Advances in Clinical Medicine
Vol. 12  No. 07 ( 2022 ), Article ID: 53553 , 9 pages
10.12677/ACM.2022.127908

PPARs对巨噬细胞极化的影响及其在寄生虫病中的研究进展

刘艺飘1,2,胡旺1,2,樊海宁1,2*

1青海大学附属医院肝胆胰外科,青海 西宁

2青海省包虫病研究重点实验室,青海 西宁

收稿日期:2022年6月11日;录用日期:2022年7月3日;发布日期:2022年7月13日

摘要

过氧化物酶体增殖物激活受体(Peroxisome Proliferation Activated Receptors, PPARs)属于核激素受体超家族成员,其三个亚型包括:PPAR-α、PPAR β/δ及PPAR-γ,它们各自都有其相应的配体、靶基因及生物学功能。巨噬细胞是机体免疫系统中的重要组成部分,同时介导了适应性免疫应答和非特异性免疫应答过程,具有吞噬功能、进行抗原提呈、分泌促炎或抗炎等细胞因子的功能。因此,巨噬细胞在防御、炎症、修复和代谢等生理过程中发挥着重要作用,也是维持体内平衡的关键因素。巨噬细胞主要分为M1、M2两个亚群,M1/M2的动态平衡对维持者机体内环境的稳态起到重要作用。PPARs则在转录调控巨噬细胞极化中扮演着重要角色。本文将系统阐述PPARs对巨噬细胞极化调控的影响以其在相关寄生虫病中的作用,从而为干预PPARs靶点调控巨噬细胞极化治疗有关寄生虫病提供治疗策略,也为有关寄生虫病的药物治疗提供新的靶点。

关键词

过氧化物酶体增殖物激活受体,巨噬细胞极化,寄生虫病

The Effect of PPARs on Macrophage Polarization and Progression on Parasite-Related Diseases

Yipiao Liu1,2, Wang Hu1,2, Haining Fan1,2*

1Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qinghai University, Xining Qinghai

2Qinghai Province Key Laboratory of Hydatid Disease Research, Xining Qinghai

Received: Jun. 11th, 2022; accepted: Jul. 3rd, 2022; published: Jul. 13th, 2022

ABSTRACT

Peroxisome proliferation-activated receptors (PPARs) are a family of adopted orphan nuclear receptors involved in lipid metabolism and inflammation, including three isoforms: PPAR-α, PPAR β/δ, and PPAR-γ, each of which has distinct ligands, target genes and biological functions. Macrophages are an important part of the body’s immune system, mediating the adaptive immune response and non-specific immune response processes, and have the function of phagocytosis for antigen presentation and secretion of pro-inflammatory or anti-inflammatory cytokines. Therefore, macrophages play an important role in physiological processes of defense, inflammation, repair and metabolism, and are also a key factor in homeostatic maintenance. Macrophages are high plasticity, and there are various subtypes after macrophage polarization. M1 (classically activated macrophage, CAMs) and M2 (alternatively activated macrophage, AAMs) phenotype are the two extremes of macrophage polarization, which jointly regulates the homeostasis of its internal environment. In this review, the effects of PPARs on the regulation of macrophage polarization and its role in related parasitic diseases were systematically elaborated, so as to provide therapeutic strategies for the intervention of PPARs target in the regulation of macrophage polarization in the treatment of related parasitic diseases, as well as new targets for the drug treatment of related parasitic diseases.

Keywords:PPARs, Macrophage Polarization, Parasitic Diseases

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

巨噬细胞作为机体免疫系统重要的免疫细胞之一,它不仅介导了机体的固有免疫应答和特异性免疫应答,还参与了免疫耐受的过程。巨噬细胞在固有免疫应答中主要是通过自身的吞噬功能,依靠细胞内的杀菌系统以达到杀伤和清除病菌的目的。在特异性免疫应答和免疫耐受中,巨噬细胞主要发挥着抗原提呈的作用,以启动适应性免疫应答和进行免疫调控。此外,在寄生虫病中巨噬细胞则共同介导了机体免疫系统对病原体的杀伤清除和免疫耐受的过程。巨噬细胞向M1极化产生促炎反应以杀伤、清除寄生虫,但也造成自身组织的损伤。巨噬细胞向M2极化则引起机体抗炎反应促进组织修复,让宿主与寄生虫共存而形成免疫耐受。

2. 巨噬细胞的概述

2.1. 巨噬细胞来源

巨噬细胞是固有免疫系统的一个重要组成部分,是正常稳态和病理的关键调节因子。巨噬细胞主要源于造血祖细胞,在胎儿发育过程中对适当的组织重塑至关重要 [1]。血液单核细胞是巨噬细胞分化最主要的来源,单核细胞由骨髓释放入血后经血液循环到全身各个脏器,进而遍布全身,在体内发挥重要的平衡作用,其中关键的例子包括骨中的破骨细胞、肺中的肺泡巨噬细胞和肝脏中的Kupffer细胞 [2] [3] [4] [5]。这些源自造血骨细胞的巨噬细胞发育均来源于胚胎干细胞。也有研究表明,有部分巨噬细胞如:脑组织、肝脏及表皮中的F4/80+巨噬细胞并非来源自胚胎细胞而是来源于卵黄囊 [6]。

