Advances in Clinical Medicine
Vol. 11  No. 06 ( 2021 ), Article ID: 43324 , 5 pages
10.12677/ACM.2021.116399

细胞色素P450对器官移植的影响机制研究进展

张若菡,薛雯,张岳,陈洁晶,周献青,杨桂淇,甘晴*

中国人民解放军联勤保障部队第九二四医院检验科,广西 桂林

收稿日期:2021年5月17日;录用日期:2021年6月3日;发布日期:2021年6月23日

摘要

肝、肾移植可用于终末期肝病患者和肾病患者的治疗,他克莫司广泛用于移植受者的免疫抑制药物,它治疗范围窄,个体间的药代动力学差异大,这种差异主要是细胞色素P450导致的,研究影响机制有利于制定个性化的用药方案,使患者获得更好的治疗效果。细胞色素P450对移植后并发症有重要影响,对影响机制的研究,可以及时发现并采取治疗措施,使患者有更好的预后。

关键词

细胞色素P450,移植,他克莫司,个体化用药,基因调控

Advances in the Mechanism of Cytochrome P450 on Organ Transplantation

Ruohan Zhang, Wen Xue, Yue Zhang, Jiejing Chen, Xianqing Zhou, Guiqi Yang, Qing Gan*

Clinical Laboratory of No. 924 Hospital of the Joint Logistic Support Force of the People’s Liberation Army, Guilin Guangxi

Received: May 17th, 2021; accepted: Jun. 3rd, 2021; published: Jun. 23rd, 2021

ABSTRACT

Liver and kidney transplantation can be used for the treatment of patients with end-stage liver disease and kidney disease. Tacrolimus immunosuppressive drugs are widely used in transplant recipients. Its therapeutic scope is narrow and the pharmacokinetics vary greatly between individuals, mainly due to the cytochrome P450. The study of the influence mechanism is beneficial to the formulation of personalized drug use plan, so that patients can obtain better therapeutic effect. Cytochrome P450 plays an important role in complications after transplantation, and the study of its mechanism can help timely find out and take treatment measures, so that patients can have a better prognosis.

Keywords:Cytochrome P450, Transplants, Tacrolimus, Personalized Medicine, Gene Regulation

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 细胞色素P450对免疫抑制剂的代谢影响

1.1. 细胞色素P450基因型对免疫抑制剂代谢的影响机制

肝、肾移植可用于终末期肝病患者和肾病患者的治疗,受者的药物治疗主要集中在免疫抑制和排斥反应的控制,以及预防感染和避免免疫抑制剂的不良反应。他克莫司(tacrolimus或FK506)是一种从链霉菌属中分离出来的大环内酯类抗生素,能与FK结合蛋白12形成复合物,该复合物强烈抑制T细胞内钙调磷酸酶活性,阻断T细胞内信号传导通路,致IL2基因的表达下降,从而抑制T细胞的活化与增殖 [1],广泛用于移植受者的免疫抑制药物。他克莫司的治疗范围窄,个体间的药代动力学差异大,他克莫司浓度过低会导致排斥反应,过高又会导致肾毒性或增加感染易感性,因此,他克莫司代谢能力对血药浓度的影响会影响移植的结果,要获得最佳治疗效果,需要持续监测血药浓度。

个体差异的主要原因是他克莫司的代谢酶CYP (Cytochrome P450,细胞色素) 3A酶活性差异造成的。CYP3A酶家族包括:CYP3A4、CYP3A5、CYP3A7和CYP3A43。他克莫司是ABCB1转运体和CYP3A酶的底物,因此,这些蛋白的功能多样性可能影响他克莫司的生物利用度 [2]。他克莫司代谢的关键酶是CYP3A酶,个体之间的CYP3A活性的变化差别很大 [3]。CYP3A酶的基因多态性导致了个体间的变异,而个体间的差异又受到内部(年龄、激素状态、疾病)和环境因素(药物、营养)的影响 [4] [5]。

CYP3A5的表达具有高度多态性。携带功能性CYP3A5*1等位基因的患者可快速代谢他克莫司。CYP3A基因具有重要功能的遗传变异是位于CYP3A5基因第3内含子内的6986A>G,它被定义为CYP3A5*3,CYP3A5*3,可导致终止密码子提前出现,从而mRNA降解更迅速,所以CYP3A5*3和野生型CYP3A5*1相比,CYP3A5表达量明显下降 [6]。

