Advances in Clinical Medicine
Vol. 12  No. 09 ( 2022 ), Article ID: 55823 , 11 pages
10.12677/ACM.2022.1291212

非侵入性脑刺激治疗神经病理性疼痛的 Meta分析

雍智杰1*,高呈飞2#

1上海览海康复医院,上海

2青岛大学附属医院康复医学科,山东 青岛

收稿日期:2022年8月13日;录用日期:2022年9月7日;发布日期:2022年9月15日

摘要

目的:系统评价非侵入性脑刺激(NIBS)治疗神经病理性疼痛(NP)的有效性。方法:通过计算机检索MEDLINE、Embase、PsycINFO、PEDro、Cochrane library等数据库,限定检索时间从数据库建立到2022年3月。由2名独立研究者按照提前制定好的纳排标准进行文献筛选和数据提取,应用STATA软件进行meta分析。结果:最终纳入13项随机对照研究,共计498名参与者。Meta分析结果显示:治疗结束后,NIBS在改善NP患者疼痛评分方面要显著优于假刺激(SMD = −0.60; 95% CI: −1.00~−0.20; p = 0.004)。对所有类型的NIBS进一步亚组分析发现,只有经颅直流电(SMD = −0.38; 95% CI: −0.71~−0.04; p = 0.030)和高频经颅磁刺激(SMD = −0.95; 95% CI: −1.85~−0.04; p = 0.040)对患者疼痛缓解有积极作用。随访发现,NIBS对神经病理性疼痛患者疼痛的改善作用仍显著优于假刺激(SMD = −0.51; 95% CI: −0.79~−0.23; p = 0.000),而进一步亚组分析发现仅高频经颅磁刺激可持续改善患者的疼痛(SMD = −0.54; 95% CI: −0.85~−0.24; p = 0.000)。结论:NIBS能够有效缓解神经病理性疼痛患者的疼痛程度。但所纳入文献总体质量一般且样本量偏小,尚需要更高质量、大样本随机对照试验进一步验证。

关键词

神经病理性疼痛,非侵入性脑刺激,Meta分析,随机对照试验

The Effectiveness of Noninvasive Brain Stimulations on Patients with Neuropathic Pain: A Meta-Analysis

Zhijie Yong1*, Chengfei Gao2#

1Shanghai Lanhai Rehabilitation Hospital, Shanghai

2Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Aug. 13th, 2022; accepted: Sep. 7th, 2022; published: Sep. 15th, 2022

ABSTRACT

Objective: To comprehensively evaluate the effectiveness of noninvasive brain stimulations on pain symptoms of patients with neuropathic pain. Methods: A literature retrieval was performed on MEDLINE, Embase, PsycINFO, PEDro, and Cochrane library from the establishment of the databases to March 2022. Two independent researchers screened the articles and extracted data according to the inclusion and exclusion criteria, STATA software was used for meta-analysis. Results: A total of thirteen trials comprising 498 participants met the inclusion criteria. The pooled analysis found a significant effect on the improvement of pain scores at post-treatment, favoring NIBS over sham stimulation (SMD = −0.60; 95% CI: −1.00 to −0.20; p = 0.004). Subgroup analysis showed that only transcranial direct current stimulation (tDCS) (SMD = −0.38; 95% CI: −0.71 to −0.04; p = 0.030) and high-frequency repetitive transcranial magnetic stimulation (H-rTMS) (SMD = −0.95; 95% CI: −1.85 to −0.04; p = 0.040) had positive effects on pain reduction among all types of NIBS. The favorable effects of NIBS remained significant at follow-up visit (SMD = −0.51; 95% CI: −0.79 to −0.23; p = 0.000), while only H-rTMS was found in subgroup analyses to significantly improve pain scales of the patients (SMD = −0.54; 95% CI: −0.85 to −0.24; p = 0.000). Conclusions: This meta-analysis revealed the analgesic effect of NIBS on patients with NP, which needed to be further verified through conducting more high-quality RCTs with large sample.