2.2. 巨噬细胞极化类型及机制

巨噬细胞一旦分布在组织中,要么呈促炎症型经典活化巨噬细胞(Classically activated macrophage, CAMs)即M1表型,要么呈抗炎型即替代性活化巨噬细胞(alternatively activated macrophage, AAMs)即M2表型,它们通常被认为是可逆性的,两种表型可互相转变。M2型巨噬细胞又由于极化因子的不同分为:M2a、M2b和M2c。M1是在TNF-α、GM-CSF及IFN-γ等经典激活途径的因子作用下诱导巨噬细胞极化而成。M2a则主要由白介素10或13等因子诱导产生;M2b的极化可由脂多糖、白介素1α或β所诱导;转化生长因子β、白介素10等可诱导M2c极化。此外,肿瘤相关巨噬细胞则被称为M2d,表达程序性死亡因子-1配体和及Fc片段γ受体IIb的巨噬细胞称为M2r [7]。另外,可塑性和灵活性是巨噬细胞及其激活状态的关键特征,极化后的M1/M2巨噬细胞的表型在体外和体内都可以在一定程度上被逆转,但巨噬细胞两种表型互相转变的机制复杂尚未完全阐明,信号分子、转录因子、表观遗传机制和转录后调控因子组成的网络影响着巨噬细胞极化过程 [8]。同时,M1/M2型巨噬细胞基于局部组织功能特异性、炎症因子诱导下分化异常等特征将向不同状态极化,目前明确的是在脂多糖的刺激下巨噬细胞可极化为M1,而在白细胞介素4/13刺激下分化为替代性活化巨噬细胞M2 [9]。典型的IRF/STAT信号通路被IFNs和TLR信号通路激活,从而激活STAT3使巨噬细胞的功能向M1极化,或通过白介素4和白介素13激活STATA6通路向M2极化 [10]。

2.3. 巨噬细胞功能

巨噬细胞由于其亚型的不同而产生其相应的功能。M1代表典型活化的巨噬细胞促炎表型,具有促炎、抗原提呈、对病原体和肿瘤细胞产生宿主免疫清除的功能 [11]。M2的功能是根据其亚型的不同而发挥着各自的作用,M2的各种亚型常见于不同临床疾病。在狼疮性疾病及结肠炎中M2a主要以抑制炎症为主 [9],有利于改善病情和缩短病程。但有研究发现M2a在HIV感染患者的肺囊虫肺炎中对肺囊虫有清除作用 [12]。M2b主要见于烧伤、急性胰腺炎及γ射线照射患者 [13] [14] [15]。M2c则常见于肥胖、脂肪代谢异常及自身免疫性疾病等 [16] [17] [18]。M2d无抗肿瘤作用,而是抑制机体对肿瘤的免疫杀伤,从而使肿瘤发生逃逸 [19],促进肿瘤生长、浸润和转移。研究显示,M2r的主要作用是抑制T细胞的增殖以抑制细胞免疫应答,可以控制I型糖尿病的发生 [7]。

3. 过氧化物酶体增殖物激活受体概述

3.1. 过氧化物酶体增殖物激活受体概述

近20年前,过氧化物酶体增殖物激活受体(Peroxisome Proliferation Activated Receptors, PPARs)的克隆开辟了脂肪酸代谢研究的新时代。在哺乳动物中,PPARs的三个亚型包括PPAR α、PPAR β/δ及PPAR γ,也称为NR1C1、NR1C2、NR1C3,每一个受体都由位于不同染色体上的单独基因编码。PPAR α、β/δ和γ表达分布在多种组织和细胞上,组织包括有:心、肝、肾及小肠等,细胞为脂肪细胞、结肠黏膜上皮和免疫系统细胞中表达最多。PPARs还可以与其他转录因子(TF)相互作用并通过阻断TF与DNA结合或分离共激活因子,解离所需的辅助因子来抑制转录 [20]。PPARs不仅参与了机体脂肪酸和碳酸盐的代谢和稳态,同时也参与了细胞增殖、动脉粥样硬化、巨噬细胞调控及机体免疫 [21]。

3.2. 过氧化物酶体增殖物激活受体亚型与功能

PPARs包括PPAR α、PPAR β/δ和PPAR γ三个亚型,它们各自都有其相应的配体、靶基因及生物学功能。PPAR α高表达在肝细胞、心肌细胞、平滑肌细胞和肾小管上皮细胞,参与调节细胞脂肪酸氧化的过程 [22] [23]。先前有研究证实PPAR α配体如贝特类药物,可降低甘油三酸酯水平和减少心血管事件的发生率和动脉粥样硬化 [24]。PPAR α还有表达在人和小鼠的免疫细胞,包括淋巴细胞、巨噬细胞、树突细胞,大量研究提示PPAR α参与负调控炎症反应 [22]。PPAR β/δ不仅参与脂肪酸的氧化,还参与伤口愈合、角质细胞分化和脂肪生成,并在体内能量平衡中发挥关键作用 [25] [26]。PPAR γ参与了T淋巴细胞的调控,对单核细胞的分化也具有调节作用,PPAR γ的激活对巨噬细胞的抗炎效果也已经得到证实 [27] [28]。