1.2. 供者的细胞色素P450基因型对受者的影响

通过研究移植后他克莫司药代动力学和CYP3A5基因型之间的关联中发现,他克莫司浓度会受供者CYP3A5基因型的影响 [7]。因为移植肝脏会大量再生,他克莫司清除率随着移植后时间逐渐增加,移植后早期(移植后 < 1个月)的药代动力学主要受肠道(受体) CYP3A5基因型的影响,而在术后后期(>1个月) 则是通过肝移植或受体和供体基因型的共同作用来影响药代动力学 [8]。

对免疫抑制剂的药物代谢能力可以通过评价CYP状态来评估,CYP诊断系统通过结合CYP基因型和白细胞中CYP的当前表达来评估肝脏CYP活性和药物代谢能力 [9]。CYP mRNA水平被证明反映了肝脏CYP活性,CYP3A5基因分型可识别基因决定的CYP3A5表达或不表达的移植物,而供体白细胞中CYP3A4的表达可判断肝移植物中CYP3A4活性降低或升高。在移植患者中,明确显示供体CYP3A4表达率与CYP3A5基因型联合影响移植后早期受者他克莫司血药浓度 [10]。接受低或高CYP3A4表达或携带CYP3A5*1的肝移植的人需要对他克莫司初始剂量进行修改。供者的CYP3A状态(CYP3A5基因型和CYP3A4表达)能够识别他克莫司过量或浓度不足的风险,并为早期适当的初始剂量提供重要信息。Brunet M等人证实了CYP3A5在他克莫司清除中的主要作用,以及CYP3A5*1等位基因与移植患者血药浓度或他克莫司剂量需求之间的相关性 [10] [11] [12]。临床药物遗传学实施联盟提供了基于CYP3A5基因型的给药建议;尤其对于CYP3A5表达者,推荐的起始剂量是标准剂量的两倍 [13]。

2. 细胞色素P450对移植并发症的影响机制

2.1. 细胞色素P450对移植后糖尿病的影响机制

移植后糖尿病(PTDM)是肾移植中最常见的并发症之一,它会降低移植物的存活率,增加发病率和死亡率,它会对心血管系统的影响。研究显示,与非糖尿病患者相比,移植后糖尿病可使心血管疾病风险增加3.3倍。确定该疾病的危险因素对其早期诊断和治疗至关重要 [14]。

细胞色素P450 (CYP)酶负责花生四烯酸(AA)转化为血管活性类二十烷糖。该途径的环氧化酶分支导致环氧二十碳三烯酸(EETs)的合成,它具有血管扩张剂、蛋白溶解和抗炎特性 [15]。CYP2C9,尤其是CYP2C8和CYP2J2主要负责这种合成 [16]。在一个平行的羟化酶途径中,花生四烯酸也被CYP4A11和CYP4F2代谢为20-HETE,这可能会通过血管收缩增加血压,每一个CYP基因在肾脏中表达,并呈现功能性的单核苷酸多态性(SNPs),具有调节这些活性花生四烯酸代谢物水平的潜力 [17] [18]。

此外,越来越多的证据表明这些二十烷类化合物在糖尿病和糖尿病肾病中都有重要作用 [19]。Gervasini等人证明了CYP4F2 (G1347A, CYP4AF2*3)残基433中缬氨酸到蛋氨酸的变化是肾移植受者PTDM的独立危险因素 [20]。CYP4F2是催化AA合成20-HETE的主要u-羟化酶 [21]。Li等发现,20-HETE影响内皮胰岛素信号传导,导致胰岛素依赖性激活通路受损,该通路调节该激素的血管扩张迟发效应 [22]。此外,通过增加20-HETE合成激活活性氧或20-HETE诱导的mTOR/p70S6Kinase通路的激活,在近端小管上皮细胞损伤中至关重要 [23]。

