Advances in Clinical Medicine
Vol. 12  No. 07 ( 2022 ), Article ID: 53519 , 7 pages
10.12677/ACM.2022.127907

肠道菌群与中枢神经系统疾病新进展

王浩川1,李亚楠1,李红芳2*

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院,山东 济宁

收稿日期:2022年6月11日;录用日期:2022年7月3日;发布日期:2022年7月12日

摘要

人类肠胃道内存在数量众多的肠道微生物,近年来,随着生物技术的进展,发现肠道微生物和神经系统间具有交叉关系,这种相互关联的系统我们称之为“肠–脑轴”。由于目前的确切机理还没有定论,本文着重介绍了肠道菌群失调对中枢神经系统(Central Nervous System, CNS)病变发生的关联和临床表现,以及微生物群–肠道–大脑轴在其中的相互功能和发生机理。总结了相关最新的研究进展及相关报道。

关键词

肠道菌群,中枢神经系统,微生物–肠道–大脑轴,粪便微生物移植

Gut Microbiota and Central Nervous System Diseases: New Developments

Haochuan Wang1, Yanan Li1, Hongfang Li2*

1School of Clinical Medicine, Jining Medical University, Jining Shandong

2Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Jun. 11th, 2022; accepted: Jul. 3rd, 2022; published: Jul. 12th, 2022

ABSTRACT

The human gastrointestinal tract harbors a large number of gut micrbes, and in recent years, due to advances in biological techniques, intestinal microbes and the nervous system have been found to have a cross-talk between them, and this interconnected system, which we call the “gut-brain axis”. As the exact mechanism is still inconclusive, this article highlights the association and clinical manifestations of gut microbiota dysbiosis on the occurrence of CNS lesions, as well as the mutual functions and mechanisms of occurrence of the microbiota-gut-brain axis in it. The latest research progress and related reports are summarized.

Keywords:Gut Microbiota, Central Nervous System, Microbiota-Gut-Brain Axis, Fecal Microbiota Transplantation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人脑的活动、生理和感知功能受肠道菌群通过肠–脑轴作用的影响 [1],在生理和病理条件下,通过免疫、内分泌和迷走神经等途径参与大脑–肠轴的活动,从而影响脑部功能和某些关联活动 [2] [3]。Foster JA等 [4] 通过对肠道无菌动物或经广谱抗生素处理的动物的研究表明,特定的菌群可以影响中枢神经系统的生理和神经化学,缺乏相关菌群的小鼠在学习、记忆、识别和情绪行为方面表现出神经缺陷 [5]。在人体中,菌群、环境和人体之间存在着动态平衡,一旦失调就可能诱发神经系统病变及癌症等疾病 [6]。这些最新相关研究也在为更多的神经系统疾病的早期诊断和治疗打开新的大门。

2. 肠道菌群及影响因素

人体胃肠道里寄居着总量超过1014的微生物,几乎十倍于身体细胞,其中的99%为细菌,同时还含有病毒、真菌、古细菌和原生生物等成分,统称为肠道菌群 [7]。细菌中一般以拟杆菌门和厚壁菌门这2种菌门为主体,像放线菌门、变形菌门、梭杆菌门及疣微菌门相对较少 [8]。这些细菌大量生活于人的消化系统内,特别是下消化系统(即大肠),其基因组数量大约为人类基因组总量的150倍 [9]。由于微生物细胞的数量及基因数远高于人体细胞及基因的数量,可以认为微生物可以影响宿主的生理机能。肠道菌群与其宿主间作用、影响的统一,称肠微生态(Gut microflora),是体内功能最强的微生态体系,在人体保健和治疗过程中承担关键职能。