3.3. 过氧化物酶体增殖物激活受体与巨噬细胞极化

长期以来,巨噬细胞被认为是一种强大的免疫效应细胞,在机体的免疫应答和各自疾病中都具有重要功能,如促炎作用导致脏器损伤的发生和发展,抗炎作用改善各种疾病的创伤愈合和组织修复 [29]。根据目前研究,PPARs对于巨噬细胞极化的调控发挥着重要作用,IL-13、IL-4激活STAT6使其磷酸化并结合启动子上的结合位点使巨噬细胞PPAR β/δ的表达上升抑制了JNK的激活,促进M2极化的发生,抑制了M1的产生 [30]。JAK/STAT信号转导通路同时介导了M1和M2两者极化的过程,但其极化的方向取决于细胞因子信号转导通路所激活的STAT亚型。STAT6/PPAR γ途径可调节许多M2型标记物的生成 [31] [32],为巨噬细胞成熟的关键环节之一。PPAR α/γ在核因子Kappa B(NF-κB)信号转导通路中则为抑制NF-κB的表达及其磷酸化而调控巨噬细胞向M2极化,反之则调控巨噬细胞向M1极化 [32] [33]。

4. 过氧化物酶体增殖物激活受体介导的巨噬细胞极化与寄生虫病

PPARs对机体免疫系统的调节可能也起着重要作用,据报道,PPARs在许多免疫细胞中均有广泛表达,如淋巴细胞、单核/巨噬细胞、树突状细胞(APC)等 [25]。很多寄生虫感染与细胞免疫应答有关,为了保护机体本身和控制寄生虫生长,M1、Th1、Th17将产生大量促炎症介质,如IL-1β、IL-6、TNFα、IL-12、IL-23、IL-27、IFNγ、NO。这些细胞因子激活PPARs,将抑制促炎细胞因子的产生,对M2的形成、活化和维持至关重要 [34]。因此可以看出PPARs对巨噬细胞极化的调控在寄生虫感染中起着关键的作用。下述将对文献报道的寄生虫病中PPARs对巨噬细胞极化的调控进行阐述。

4.1. 利什曼病

利什曼病是一种利什曼原虫感染而引起的人兽共患的寄生虫病。通过白蛉传播,它们在吸血期间将唾液和前鞭毛体引入体内,前鞭毛体一部分被白细胞吞噬清除,还有一部分则寄存在巨噬细胞内,然后被感染的巨噬细胞将寄生虫带到不同的器官。这些不同的种类导致了不同的临床表现。临床上可分为黑热病、皮肤型黑热病、淋巴结型黑热病和皮肤利什曼病四大类。

利什曼原虫病宿主的巨噬细胞具有明显的异质性。当INFγ刺激宿主内巨噬细胞时可诱导M1极化的发生,增加一氧化氮合酶(iNOS)的生成,以促进一氧化氮(NO)的产生,从而清除巨噬细胞内的前鞭毛体。相反,IL-4可诱导巨噬细胞向M2极化,产生IL-5、IL-10、IL-13等促使体液免疫反应和促进损伤修复 [35]。研究显示其信号通路为,IL-4诱导PPAR α和PPAR γ共同激活-1 (PGC-1) β蛋白的表达,再通过STAT-6信号转达通路诱导巨噬细胞向M2极化 [36]。然而,J.A. Diaz-Gandarilla表示,在利什曼病中可通过PPAR γ激动剂GW1929以抑制cPLA2-COX-2,诱导巨噬细胞向M1极化和增加活性氧(ROS)的生产杀死病原体 [37]。N. Adapala报道,小鼠被利什曼虫原虫感染后PPARs的表达将上调,并且PPAR γ的表达的增加将进一步增强肝脏和脾脏感的染。此外,PPARs表达的增加与寄生虫感染负荷的增加有显著的相关性 [38]。例如,Gallardo-Soler等人阐明PPARs激动剂GW1929和GW7845增加了巨噬细胞(主要在骨髓中)中利什曼原虫的生长 [39]。然而,PPARs拮抗剂是否对利什曼病有治疗作用仍有待研究。此外,这些药物如何影响利什曼病的预后以及PPARs是否影响其他寄生虫的生存也是一个尚未解决的问题 [35]。

4.2. 疟疾

疟疾是由人类疟原虫感染引起的寄生虫病,主要由雌性按蚊叮咬传播,是极具破坏性的原生动物疾病。在发病过程中,受感染的红细胞破裂,随着病情的进展,所释放的寄生虫进一步加重了寄生虫血症,再次侵袭。而宿主中的巨噬细胞在先天免疫中发挥着不可或缺的作用,是防御疟疾感染的重要组成部分。巨噬细胞能吞噬恶性疟原虫感染的红细胞,并分别通过CD36和Fc受体介导清除 [40]。因此,在急性疟疾感染过程中,上调巨噬细胞CD36的表达可以大大增强清除寄生虫的能力。PPARs配体可诱导CD36的表达,激活PPARs可提高疟原虫寄生红细胞(PE)的清除率,抑制促炎反应 [41]。