2.2. 细胞色素P450对肝肾综合症的影响机制

肾功能衰竭是肝硬化的主要并发症,影响40%~80%的终末期肝病患者。肝硬化患者出现肾功能不全往往预后较差。与未发生肾功能衰竭的患者相比,患有晚期肝病和肾衰竭的患者在等待肝移植时死亡的风险更高,移植后发生并发症的风险更高,生存期更低 [24]。肝肾综合征(HRS)是一种独特类型的功能性肾功能衰竭,是晚期肝硬化和暴发性急性肝功能衰竭常见的严重并发症 [25]。HRS是由门脉高压引起的血流动力学紊乱的结果,其特征是在显著的内脏血管舒张的情况下,肾内血管强烈收缩和肾小球滤过率显著下降,但在肾脏没有明显的组织学发现 [26]。门静脉高压导致内脏血管剪切应力增加,会导致内源性血管扩张剂如一氧化氮(NO)和前列环素的产生,他们负责内脏血管扩张。血液淤积,有效循环血容量减少 [27]。最初导致高动力循环形成,涉及心率和心输出量的增加 [28]。随着肝硬化的进展,神经体液血管收缩介质,如交感神经系统(SNS),肾素–血管紧张–醛固酮系统(RAAS)和血管加压素被激活。这些血管收缩机制,虽然对于维持足够的循环血容量是必要的,但与许多器官的有害血管收缩有关。在肾脏,其后果包括传入小动脉血管收缩,血流减少,肾小球滤过率(GFR)降低,盐和水潴留导致腹水和容量超负荷 [29]。花生四烯酸(AA)由关键酶代谢为具有不同病理生理效应的小分子介质。具体来说,细胞色素P (CYP)-450酶有两个主要途径:环氧加氧酶(主要是CYP2C和CYP2J家族的酶)代谢AA为四种具有生物活性的区域异构环氧二十碳三烯酸(EETs; 5,6-EET, 8,9-EET, 11,12-EET和14,15-EET)和omega-羟化酶(主要是大鼠体内CYP4A家族的酶)将AA代谢为20-羟基二十油酸(20-HETE)。EETs在许多组织中产生,包括肾脏、心脏、肺和肝脏,并具有抗炎和其他肾脏保护作用。EETs在肾微循环中作为内皮依赖的超极化因子(EDHFs),除了调节肾小管水和钠的吸收外,还介导血管的扩张效应。另一方面,20-HETE收缩传入小动脉,参与肾血流的自动调节 [30]。

3. 结论

器官移植是一种重要的治疗手段,他克莫司是一种广泛用于移植受者的免疫抑制药物,它治疗范围窄,个体间的药代动力学差异大,细胞色素P450是导致这种差异的主要原因,因此对细胞色素P450的研究有利于制定个性化的用药方案。另外细胞色素P450对移植并发症也有重要影响,研究发病机制,有利于及时发现及时治疗,使患者得到更好的治疗效果。

基金项目

本论文受广西自然科学基金2020GXNSFAA159161资助。

文章引用

张若菡,薛 雯,张 岳,陈洁晶,周献青,杨桂淇,甘 晴. 细胞色素P450对器官移植的影响机制研究进展
Advances in the Mechanism of Cytochrome P450 on Organ Transplantation[J]. 临床医学进展, 2021, 11(06): 2757-2761. https://doi.org/10.12677/ACM.2021.116399

参考文献

  1. 1. Li, C.J. and Li, L. (2015) Tacrolimus in Preventing Transplant Rejection in Chinese Patients—Optimizing Use. Drug Design, Development and Therapy, 9, 473-485. https://doi.org/10.2147/DDDT.S41349

  2. 2. Csikany, N., Kiss, D., Deri, M., et al. (2020) Clinical Significance of Personalized Tacrolimus Dosing by Adjusting to Donor CYP3A-Status in Liver Transplant Recipients. British Journal of Clinical Pharmacology, 87, 1790-1800. https://doi.org/10.1111/bcp.14566

  3. 3. Zanger, U.M. and Schwab, M. (2013) Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacology & Therapeutics, 138, 103-141. https://doi.org/10.1016/j.pharmthera.2012.12.007

  4. 4. Tamasi, V., Vereczkey, L., Falus, A. and Monostory, K. (2003) Some Aspects of Inter-Individual Variations in the Metabolism of Xenobiotics. Inflammation Research, 52, 323-333. https://doi.org/10.1007/s00011-003-1186-4

