011) Safety and Performance of a System Specifically Designed for Selective Site Pacing. Pacing and Clinical Electrophysiology, 34, 339-347. https://doi.org/10.1111/j.1540-8159.2010.02951.x

  30. 30. Sharma, P.S., Dandamudi, G., Naperkowski, A., et al. (2015) Permanent His-Bundle Pacing Is Feasible, Safe, and Superior to Right Ventricular Pacing in Routine Clinical Practice. Heart Rhythm, 12, 305-312. https://doi.org/10.1016/j.hrthm.2014.10.021

  31. 31. Abdelrahman, M., Subzposh, F.A., Beer, D., et al. (2018) Clini-cal Outcomes of His Bundle Pacing Compared to Right Ventricular Pacing. JACC: Journal of the American College of Cardiology, 71, 2319-2330. https://doi.org/10.1016/j.jacc.2018.02.048

  32. 32. Sharma, P.S., Dandamudi, G., Herweg, B., et al. (2018) Permanent His-Bundle Pacing as an Alternative to Biventricular Pacing for Cardiac Resynchronization Therapy: A Multicenter Ex-perience. Heart Rhythm, 15, 413-420. https://doi.org/10.1016/j.hrthm.2017.10.014

  33. 33. Pastore, G., Zanon, F., Baracca, E., et al. (2016) The Risk of Atrial Fibrillation during Right Ventricular Pacing. Europace, 18, 353-358. https://doi.org/10.1093/europace/euv268

  34. 34. Deshmukh, P., Casavant, D.A., Romanyshyn, M., et al. (2000) Per-manent, Direct His-Bundle Pacing: A Novel Approach to Cardiac Pacing in Patients with Normal His-Purkinje Activa-tion. Circulation, 101, 869-877. https://doi.org/10.1161/01.CIR.101.8.869

  35. 35. Kronborg, M.B., Mortensen, P.T., Poulsen, S.H., et al. (2014) His or Para-His Pacing Preserves Left Ventricular Function in Atrioventricular Block: A Double-Blind, Randomized, Cross-over Study. Europace, 16, 1189-1196. https://doi.org/10.1093/europace/euu011

  36. 36. Sharma, P.S., Subzposh, F.A., Ellenbogen, K.A., et al. (2017) Per-manent His-Bundle Pacing in Patients with Prosthetic Cardiac Valves. Heart Rhythm, 14, 59-64. https://doi.org/10.1016/j.hrthm.2016.09.016

  37. 37. Zweerink, A. and Burri, H. (2022) His-Optimized and Left Bun-dle Branch-Optimized Cardiac Resynchronization Therapy: In Control of Fusion Pacing. Cardiac Electrophysiology Clinics, 14, 311-321. https://doi.org/10.1016/j.ccep.2021.12.006

  38. 38. Su, L., Xu, L., Wu, S.J., et al. (2016) Pacing and Sensing Optimi-zation of Permanent His-Bundle Pacing in Cardiac Resynchronization Therapy/Implantable Cardioverter Defibrillators Patients: Value of Integrated Bipolar Configuration. Europace, 18, 1399-1405. https://doi.org/10.1093/europace/euv306

  39. 39. Sharma, P.S., Naperkowski, A., Bauch, T.D., et al. (2018) Perma-nent His Bundle Pacing for Cardiac Resynchronization Therapy in Patients with Heart Failure and Right Bundle Branch Block. Circulation: Arrhythmia and Electrophysiology, 11, e006613. https://doi.org/10.1161/CIRCEP.118.006613

  40. 40. Shan, P., Su, L., Zhou, X., et al. (2018) Beneficial Effects of Upgrading to His Bundle Pacing in Chronically Paced Patients with Left Ventricular Ejection Fraction < 50. Heart Rhythm, 15, 405-412. https://doi.org/10.1016/j.hrthm.2017.10.031

  41. 41. Huang, W., Su, L., Wu, S., et al. (2019) Long-Term Outcomes of His Bundle Pacing in Patients with Heart Failure with Left Bundle Branch Block. Heart, 105, 137-143. https://doi.org/10.1136/heartjnl-2018-313415

  42. 42. Ajijola, O.A., Upadhyay, G.A., Macias, C., et al. (2017) Per-manent His-Bundle Pacing for Cardiac Resynchronization Therapy: Initial Feasibility Study in Lieu of Left Ventricular Lead. Heart Rhythm, 14, 1353-1361. https://doi.org/10.1016/j.hrthm.2017.04.003

  43. 43. De Leon, J., Seow, S.C., Boey, E., et al. (2022) Adopting Per-manent His Bundle Pacing: Learning Curves and Medium-Term Outcomes. Europace, 24, 606-613. https://doi.org/10.1093/europace/euab278

  44. 44. Richter, S. (2022) Permanent His Bundle Pacing: Adopt, Adapt, and Improve. Europace, 24, 530-532. https://doi.org/10.1093/europace/euab325

  45. 45. Bhatt, A.G., Musat, D.L., Milstein, N., et al. (2018) The Efficacy of His Bundle Pacing: Lessons Learned from Implementation for the First Time at an Experienced Electrophysiology Center. JACC: Clinical Electrophysiology, 4, 1397-1406. https://doi.org/10.1016/j.jacep.2018.07.013

  46. 46. Vijayaraman, P., Dandamudi, G., Lustgarten, D., et al. (2017) Permanent His Bundle Pacing: Electrophysiological and Echocardiographic Observations from Long-Term Follow-Up. Pacing and Clinical Electrophysiology, 40, 883-891. https://doi.org/10.1111/pace.13130

  47. NOTES

    *通讯作者。

期刊菜单