CD36可被不同的分子诱导表达上调,如GM-CSF、ox LDL、IL-4及M-CSF等,而CD36被这些细胞因子诱导表达上调的机制主要是由于PPAR γ的激活 [42] [43]。目前,具体机制还不完全清楚。在动脉粥样硬化的研究表明ROS诱发CD36的表达和泡沫细胞的形成通过BKT-p300-STAT1-PPAR-γ信号激活 [44]。有研究表明,PPAR γ受体激动剂增强CD36的表达和提高疟原虫寄生红细胞(PE)的清除率,PPAR γ受体激动剂的治疗也增强内皮细胞CD36的表达情况,引发PE附着于各种血管的内皮细胞 [39]。此外,在巨噬细胞培养中使用罗格列酮可以增加巨噬细胞CD36的表达,CD36表达的上调可以增强巨噬细胞吞噬能力和抑制炎症反应,是通过抑制疟原虫激活的糖基磷脂酰肌醇(GPI)所活化的NF-κB和MAPK信号通路 [45]。根据巨噬细胞的生物学特性,因此考虑其中的巨噬细胞主要向M1极化。因此,一种新的治疗策略可以用于特异性上调巨噬细胞中CD36的表达,从而治疗疟疾感染。

4.3. 血吸虫病

血吸虫病是一个主要的健康问题,其原因是全世界范围内的严重发病率和死亡率 [46]。该病是由裂体吸虫感染引起,是血吸虫病的一大类群,人体血吸虫病主要有:日本、埃及、曼氏血吸虫病这三类,这也是流行地域最广,危害严重的血吸虫病。其病理机制与宿主对卵的免疫反应有关,从而导致肉芽肿的形成。虫卵沉积引起的肝纤维化是与慢性血吸虫病相关的最严重的病理现象。

在血吸虫病中,免疫反应的特征是从早期的促炎性Th1反应转变为对雌虫释放虫卵的Th2反应 [47]。Th2反应是以IL-4、IL-5、IL-13和大量IgE和CD4+T细胞为特征的免疫反应,Th2反应则与M2极化有关 [48] [49]。研究表明,血吸虫病可以通过IL-4和IL-13间接地激活PPAR γ导致抑制炎性反应,激活M2导致慢性炎症的形成 [25]。但目前PPAR γ调控巨噬细胞向M2极化的具体机制及转导通路尚不完全清楚,需要继续深入探讨与研究。如今,许多研究表明PPAR γ配体主要通过抗增殖和促凋亡活化肝星状细胞,从而在抑制肝纤维化进展中发挥重要作用 [50]。Yasmeen M Attia证实了PPAR γ部分激动剂(替米沙坦)在曼氏裂体吸虫的急性和慢性阶段对小鼠肝纤维化有潜在的抗纤维化作用 [51]。因此,PPAR γ对抑制血吸虫病引起的肝脏纤维化的发生可作为一个潜在的药物靶点,但它们的特定信号通路应进一步研究。

4.4. 细粒棘球蚴病

细粒棘球蚴病又称囊型包虫病,是一种由细粒棘球绦虫幼虫期或囊蚴引起的人畜共患疾病,分布广泛,发病率高。细粒棘球蚴病属于一种慢性感染性疾病。目前研究表明,囊蚴之所以能在宿主体内与宿主长期共生,考虑与其对宿主的免疫逃逸有关 [52]。另有研究显示,在细粒棘球蚴感染早期,因巨噬细胞的清除、吞噬及抗原提呈受到抑制,从而抑制了机体对囊蚴的免疫杀伤,使病原体产生了免疫逃脱 [53]。原头蚴与巨噬细胞进行体外共培养可诱导巨噬细胞KLF4高表达而诱导其向M2分化,抑制巨噬细胞清除病原体和抗原提呈的功能,从而产生免疫逃逸 [54]。研究证实,原头蚴可刺激巨噬细胞PPAR α/γ表达逐渐升高,诱导M1型巨噬细胞向M2型巨噬细胞极化,导致了免疫逃逸的发生 [55]。因此,在细粒棘球蚴病中,巨噬细胞极化的发生和其生物学功能的改变与机体免疫逃逸的发生有着密切关系。由此表明,PPARs在细粒棘球蚴病中对巨噬细胞极化的调控也发挥着关键作用。但在细粒棘球蚴病中目前对巨噬细胞极化的具体机制尚不明确,仍有待进一步研究。

5. 总结与展望

目前以PPARs靶点作为巨噬细胞极化调控的药物研究,在糖尿病、非酒精脂肪性肝病、代谢综合征等能量代谢类疾病中相对较多 [56] [57] [58]。在代谢类疾病中主要是通过PPARs靶点激活其信号通路以调控M1向M2极化,发挥M2的抗炎效应以达到其治疗的效果。Wenjing Luo等研究发现,罗格列酮可活化PPAR γ诱导Kupffer细胞M1/M2极化,减轻肝脏脂肪变性和局部炎症反应,并提示PPAR γ活性的调控有可能平衡脂质诱导的M1/M2巨噬细胞极化,从而阻止非酒精脂肪性肝病的发生。Justin I. Odegaard等研究表明通过PPAR γ过表达或激活可调控巨噬细胞向M2极化,有利于调节机体营养的平衡并且M2型巨噬细胞可能是治疗2型糖尿病的有效策略 [58]。上述可以发现PPARs在调控巨噬细胞极化发挥着关键作用,也提示在代谢类疾病中PPARs靶点介导的巨噬细胞极化可作为潜在的治疗靶点。