  5. 5. Shah, R.R. and Smith, R.L. (2015) Addressing Phenoconversion: The Achilles’ Heel of Personalized Medicine. British Journal of Clinical Pharmacology, 79, 222-240. https://doi.org/10.1111/bcp.12441

  6. 6. Busi, F. and Cresteil, T. (2005) CYP3A5 mRNA Degradation by Nonsense-Mediated mRNA Decay. Molecular Pharmacology, 68, 808-815. https://doi.org/10.1124/mol.105.014225

  7. 7. Provenzani, A., Notarbartolo, M., Labbozzetta, M., et al. (2011) Influence of CYP3A5 and ABCB1 Gene Polymorphisms and Other Factors on Tacrolimus Dosing in Caucasian Liver and Kidney Transplant Patients. International Journal of Molecular Medicine, 28, 1093-1102. https://doi.org/10.3892/ijmm.2011.794

  8. 8. Itohara, K., Yano, I., Tsuzuki, T., et al. (2019) A Minimal Physiologically-Based Pharmacokinetic Model for Tacrolimus in Living-Donor Liver Transplantation: Perspectives Related to Liver Regeneration and the Cytochrome P450 3A5 (CYP3A5) Genotype. CPT: Pharmacometrics & Systems Pharmacology, 8, 587-595. https://doi.org/10.1002/psp4.12420

  9. 9. Emesvari, M., Kobori, L., Paulik, J., Sarvary, E., Belic, A. and Monostory, K. (2012) Estimation of Drug-Metabolizing Capacity by Cytochrome P450 Genotyping and Expression. Journal of Pharmacology and Experimental Therapeutics, 341, 294-305. https://doi.org/10.1124/jpet.111.189597

  10. 10. Monostory, K., Toth, K., Kiss, A., et al. (2015) Personalizing Initial Calcineurin Inhibitor Dosing by Adjusting to Donor CYP3A-Status in Liver Trans-Plant Patients. British Journal of Clinical Pharmacology, 80, 1429-1437. https://doi.org/10.1111/bcp.12747

  11. 11. Brunet, M., van Gelder, T., Åsberg, A., et al. (2019) Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring, 41, 261-307. https://doi.org/10.1097/FTD.0000000000000640

  12. 12. Hesselink, D.A., Bouamar, R., Elens, L., van Schaik, R.H. and van Gelder, T. (2014) The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clinical Pharmacokinetics, 53, 123-139. https://doi.org/10.1007/s40262-013-0120-3

  13. 13. Birdwell, K.A., Decker, B., Barbarino, J.M., et al. (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clinical Pharmacology & Therapeutics, 98, 19-24. https://doi.org/10.1002/cpt.113

  14. 14. Hjelmesaeth, J., Hartmann, A., Leivestad, T., Holdaas, H., Sagedal, S., Olstad, M. and Jenssen, T. (2006) The Impact of Early-Diagnosed New-Onset Post Transplantation Diabetes Mellitus on Survival and Major Cardiac Events. Kidney International, 69, 588-595. https://doi.org/10.1038/sj.ki.5000116

  15. 15. Yang, L., Maki-Petaja, K., Cheriyan, J., McEniery, C. and Wilkinson, I.B. (2015) The Role of Epoxyeicosatrienoic Acids in the Cardiovascular System. British Journal of Clinical Pharmacology, 80, 28-44. https://doi.org/10.1111/bcp.12603

  16. 16. Zeldin, D.C. (2001) Epoxygenase Pathways of Arachidonic Acid Metabolism. Journal of Biological Chemistry, 276, 36059-36062. https://doi.org/10.1074/jbc.R100030200

  17. 17. Hoopes, S.L., Garcia, V., Edin, M.L., Schwartzman, M.L. and Zeldin, D.C. (2015) Vascular Actions of 20-HETE. Prostaglandins & Other Lipid Mediators, 120, 9-16. https://doi.org/10.1016/j.prostaglandins.2015.03.002

  18. 18. King, L.M., Ma, J., Srettabunjong, S., Graves, J., Bradbury, J.A., Li, L., Spiecker, M., Liao, J.K., Mohrenweiser, H. and Zeldin, D.C. (2002) Cloning of CYP2J2 Gene and Identification of Functional Polymorphisms. Molecular Pharmacology, 61, 840-852. https://doi.org/10.1124/mol.61.4.840