肠道微生物的生存环境与宿主情况息息相关,部分环境因素能直接或者间接影响微生物群,包括我们熟知的饮食、卫生、临床药物的使用、营养供应的性质、环境压力源以及本身的遗传 [10]。其中饮食是在目前所知中,对肠道微生物群影响最大的因素,食用一些加工过的淡而无味的食物,肠道菌群的多样性就会减少,而新鲜的水果蔬菜,肠道菌群的多样性就会增加 [11]。高脂、高糖的西方食物也可引起厚壁菌门的大量繁殖,和拟球菌门的总量下降 [12]。抗生素能直接改变肠道微生物的组成,例如,氟喹诺酮类药物(如环丙沙星)可在治疗3~4天内导致微生物多样性减少,需氧革兰氏阴性杆菌可显著减少,而无需氧相关的革兰氏阳性菌或酵母代偿定植增多,这些改变通常在4周时间左右 [13];在克林霉素或克拉霉素短期治疗后,微生物群发生改变,特别是有耐药性基因的出现,导致肠道微生物改变可能持续4年 [14]。肠道细菌的存活全部依赖宿主为之进行生活所需要的营养物质,不同的微生物所需的营养并不完全相同,例如在糖代谢中,拟杆菌门以生成乙酸和丙酸为主,厚壁菌门以生成丁酸进一步代谢 [15]。此外,脂质、蛋白代谢,纤维素及一些相关无机离子等也均在实验数据中表现出特异性。因此长期的饮食改变与肠道菌群的组成相关联也就不足为奇。

3. 肠道菌群与中枢神经系统的相关机制

肠道菌群能够通过直接或间接的方法作用于中枢神经系统,中枢神经系统也能够利用神经传导、免疫学和内分泌等途径监测、调整肠道菌群的功能变化,使之适应于周围环境变化,以保持微自然环境的保持平衡,这种双向交互作用,我们称之为微生物–肠–脑轴(Microbiota-Gut-Brain Axis, MGBA) [16] [17]。肠–脑轴作用的主要机制包括神经调节通路,内分泌调节通路(通过下丘脑–垂体–肾上腺(HPA)轴),免疫调节途径(通过淋巴细胞、细胞因子、趋化因子和代谢产物等) [18] [19] [20]。肠道菌群产物、调节激素和微生物依赖的免疫介质 [21] 可以直接与肠内神经元、迷走神经和脊髓传入神经相互作用,这些相关信号能通过神经感觉回路或血液扩散影响大脑区域,导致行为、认知、情绪或结构等相关变化 [22]。相关迷走神经和脊髓发出的神经投射到肠黏膜,产生相应的免疫因子或神经递质自上而下地调控胃肠内神经元活动,并最终影响胃肠道生理以及消化道细菌群落的生长形成 [23]。肠道菌群也被认为与下丘脑–垂体–肾上腺(HPA)轴介导的神经内分泌信息通道有双向作用,并通过应激诱导激活了HPA轴 [24],从而影响胃肠道功能,进而改变肠道微生物群的组成。研究表明主要为HPA轴在调节因子的作用下,引起下丘脑室旁核神经元分泌促肾上腺皮质激素释放激素和加压素等多种,协同刺激垂体皮质细胞分泌促肾上腺皮质激素进入循环系统,促使肾上腺释放糖皮质激素、肾上腺素等相关激素增多,进一步刺激神经、内分泌调节 [20]。神经、免疫及内分泌调节通路高度复杂且相互关联 [19],通过多种途径共同维持着肠–脑轴平衡。

4. 肠道菌群与CNS疾病

4.1. 肠道菌群与脑卒中

脑卒中(cerebral stroke)是一种由脑血管发生意外,导致出现的一系列脑组织受损的临床表现,主要表现为缺血性脑卒中(Ischemic stroke, IS)及出血性脑卒中。袁伟渠 [25] 研究证明,IS的患者与非IS人群的肠道菌群构成存在显著差异,并且非IS患者的有益菌属丰富度明显高于IS人群。Saji Naoki等 [26] 在分析肠道微菌群与IS之间关系时发现,类杆菌较高的患者较易出现卒中,且某些肠道微菌群的存在可能会提高患脑实质损伤的风险,另一项研究通过对自发性高血压卒中易感大鼠特殊培养处理,用16S核糖体RNA分析粪便中细菌菌属发现,环境因素和肠道微菌群对肠道屏障有重大影响。而缺血性中风主要由大脑中动脉的闭塞引起,出现脑血流量明显减少且神经系统功能紊乱 [27]。相关研究表明,IS患者的肠屏障功能障碍可能与肠道微菌群紊乱、免疫反应调节和细菌的代谢产物有关 [28]。肠道各菌群之间与肠道屏障保持一种动态平衡,一旦平衡失调就会破坏肠道屏障,有害菌群侵入,有益菌群和其分泌的具有保护作用的黏蛋白等物质相应减少,引发一系列病理反应。那么说,脑血管疾病与肠道微菌群之间相互影响,改善脑血管疾病的同时,也要侧重调节肠道微菌群的平衡,修复肠黏膜屏障,可能极大地改善患者的致残预后。