PPARs在相关寄生虫病中通过调控巨噬细胞极化对疾病的发生、发展的过程起到了重要作用,但在各种寄生虫病中其发生和作用的机制尚未得到充分的研究,因此PPARs发挥作用的具体机制还有待进一步探讨。PPARs相关的激动剂可能会增加正在复制的寄生虫的数量,但也能维持宿主的存活,这可能是造成慢性感染的一种方式。此外,课题组前期有研究证实,极化后的巨噬细胞M1/M2参与了多房棘球蚴感染过程,并且考虑M1/M2两者的失衡引起了疾病的进展 [59]。多房棘球蚴还可类似肿瘤一样呈浸润、转移生长,侵犯周边脏器,还可经血运、淋巴等途径转移,于身体其他脏器产生病变,其中肺和脑最为常见,这将严重损害机体功能,并且免疫逃逸是其发生浸润、转移的一个机制 [60]。另研究有显示,用被多房棘球蚴感染的小鼠与正常小鼠的巨噬细胞作为APC提呈常规抗原给T淋巴细胞,结果两者比较发现被感染小鼠的巨噬细胞无法激活T淋巴细胞,T细胞呈无反应性 [61] [62]。因而考虑巨噬细胞的极化也参与了多房棘球蚴免疫逃逸的过程。通过本综述发现PPARs对调控巨噬细胞极化的影响在多种寄生虫疾病中都发挥着重要作用。宿主在感染泡球蚴后,疾病进展过程中巨噬细胞的极化的产生可引起机体的免疫耐受,从而使泡球蚴逃避了免疫系统的杀伤,但当前对这方面研究还涉及甚少,希望本综述能为多房棘球蚴的研究提供一个新的方向和思路。同时,也希望能将PPARs靶点作为调控巨噬细胞极化治疗有关寄生虫病提供治疗策略,也为有关寄生虫病的药物治疗提供新的靶点。

文章引用

刘艺飘,胡 旺,樊海宁. PPARs对巨噬细胞极化的影响及其在寄生虫病中的研究进展
The Effect of PPARs on Macrophage Polarization and Progression on Parasite-Related Diseases[J]. 临床医学进展, 2022, 12(07): 6282-6290. https://doi.org/10.12677/ACM.2022.127908

参考文献

  1. 1. Li, C., Xu, M.M., Wang, K., Adler, A.J., Vella, A.T. and Zhou, B. (2018) Macrophage Polarization and Meta-Inflam- mation. Translational Research, 191, 29-44. https://doi.org/10.1016/j.trsl.2017.10.004

  2. 2. Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., et al. (2014) Macrophage Polarization and Function with Emphasis on the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways. Cellular Signalling, 26, 192-197. https://doi.org/10.1016/j.cellsig.2013.11.004

  3. 3. Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., et al. (2012) Gene-Expression Profiles and Transcriptional Regulatory Pathways That Underlie the Identity and Diversity of Mouse Tissue Macrophages. Nature Immunology, 13, 1118-1128. https://doi.org/10.1038/ni.2419

  4. 4. Rőszer, T., Menéndez-Gutiérrez, M.P., Cedenilla, M. and Ricote, M. (2013) Retinoid X Receptors in Macrophage Biology. Trends in Endocrinology & Metabolism, 24, 460-468. https://doi.org/10.1016/j.tem.2013.04.004

  5. 5. Hume, D.A. (2008) Differentiation and Heterogeneity in the Mon-onuclear Phagocyte System. Mucosal Immunology, 1, 432-441. https://doi.org/10.1038/mi.2008.36

  6. 6. Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., et al. (2012) A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 336, 86-90. https://doi.org/10.1126/science.1219179

  7. 7. Parsa, R., Andresen, P., Gillett, A., Mia, S., Zhang, X.M., Mayans, S., et al. (2012) Adoptive Transfer of Immunomodulatory M2 Macrophages Prevents Type 1 Diabetes in NOD Mice. Diabetes, 61, 2881-2892. https://doi.org/10.2337/db11-1635

  8. 8. Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795. https://doi.org/10.1172/JCI59643

  9. 9. Leung, G., Wang, A., Fernando, M., Phan, V.C. and McKay, D.M. (2013) Bone Marrow-Derived Alternatively Activated Macro-phages Reduce Colitis Without Promoting Fibrosis: Participation of IL-10. American Journal of Physiolo-gy-Gastrointestinal and Liver Physiology, 304, G781-G792. https://doi.org/10.1152/ajpgi.00055.2013

  10. 10. Sica, A. and Bronte, V. (2007) Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development. Journal of Clinical Investigation, 117, 1155-1166. https://doi.org/10.1172/JCI31422

  11. 11. Mosser, D.M. and Edwards, J.P. (2008) Exploring the Full Spectrum of Macrophage Activation. Nature Reviews Immunology, 8, 958-969. https://doi.org/10.1038/nri2448