  19. 19. Tessaro, F.H., Ayala, T.S. and Martins, J.O. (2015) Lipid Mediators Are Critical in Resolving Inflammation: A Review of the Emerging Roles of Eicosanoids in Diabetes Mellitus. BioMed Research International, 2015, Article ID: 568408. https://doi.org/10.1155/2015/568408

  20. 20. Gervasini, G., Luna, E., García-Cerrada, M., García-Pino, G. and Cubero, J.J. (2016) Risk Factors for Post-Transplant Diabetes Mellitus in Renal Transplant: Role of Genetic Variability in the cyp450-Mediated Arachidonic Acid Metabolism. Molecular and Cellular Endocrinology, 419, 158-164. https://doi.org/10.1016/j.mce.2015.10.009

  21. 21. Lasker, J.M., Chen, W.B., Wolf, I., Bloswick, B.P., Wilson, P.D. and Powell, P.K. (2000) Formation of 20-Hydroxyeicosatetraenoic Acid, a Vasoactive and Natriuretic Eicosanoid, in Human Kidney. Role of Cyp4F2 and Cyp4A11. Journal of Biological Chemistry, 275, 4118-4126. https://doi.org/10.1074/jbc.275.6.4118

  22. 22. Li, X., Zhao, G., Ma, B., Li, R., Hong, J., Liu, S. and Wang, D.W. (2014) 20-Hydroxyeicosatetraenoic Acid Impairs Endothelial Insulin Signaling by Inducing Phosphorylation of the Insulin Receptor Substrate-1 at Ser616. PLoS ONE, 9, e95841. https://doi.org/10.1371/journal.pone.0095841

  23. 23. Eid, S., Maalouf, R., Jaffa, A.A., Nassif, J., Hamdy, A., Rashid, A., Ziyadeh, F.N. and Eid, A.A. (2013) 20-HETE and EETs in Diabetic Nephropathy: A Novel Mechanistic Pathway. PLoS ONE, 8, e70029. https://doi.org/10.1371/journal.pone.0070029

  24. 24. Nair, S., Verma, S. and Thuluvath, P.J. (2002) Pretransplant Renal Function Predicts Survival in Patients Undergoing Orthotopic Liver Transplantation. Hepatology, 35, 1179-1185. https://doi.org/10.1053/jhep.2002.33160

  25. 25. Fernandez, J., Acevedo, J., Prado, V., et al. (2017) Clinical Course and Short-Term Mortality of Cirrhotic Patients with Infections Other than Spontaneous Bacterial Peritonitis. Liver International, 37, 385-395. https://doi.org/10.1111/liv.13239

  26. 26. Ruiz-del-Arbol, L., Monescillo, A., Arocena, C., et al. (2005) Circulatory Function and Hepatorenal Syndrome in Cirrhosis. Hepatology, 42, 439-447. https://doi.org/10.1002/hep.20766

  27. 27. Sole, C., Sola, E., Morales-Ruiz, M., et al. (2016) Characterization of Inflammatory Response in Acute-on-Chronic Liver Failure and Relationship with Prognosis. Scientific Reports, 6, Article No. 32341. https://doi.org/10.1038/srep32341

  28. 28. Krag, A., Bendtsen, F., Henriksen, J.H., et al. (2010) Low Cardiac Output Predicts Development of Hepatorenal Syndrome and Survival in Patients with Cirrhosis and Ascites. Gut, 59, 105-110. https://doi.org/10.1136/gut.2009.180570

  29. 29. Schneider, A.W., Kalk, J.F. and Klein, C.P. (1999) Effect of Losartan, an Angiotensin II Receptor Antagonist, on Portal Pressure in Cirrhosis. Hepatology, 29, 334-339. https://doi.org/10.1002/hep.510290203

  30. 30. Yeboah, M.M., Hye Khan, M.A., Chesnik, M.A., et al. (2016) The Epoxyeicosatrienoic Acid Analog PVPA Ameliorates Cyclosporine-Induced Hypertension and Renal Injury in Rats. The American Journal of Physiology—Renal Physiology, 311, F576-F585. https://doi.org/10.1152/ajprenal.00288.2016

期刊菜单