4.2. 肠道微菌群与帕金森病

帕金森病(Parkinson’s Disease, PD) [29] 是一种典型的神经机制退行性疾病,表现为静止性颤抖、运动迟钝、肌强直,胃肠道高负担等症状。肠–脑轴在帕金森病的进展中发挥着重要作用,有研究表明,Toll样受体(Toll-like receptors, TLR) [30] 介导的微生物识别调节信号失调可能会与帕金森病有关。肠道菌群失调可能会引发局部或全身反应,肠道神经胶质细胞的激活,从而触发与疾病相关的α-突出核蛋白原理 [31] 引起疾病。Qian Yiwei等 [32] 从帕金森病人及伴侣粪便中提取中的DNA,采用全基因组测序法开展了病例比较研究,结果发现帕金森病人粪便中的肠道细菌丰富度要大于健康人组,并分析出了许多与疾病相关肠道细菌的基因组集,可能作为诊断帕金森病的潜在生物标记。乳酸杆菌属、阿克曼菌属等富集和乳酸菌和粪杆菌属细菌的耗竭,成为帕金森病的肠道微生物改变,伴随肠道神经系统的改变 [33]。Cirstea Mihai S等 [34] 在评估帕金森患者胃肠功能与肠道微菌群的组成和代谢的关系时发现,其菌群中碳水化合物发酵和丁酸的合成能力降低,有害蛋白的水解微生物代谢增加,且菌属差异性较大,患者易出现粪便粘稠。另一项研究则指出,口服小檗酸可通过一系列的化学反应过程,增加四氢生物蝶呤,并增加最高限速酶酪氨酸羟化酶活性,促进肠道微菌群产生左旋多巴,减缓疾病的进展,改善大脑功能 [35]。因此,帕金森患者治疗过程中,可着重观察肠道中菌群菌属的平衡状态和数量,观察是否失调,并通过不同的机制对症治疗。

4.3. 肠道菌群与多发性硬化症

多发性硬化(multiple sclerosis, MS) [36] 为中枢系统一种慢性炎性脱髓鞘病,病变部位弥散,多累及大脑、脊髓白质和视神经等。COX LM等 [37] 在研究与MS患者的肠道微生物菌群和临床疾病的关系时发现,健康组MS的患者组菌群多样性较大,但MS患者不同疾病阶段类型却影响较小,在MS患者中发现,几种梭菌数量的升高与症状有关,而阿克曼氏菌则对疾病临床特征的改善有所帮助。在小肠黏膜中产生IgA的特异性浆细胞,通过肠内微细菌群的菌属控制,在多发性硬化症的患者中,活动性患者相对于缓解期的患者,脑脊液中免疫细胞明显升高,介导免疫反应,促进炎症形成 [38]。Francesca Cignarella等 [39] 通过间歇性禁食改善MS模型,发现间接性进食能增加了肠道菌群的丰富度,主要丰富了乳酸杆菌科、拟杆菌科和普雷沃菌科,增加了抗氧化微生物代谢途径,处理的小鼠粪便菌群移植,可改善正常饮食下免疫受体小鼠的脑脊髓炎。服用益生菌可以改善肠道菌群有益菌的数量,可以与治疗MS的其他方法协同治疗 [40]。因此,合理的改善饮食能够有效地维持肠道微生物的多样性,可能有利于减少MS的发生。

4.4. 肠道菌群与阿尔茨海默病

阿尔茨海默症(Alzheimer Disease, AD)是一种以脑内淀粉样沉积和神经纤维缠结为病理学特点,并伴随有认知功能和行为损伤等表现,可能跟β-淀粉样蛋白、及肠道微生物分泌的tau蛋白 [41] 有关,但目前发生机制尚未明确。肠道微菌群的失调加速促炎因子的产生,导致脂多糖 [42] 和淀粉样蛋白的分泌增多,会导致中枢神经系统紊乱,影响健康,促进AD的临床进展 [43]。Min-Soo Kim等人 [44] 通过研究转基因AD小鼠模型与对照组正常小鼠比较发现,实验组小鼠出现肠黏膜屏障不完整及肠道炎症,通过肠道微生物菌群的转移可以改善AD的相关病理特征,减少相关炎症细胞的活性和基因的表达,减缓疾病的进展。Moira M等 [45] 在研究肠道细菌菌株与AD之间的功能关联时发现,AD患者发生淀粉样变的风险与肠道菌群产生的脂多糖 [42] 和醋酸盐、促炎因子IL-10等呈正相关,而与丁酸盐等呈负相关,这些肠道菌群产物通过影响内皮功能来影响AD患者疾病的进展。肠道微菌群失调可以促进促炎性辅助型T1细胞的增殖分化,促进苯丙氨酸和异亮氨酸的积累,可缓解AD患者的认知障碍,抵抗神经炎症 [46]。益生菌治疗虽然对改善淀粉样变效果较小,但可以抑制AD患者的肠道炎症和功能障碍,改善肠道菌群失调 [47]。因此AD的治疗可以从肠道菌群方向入手,改善胃肠道环境的同时,还能减缓疾病的发展。