  12. 12. Nelson, M.P., Christmann, B.S., Werner, J.L., Metz, A.E., Trevor, J.L., Low-ell, C.A., et al. (2011) IL-33 and M2a Alveolar Macrophages Promote Lung Defense Against the Atypical Fungal Path-ogen Pneumocystis Murina. The Journal of Immunology, 186, 2372-2381. https://doi.org/10.4049/jimmunol.1002558

  13. 13. Kobayashi, M., Jeschke, M.G., Shigematsu, K., Asai, A., Yoshida, S., Herndon, D.N., et al. (2010) M2b Monocytes Predominated in Peripheral Blood of Severely Burned Patients. The Journal of Immunology, 185, 7174-719. https://doi.org/10.4049/jimmunol.0903935

  14. 14. Kobayashi, M., Nakamura, K., Cornforth, M. and Suzuki, F. (2012) Role of M2b Macrophages in the Acceleration of Bacterial Translocation and Subsequent Sepsis in Mice Exposed to Whole Body [137Cs] γ-Irradiation. The Journal of Immunology, 189, 296-303. https://doi.org/10.4049/jimmunol.1200350

  15. 15. Gea-Sorlí, S., Guillamat, R., Serrano-Mollar, A. and Closa, D. (2011) Activation of Lung Macrophage Subpopulations in Experimental Acute Pancreatitis. The Journal of Pathology, 223, 417-424. https://doi.org/10.1002/path.2814

  16. 16. Prieur, X., Mok, C.Y., Velagapudi, V.R., Núñez, V., Fuentes, L., Montaner, D., et al. (2011) Differential Lipid Partitioning between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice. Diabetes, 60, 797-809. https://doi.org/10.2337/db10-0705

  17. 17. Bie, J., Zhao, B. and Ghosh, S. (2011) Atherosclerotic Lesion Progression Is Attenuated by Reconstitution with Bone Marrow from Macrophage-Specific Cholesteryl Ester Hydrolase Transgenic Mice. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 301, R967-R974. https://doi.org/10.1152/ajpregu.00277.2011

  18. 18. Harford, K.A., Reynolds, C.M., McGillicuddy, F.C. and Roche, H.M. (2011) Fats, Inflammation and Insulin Resistance: Insights to the Role of Macrophage and T-Cell Accumulation in Adipose Tissue. Proceedings of the Nutrition Society, 70, 408-417. https://doi.org/10.1017/S0029665111000565

  19. 19. Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009) Identification of a Subpopulation of Macrophages in Mammary Tumor-Bearing Mice That Are Neither M1 Nor M2 and Are Less Differentiated. Cancer Research, 69, 4800-4809. https://doi.org/10.1158/0008-5472.CAN-08-3427

  20. 20. Tan, N.S., Michalik, L., Desvergne, B. and Wahli, W. (2005) Multiple Expression Control Mechanisms of Peroxisome Proliferator-Activated Receptors and Their Target Genes. The Journal of Steroid Biochemistry and Molecular Biology, 93, 99-105. https://doi.org/10.1016/j.jsbmb.2004.12.025

  21. 21. Tontonoz, P. and Spiegelman, B.M. (2008) Fat and Beyond: The Diverse Biology of PPARgamma. Annual Review of Biochemistry, 77, 289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829

  22. 22. Hovsepian, E., Penas, F., Mirkin, G.A. and Goren, N.B. (2012) Role of PPARs in Trypanosoma cruzi Infection: Implications for Chagas Disease Therapy. PPAR Research, 2012, Article ID: 528435. https://doi.org/10.1155/2012/528435

  23. 23. Kroker, A.J. and Bruning, J.B. (2015) Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Research, 2015, Article ID: 816856. https://doi.org/10.1155/2015/816856

  24. 24. Castrillo, A. and Tontonoz, P. (2004) Nuclear Receptors in Macrophage Biology: At the Crossroads of Lipid Metabolism and Inflammation. Annual Review of Cell and Develop-mental Biology, 20, 455-480. https://doi.org/10.1146/annurev.cellbio.20.012103.134432

  25. 25. Chan, M.M., Evans, K.W., Moore, A.R. and Fong, D. (2010) Peroxisome Proliferator-Activated Receptor (PPAR): Balance for Survival in Parasitic Infections. BioMed Re-search International, 2010, Article ID: 828951. https://doi.org/10.1155/2010/828951

  26. 26. Hamblin, M., Chang, L., Fan, Y., Zhang, J. and Chen, Y.E. (2009) PPARs and the Cardiovascular System. Antioxidants & Redox Signaling, 11, 1415-1452. https://doi.org/10.1089/ars.2008.2280

  27. 27. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. and Glass, C.K. (1998) The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative Regulator of Macrophage Activation. Nature, 391, 79-82. https://doi.org/10.1038/34178

  28. 28. Chinetti, G., Griglio, S., Antonucci, M., Torra, I.P., Delerive, P., Majd, Z., et al. (1998) Activation of Proliferator- Activated Receptors Alpha and Gamma Induces Apoptosis of Human Mono-cyte-Derived Macrophages. Journal of Biological Chemistry, 273, 25573-25580. https://doi.org/10.1074/jbc.273.40.25573

  29. 29. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. https://doi.org/10.1002/jcp.26429

  30. 30. Kang, K., Reilly, S.M., Karabacak, V., Gangl, M.R., Fitzgerald, K., Hatano, B., et al. (2008) Adipocyte-Derived Th2 Cytokines and Myeloid PPARdelta Regulate Macrophage Polarization and Insu-lin Sensitivity. Cell Metabolism, 7, 485-495. https://doi.org/10.1016/j.cmet.2008.04.002

  31. 31. Szanto, A., Balint, B.L., Nagy, Z.S., Barta, E., Dezso, B., Pap, A., et al. (2010) STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARγ-Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 33, 699-712. https://doi.org/10.1016/j.immuni.2010.11.009

  32. 32. 阮静瑶, 陈必成, 张喜乐, 张戎, 黄欢捷. 巨噬细胞M1/M2极化的信号通路研究进展[J]. 免疫学杂志, 2015, 31(10) : 911-917.