5. 粪便微生物移植前景及发展

粪便微生物移植(fecal microbiota transplant, FMT)是指将粪便由健康人身体中迁移到病人身上,以便迅速使病人的肠道内菌群达到正常水平,并恢复正常生物组成和功能 [48]。FMT主要用于抗生素治疗不敏感的胃肠道疾病,如难辨梭状芽孢杆菌感染、肠炎、代谢综合征等,也有如知晓菌群改变而加用等同菌群探索性治疗,目前相关移植条件及种类尚不明确,还需进一步完善相关临床研究。近年来,大量的实验研究证实益生菌能够抑制肠道炎症、保护胃肠道稳定及在治疗一些神经系统病(多发性硬化、帕金森病、抑郁症等)时发挥出重要作用 [40] [47] [49]。高燕等 [50] 在1例双侧额叶脑挫裂伤术后患者并合并腹泻时,在粪便中培养出难辨梭状芽孢杆菌,常规治疗的前提下加用两次粪便微生物移植,治疗后症状好转加快。在PD患者诊断中,若采用人为的方式移植肠菌群,则可以提高对多巴胺的分泌,从而提高病人认知功能 [46] [51]。WINTER G等 [52] 在实验中表明,接受抑郁粪便菌群移植的大鼠中双歧杆菌和乳杆菌等细菌的相对丰度降低,脱硫弧菌和毛螺菌等细菌相对丰度增加。从而导致抑郁症状的出现,这也进一步说明肠道微生物可能对抑郁症的发生及发展相关,粪便移植可能能改善抑郁症。Carvalho T [53] 通过卒中小鼠模型表明,IS在急性期后通过完善肠道微生物群再平衡的机制,能够诱导小鼠的神经功能恢复、大脑重塑和神经可塑性。对于FMT移植治疗神经系统疾病,目前仍缺乏更多相关研究及证据,且FMT移植属于一种器官移植,也面临着诸多排斥及伦理问题。只有通过大量的研究证明及确凿依据,将FMT移植标准化及人性化,才能更进一步推动其发展,成为一种解决神经系统疾病的新方法,更好地指导治疗和改善预后,造福人类。

6. 小结

肠道作为人体一个重要的内分泌及消化器官,生存着人体最多的微生物,它们和肠道的功能密切相关,肠道菌群紊乱能导致消化道,甚至是人体功能紊乱。CNS疾病以其高发病率与高致残率危害着人们的健康,目前大多数的CNS疾病发病机制尚不完全清楚,越来越多的临床及基础研究证实肠道菌群失调与CNS疾病之间关系密切,使得加快肠道菌群的研究,为我们去了解CNS疾病发病机制提供了一个新的研究方向,也为CNS疾病的治疗打开新的大门。

基金项目

山东省中医药科技发展计划项目(2019-0489)。

文章引用

王浩川,李亚楠,李红芳. 肠道菌群与中枢神经系统疾病新进展
Gut Microbiota and Central Nervous System Diseases: New Developments[J]. 临床医学进展, 2022, 12(07): 6275-6281. https://doi.org/10.12677/ACM.2022.127907

参考文献

  1. 1. Jenkins, T.A., Nguyen, J.C., Polglaze, K.E. and Bertrand, P.P. (2016) Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8, Article No. 56. https://doi.org/10.3390/nu8010056

  2. 2. Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42

  3. 3. Sharon, G., Sampson, T.R., Geschwind, D.H. and Mazmanian, S.K. (2016) The Central Nervous System and the Gut Microbiome. Cell, 167, 915-932. https://doi.org/10.1016/j.cell.2016.10.027

  4. 4. Foster, J.A., Rinaman, L. and Cryan, J.F. (2017) Stress & the Gut-Brain Axis: Regulation by the Microbiome. Neurobiology of Stress, 7, 124-136. https://doi.org/10.1016/j.ynstr.2017.03.001

  5. 5. Gareau, M.G., Wine, E., Rodrigues, D.M., et al. (2011) Bacterial Infec-tion Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317. https://doi.org/10.1136/gut.2009.202515

  6. 6. Dinan, T.G. and Cryan, J.F. (2013) Melancholic Microbes: A Link between Gut Microbiota and Depression? Neurogastroenterology & Motility, 25, 713-719. https://doi.org/10.1111/nmo.12198

  7. 7. Ferreiro, A., Crook, N., Gasparrini, A.J. and Dantas, G. (2018) Multiscale Evo-lutionary Dynamics of Host-Associated Microbiomes. Cell, 172, 1216-1227. https://doi.org/10.1016/j.cell.2018.02.015

  8. 8. Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214. https://doi.org/10.1038/nature11234

  9. 9. Methé, B.A., Nelson, K.E., Pop, M., et al. (2012) A Framework for Human Microbiome Research. Nature, 486, 215-221. https://doi.org/10.1038/nature11209

  10. 10. Heiss, C.N. and Olofsson, L.E. (2019) The Role of the Gut Microbiota in De-velopment, Function and Disorders of the Central Nervous System and the Enteric Nervous System. Journal of Neuroendocri-nology, 31, e12684. https://doi.org/10.1111/jne.12684

  11. 11. Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230. https://doi.org/10.1038/nature11550

  12. 12. Do, M.H., Lee, E., Oh, M.J., Kim, Y. and Park, H.Y. (2018) High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients, 10, Article No. 761. https://doi.org/10.3390/nu10060761

  13. 13. van de Leur, J.J., Vollaard, E.J., Janssen, A.J. and Dofferhoff, A.S. (1997) In-fluence of Low Dose Ciprofloxacin on Microbial Colonization of the Digestive Tract in Healthy Volunteers during Normal and during Impaired Colonization Resistance. Scandinavian Journal of Infectious Diseases, 29, 297-300. https://doi.org/10.3109/00365549709019046

  14. 14. Nyberg, S.D., Osterblad, M., Hakanen, A.J., et al. (2007) Long-Term Antimicrobial Resistance in Escherichia coli from Human Intestinal Microbiota after Administration of Clindamycin. Scandina-vian Journal of Infectious Diseases, 39, 514-520. https://doi.org/10.1080/00365540701199790

  15. 15. Binder, H.J. (2010) Role of Colonic Short-Chain Fatty Acid Transport in Diarrhea. Annual Review of Physiology, 72, 297-313. https://doi.org/10.1146/annurev-physiol-021909-135817

  16. 16. Cryan, J.F. and O’Mahony, S.M. (2011) The Microbi-ome-Gut-Brain Axis: From Bowel to Behavior. Neurogastroenterology & Motility, 23, 187-192. https://doi.org/10.1111/j.1365-2982.2010.01664.x

  17. 17. Zhu, X., Han, Y., Du, J., Liu, R., Jin, K. and Yi, W. (2017) Mi-crobiota-Gut-Brain Axis and the Central Nervous System. Oncotarget, 8, 53829-53838. https://doi.org/10.18632/oncotarget.17754

  18. 18. Dinan, T.G. and Cryan, J.F. (2015) The Impact of Gut Microbiota on Brain and Behaviour: Implications for Psychiatry. Current Opinion in Clinical Nutrition & Metabolic Care, 18, 552-558. https://doi.org/10.1097/MCO.0000000000000221

  19. 19. Hulme, H., Meikle, L.M., Strittmatter, N., et al. (2020) Microbi-ome-Derived Carnitine Mimics as Previously Unknown Mediators of Gut-Brain Axis Communication. Science Advances, 6, eaax6328. https://doi.org/10.1126/sciadv.aax6328

  20. 20. Jackson, M.A., Serena, V., Maxan, M.E., et al. (2018) Gut Mi-crobiota Associations with Common Diseases and Prescription Medications in a Population-Based Cohort. Nature Communica-tions, 9, 2655-2663. https://doi.org/10.1038/s41467-018-05184-7

  21. 21. Pronovost, G.N. and Hsiao, E.Y. (2019) Perinatal Interactions between the Microbiome, Immunity, and Neurodevelopment. Immunity, 50, 18-36. https://doi.org/10.1016/j.immuni.2018.11.016