  33. 33. Luo, W., Xu, Q., Wang, Q., Wu, H. and Hua, J. (2017) Effect of Modulation of PPAR-γ Activity on Kupffer Cells M1/M2 Polarization in the Development of Non-Alcoholic Fatty Liver Disease. Scientific Reports, 7, Article No. 44612. https://doi.org/10.1038/srep44612

  34. 34. Martinez, F.O., Helming, L. and Gordon, S. (2009) Alternative Activation of Macrophages: An Immunologic Functional Perspective. Annual Review of Immunology, 27, 451-483. https://doi.org/10.1146/annurev.immunol.021908.132532

  35. 35. Chan, M.M., Adapala, N. and Chen, C. (2012) Pe-roxisome Proliferator-Activated Receptor-γ-Mediated Polarization of Macrophages in Leishmania Infection. PPAR Re-search, 2012, Article ID: 796235. https://doi.org/10.1155/2012/796235

  36. 36. Chawla, A. (2010) Control of Macrophage Activation and Function by PPARs. Circulation Research, 106, 1559-1569. https://doi.org/10.1161/CIRCRESAHA.110.216523

  37. 37. Díaz-Gandarilla, J.A., Osorio-Trujillo, C., Hernán-dez-Ramírez, V.I., et al. (2013) PPAR Activation Induces M1 Macrophage Polarization Via cPLA2-COX-2 Inhibition, Activating ROS Production Against Leishmania Mexicana. BioMed Research International, 2013, Article ID: 215283. https://doi.org/10.1155/2013/215283

  38. 38. Adapala, N. and Chan, M.M. (2008) Long-Term Use of An Anti-inflammatory, Curcumin, Suppressed Type 1 Immunity and Exacerbated Visceral Leishmaniasis in a Chronic Experi-mental Model. Laboratory Investigation, 88, 1329-1339. https://doi.org/10.1038/labinvest.2008.90

  39. 39. Gallardo-Soler, A., Gómez-Nieto, C., Campo, M.L., Marathe, C., Tontonoz, P., Castrillo, A., et al. (2008) Arginase I Induction by Modified Lipoproteins in Macrophages: A Peroxisome Proliferator-Activated Receptor-Gamma/delta- Mediated Effect That Links Lipid Metabolism and Immunity. Molecular Endocrinology, 22, 1394-1402. https://doi.org/10.1210/me.2007-0525

  40. 40. Ren, Y. (2012) Peroxisome Proliferator-Activator Receptor γ: A Link between Macrophage CD36 and Inflammation in Malaria Infection. PPAR Research, 2012, Article ID: 640769. https://doi.org/10.1155/2012/640769

  41. 41. Serghides, L., Patel, S.N., Ayi, K., Lu, Z., Gowda, D.C., Liles, W.C. and Kain, K.C. (2009) Rosiglitazone Modulates the Innate Immune Response to Plasmodium falciparum Infection and Im-proves Outcome in Experimental Cerebral Malaria. The Journal of Infectious Diseases, 199, 1536-1545. https://doi.org/10.1086/598222

  42. 42. Nicholson, A.C. and Hajjar, D.P. (2004) CD36, Oxidized LDL and PPAR Gamma: Pathological Interactions in Macrophages and Atherosclerosis. Vascular Pharmacology, 41, 139-146. https://doi.org/10.1016/j.vph.2004.08.003

  43. 43. Silverstein, R.L. (2009) Inflammation, Atherosclerosis, and Arterial Thrombosis: Role of the Scavenger Receptor CD36. Cleveland Clinic Journal of Medicine, 76, S27-S30. https://doi.org/10.3949/ccjm.76.s2.06

  44. 44. Kotla, S., Singh, N.K. and Rao, G.N. (2017) ROS via BTK-P300-STAT1-PPARγ Signaling Activation Mediates Cholesterol Crystals-Induced CD36 Expression and Foam Cell Formation. Redox Biology, 11, 350-364. https://doi.org/10.1016/j.redox.2016.12.005

  45. 45. Serghides, L., Patel, S.N., Ayi, K., Lu, Z., Gowda, D.C., Liles, W.C., et al. (2009) Rosiglitazone Modulates the Innate Immune Response to Plasmodium falciparum Infection and Im-proves Outcome in Experimental Cerebral Malaria. The Journal of Infectious Diseases, 199, 1536-1545. https://doi.org/10.1086/598222