  22. 22. Jameson, K.G., Olson, C.A., Kazmi, S.A. and Hsiao, E.Y. (2020) Toward Understanding Microbiome-Neuronal Signaling. Molecular Cell, 78, 577-583. https://doi.org/10.1016/j.molcel.2020.03.006

  23. 23. Agirman, G. and Hsiao, E.Y. (2021) SnapShot: The Microbio-ta-Gut-Brain Axis. Cell, 184, 2524-2524.E1. https://doi.org/10.1016/j.cell.2021.03.022

  24. 24. Dinan, T.G. and Cryan, J.F. (2017) The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterology Clinics of North America, 46, 77-89. https://doi.org/10.1016/j.gtc.2016.09.007

  25. 25. 袁伟渠. 针刺对缺血性中风临床疗效及肠道菌群影响的研究[D]: [博士学位论文]. 广州: 广州中医药大学, 2021. https://doi.org/10.27044/d.cnki.ggzzu.2021.000032

  26. 26. Saji, N., Murotani, K., Hisada, T., et al. (2021) The Association between Cerebral Small Vessel Disease and the Gut Microbiome: A Cross-Sectional Analysis. Journal of Stroke and Cerebro-vascular Diseases, 30, Article ID: 105568. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105568

  27. 27. Nelson, J.W., Phillips, S.C., Ganesh, B.P., et al. (2021) The Gut Microbiome Contributes to Blood-Brain Barrier Disruption in Spontaneously Hypertensive Stroke Prone Rats. The FASEB Journal, 35, e21201. https://doi.org/10.1096/fj.202001117R

  28. 28. Wei, M., Huang, Q., Liu, Z., et al. (2021) Intestinal Barrier Dysfunction Par-ticipates in the Pathophysiology of Ischemic Stroke. CNS & Neurological Disorders—Drug Targets, 20, 401-416. https://doi.org/10.2174/1871527320666210322115808

  29. 29. Tolosa, E., Wenning, G. and Poewe, W. (2006) The Diagno-sis of Parkinson’s Disease. The Lancet Neurology, 5, 75-86. https://doi.org/10.1016/S1474-4422(05)70285-4

  30. 30. Xia, Y., Zhang, G., Kou, L., et al. (2021) Reactive Microglia Enhance the Transmission of Exosomal Alpha-Synuclein via Toll-Like Receptor 2. Brain, 144, 2024-2037. https://doi.org/10.1093/brain/awab122

  31. 31. Travagli, R.A., Browning, K.N. and Ca-milleri, M. (2020) Parkinson Disease and the Gut: New Insights into Pathogenesis and Clinical Relevance. Nature Reviews Gastroenterology & Hepatology, 17, 673-685. https://doi.org/10.1038/s41575-020-0339-z

  32. 32. Qian, Y., Yang, X., Xu, S., et al. (2020) Gut Metagenomics-Derived Genes as Potential Biomarkers of Parkinson’s Disease. Brain, 143, 2474-2489. https://doi.org/10.1093/brain/awaa201

  33. 33. Romano, S., Savva, G.M., Bedarf, J.R., et al. (2021) Meta-Analysis of the Parkinson’s Disease Gut Microbiome Suggests Alterations Linked to Intestinal Inflammation. npj Parkinson’s Disease, 7, 27. https://doi.org/10.1038/s41531-021-00156-z

  34. 34. Cirstea, M.S., Yu, A.C., Golz, E., et al. (2020) Microbiota Composi-tion and Metabolism Are Associated with Gut Function in Parkinson’s Disease. Movement Disorders, 35, 1208-1217. https://doi.org/10.1002/mds.28052

  35. 35. Wang, Y., Tong, Q., Ma, S.R., et al. (2021) Oral Berberine Improves Brain Do-pa/Dopamine Levels to Ameliorate Parkinson’s Disease by Regulating Gut Microbiota. Signal Transduction and Targeted Therapy, 6, 77. https://doi.org/10.1038/s41392-020-00456-5

  36. 36. Olek, M.J. (2021) Multiple Sclerosis. Annals of Internal Medicine, 174, ITC81-ITC96. https://doi.org/10.7326/AITC202106150

  37. 37. Cox, L.M., Maghzi, A.H., Liu, S., et al. (2021) Gut Microbiome in Pro-gressive Multiple Sclerosis. Annals of Neurology, 89, 1195-1211. https://doi.org/10.1002/ana.26084

  38. 38. Pröbstel, A.K., Zhou, X., Baumann, R., et al. (2020) Gut Microbiota-Specific IgA+ B Cells Traffic to the CNS in Active Multiple Sclerosis. Science Immunology, 5, eabc7191. https://doi.org/10.1126/sciimmunol.abc7191

  39. 39. Cignarella, F., Cantoni, C., Ghezzi, L., et al. (2018) Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabo-lism, 27, 1222-1235.E6. https://doi.org/10.1016/j.cmet.2018.05.006

  40. 40. Tankou, S.K., Regev, K., Healy, B.C., et al. (2018) A Probiotic Modulates the Microbiome and Immunity in Multiple Sclerosis. Annals of Neurology, 83, 1147-1161. https://doi.org/10.1002/ana.25244

  41. 41. Scheltens, P., De Strooper, B., Kivipelto, M., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/S0140-6736(20)32205-4

  42. 42. 李丹, 林萍, 金伟峰, 陈姝子, 李萍, 程训佳. 阿尔茨海默病患者糖、脂代谢与脂多糖的相关性[J]. 检验医学, 2020, 35(11): 1126-1129.

  43. 43. Kesika, P., Suganthy, N., Sivamaruthi, B.S. and Chaiyasut, C. (2021) Role of Gut-Brain Axis, Gut Microbial Composition, and Probiotic Intervention in Alzheimer’s Dis-ease. Life Sciences, 264, Article ID: 118627. https://doi.org/10.1016/j.lfs.2020.118627

  44. 44. Kim, M.S., Kim, Y., Choi, H., et al. (2020) Transfer of a Healthy Microbi-ota Reduces Amyloid and Tau Pathology in an Alzheimer’s Disease Animal Model. Gut, 69, 283-294. https://doi.org/10.1136/gutjnl-2018-317431

  45. 45. Marizzoni, M., Cattaneo, A., Mirabelli, P., et al. (2020) Short-Chain Fatty Acids and Lipopolysaccharide as Mediators between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 78, 683-697. https://doi.org/10.3233/JAD-200306

  46. 46. Wang, X., Sun, G., Feng, T., et al. (2019) Sodium Oligomannate Therapeuti-cally Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Research, 29, 787-803. https://doi.org/10.1038/s41422-019-0216-x

  47. 47. Kaur, H., Nagamo-to-Combs, K., Golovko, S., et al. (2020) Probiotics Ameliorate Intestinal Pathophysiology in a Mouse Model of Alzheimer’s Disease. Neurobiology of Aging, 92, 114-134. https://doi.org/10.1016/j.neurobiolaging.2020.04.009

  48. 48. Liang, J., Sha, S.M. and Wu, K.C. (2014) Role of the Intestinal Microbiota and Fecal Transplantation in Inflammatory Bowel Diseases. Journal of Digestive Diseases, 15, 641-646. https://doi.org/10.1111/1751-2980.12211

  49. 49. Liu, R.T., Walsh, R.F. and Sheehan, A.E. (2019) Prebiotics and Probiotics for Depression and Anxiety: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Neuroscience & Biobehav-ioral Reviews, 102, 13-23. https://doi.org/10.1016/j.neubiorev.2019.03.023

  50. 50. 高燕. 1例双侧额叶脑挫裂伤合并反复腹泻行粪菌移植患者的护理[J]. 中西医结合心血管病电子杂志, 2018, 6(1): 197-198.

  51. 51. Galen, J.E. and Collmer, A. (1999) Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells. Science, 284, 1322-1328. https://doi.org/10.1126/science.284.5418.1322

  52. 52. Winter, G., Hart, R.A., Charlesworth, R. and Sharpley, C.F. (2018) Gut Microbiome and Depression: What We Know and What We Need to Know. Reviews in the Neurosciences, 29, 629-643. https://doi.org/10.1515/revneuro-2017-0072

  53. 53. Silva de Carvalho, T., Singh, V., Yusuf, A.M., et al. (2022) Post-Ischemic Protein Restriction Induces Sustained Neuroprotection, Neurological Recovery, Brain Remodeling, and Gut Mi-crobiota Rebalancing. Brain, Behavior, and Immunity, 100, 134-144. https://doi.org/10.1016/j.bbi.2021.11.016

  54. NOTES

    *通讯作者。

期刊菜单