  46. 46. Anthony, B.J., Allen, J.T., Li, Y.S. and McManus, D.P. (2012) A Role for Peroxisome Proliferator-Activated Receptors in the Immunopathology of Schistosomiasis. PPAR Research, 2012, Article ID: 128068. https://doi.org/10.1155/2012/128068

  47. 47. Pearce, E.J. and MacDonald, A.S. (2002) The Immunobiology of Schis-tosomiasis. Nature Reviews Immunology, 2, 499-511. https://doi.org/10.1038/nri843

  48. 48. Herbert, D.R., Hölscher, C., Mohrs, M., Arendse, B., Schwegmann, A., Radwanska, M., et al. (2004) Alternative Macrophage Activation Is Es-sential for Survival during Schistosomiasis and Downmodulates T Helper 1 Responses and Immunopathology. Immunity, 20, 623-635. https://doi.org/10.1016/S1074-7613(04)00107-4

  49. 49. de Jesus, A.R., Magalhães, A., Miranda, D.G., Miranda, R.G., Araújo, M.I., de Jesus, A.A., et al. (2004) Association of Type 2 Cytokines with Hepatic Fibrosis in Human Schistosoma mansoni Infection. Infection and Immunity, 72, 3391-3397. https://doi.org/10.1128/IAI.72.6.3391-3397.2004

  50. 50. Yu, J., Zhang, S., Chu, E.S., Go, M.Y., Lau, R.H., Zhao, J., et al. (2010) Peroxisome Proliferator-Activated Receptors Gamma Reverses Hepatic Nutritional Fibrosis in Mice and Suppresses Activation of Hepatic Stellate Cells in Vitro. The International Journal of Biochemistry & Cell Biology, 42, 948-957. https://doi.org/10.1016/j.biocel.2010.02.006

  51. 51. Attia, Y.M., Elalkamy, E.F., Hammam, O.A., Mahmoud, S.S. and El-Khatib, A.S. (2013) Telmisartan, an AT1 Receptor Blocker and a PPAR Gamma Activator, Alle-viates Liver Fibrosis Induced Experimentally by Schistosoma mansoni Infection. Parasites & Vectors, 6, Article No. 199. https://doi.org/10.1186/1756-3305-6-199

  52. 52. Siracusano, A., Delunardo, F., Teggi, A., et al. (2012) Host-Parasite Relationship in Cystic Echinococcosis: An Evolving Story. Journal of Immunology Research, 2012, Article ID: 639362. https://doi.org/10.1155/2012/639362

  53. 53. 徐芳洁, 印双红, 侯隽, 方海瑞, 蒋红群, 吴向未, 等. 细粒棘球蚴感染小鼠早期阶段Tim-3表达的初步分析[J]. 中国免疫学杂志, 2014, 30(12):1616-1621+1626.

  54. 54. Dong, D., Chen, C., Hou, J., Yang, K., Fang, H., Jiang, H., et al. (2019) KLF4 Upregulation Is Involved in Alternative Macrophage Activation during Secondary Echinococcus granulosus Infection. Parasite Immunology, 41, Article ID: e12666. https://doi.org/10.1111/pim.12666

  55. 55. 董丹, 陈聪哲, 方海瑞, 蒋红群, 侯隽, 郭峰, 等. 原头蚴通过刺激巨噬细胞分泌KLF4促使其向M2分化[J]. 免疫学杂志, 2016, 32(12): 1029-1033.

  56. 56. Silveira, L.S., Antunes Bde, M., Minari, A.L., Dos Santos, R.V., Neto, J.C. and Lira, F.S. (2016) Macrophage Polarization: Implications on Meta-bolic Diseases and the Role of Exercise. Critical Reviews in Eukaryotic Gene Expression, 26, 115-132. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016015920

  57. 57. Wang, X., Cao, Q., Yu, L., Shi, H., Xue, B. and Shi, H. (2016) Epigenetic Regulation of Macrophage Polarization and Inflammation by DNA Methylation in Obesity. JCI Insight, 1, Article ID: e87748. https://doi.org/10.1172/jci.insight.87748

  58. 58. Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., et al. (2007) Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance. Nature, 447, 1116-1120. https://doi.org/10.1038/nature05894

  59. 59. 王东旭, 王虎, 樊海宁, 王海久, 王志鑫, 汤锋, 等. 巨噬细胞极化在小鼠泡型包虫病中的作用[J]. 中国高原医学与生物学杂志, 2018, 39(2): 118-122.

  60. 60. 黄红, 张淑坤. 多房棘球蚴病的浸润和转移机制研究进展[J]. 中国人兽共患病学报, 2016, 32(7): 670-673+678.

  61. 61. Mejri, N. and Gottstein, B. (2006) Intraperitoneal Echinococcus Multilocularis Infection in C57BL/6 Mice Affects CD40 and B7 Costimulator Expression on Peritoneal Macrophages and Impairs Peritoneal T Cell Activation. Parasite Immunology, 28, 373-385. https://doi.org/10.1111/j.1365-3024.2006.00836.x

  62. 62. Wang, J. and Gottstein, B. (2016) Immunoregulation in Larval Echinococcus Multilocularis Infection. Parasite Immunology, 38, 182-192. https://doi.org/10.1111/pim.12292

  63. NOTES

    *通讯作者。

期刊菜单