Keywords:Neuropathic Pain, Noninvasive Brain Stimulation, Meta-Analysis, Randomized Controlled Trial

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

神经病理性疼痛(neuropathic pain, NP)是由于中枢或外周感觉神经系统损伤而引起的疼痛综合征 [1]。多种神经系统损伤/疾病可导致NP,例如:中风、脊髓损伤(spinal cord injury, SCI)、糖尿病神经病变、截肢、多发性硬化症(multiple sclerosis, MS)等。神经病理性疼痛在普通人群中的发病率约3%~18% [2],其特征性临床表现包括痛觉过敏、自发性疼痛和触诱发痛等 [3] [4]。NP的持续存在不仅会对患者的日常活动和生活质量产生负面影响 [5],还会导致患者出现精神障碍,如抑郁和焦虑 [6]。

药物干预是NP的首选治疗手段,如抗抑郁药、抗癫痫药等 [7],然而超过一半以上的NP患者服用药物后疼痛并不能得到有效缓解 [8]。而且,长期口服药物可能会导致嗜睡、便秘、药物滥用等不良反应风险增加 [9]。在这种情况下,包括重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)、经颅直流电刺激(transcranial direct current stimulation, tDCS)、颅电刺激(cranial electrotherapy stimulation, CES)在内的非侵入性脑刺激(noninvasive brain stimulation, NIBS)已被越来越多地应用于神经病理性疼痛的治疗。

有多篇系统综述评价了NIBS对神经病理性疼痛的治疗效果,但结论仍存在一定争议。一篇发表于2020年的系统综述共纳入了8篇随机对照试验,其中有6篇研究认为NIBS可显著降低NP患者的疼痛评分 [10]。而Yu等人的meta分析结果显示,NIBS并不能改善SCI患者出现的神经病理性疼痛症状 [11]。出现不一致结论的原因可能是由于所纳入文献之间较高的异质性,为了进一步探讨NIBS治疗神经病理性疼痛的有效性,本研究按照Cochrane系统评价的方法,对符合纳入标准的随机对照研究进行数据提取和meta分析,以期为NIBS在神经病理性疼痛的临床应用提供可靠依据。

2. 资料与方法

2.1. 文献检索策略

通过计算机检索MEDLINE、Embase、PsycINFO、PEDro、Cochrane library等数据库,限定检索时间从数据库建立到2022年3月。具体检索策略如下:

1# noninvasive brain stimulation OR NIBS

2# repetitive transcranial magnetic stimulation OR rTMS OR transcranial direct current stimulation OR tDCS OR cranial electrotherapy stimulation OR CES

3#neuropathic pain OR NP

4#randomized controlled trail OR RCT

5#1# AND 2# AND 3# AND4#

2.2. 纳排标准

纳入标准:1) 比较非侵入性脑刺激和假刺激的双盲或单盲随机对照试验;2) 必须明确界定所纳入的患者存在神经病理性疼痛;3) 结局指标:患者疼痛评分变化。

排除标准:1) 比较两种不同类型的非侵入性脑刺激;2) 未随机或没有设置对照组或安慰剂组。3)报告细节不足,无法获取原始数据。

2.3. 文献筛选与数据提取

由2名研究者仔细审阅文献标题和摘要,以初步排除不相关的研究。然后对潜在文献进行全文阅读,并按照已制定的纳排标准确定最终符合要求的文献。提取以下数据资料:第一作者、发表年份、研究设计、样本量、参与者特征(如NP类型)、随访时间、NIBS干预参数(频率、强度、疗程数和刺激电极的放置)及治疗组和对照组患者疼痛评分改善情况(包括治疗结束即刻及最后一次随访时)。对存在分歧的文献,可通过讨论或请求第3名研究者协助做出最终决定。

2.4. 文献质量评价

由2名研究者对最终纳入的文献使用“Cochrane风险偏倚评估工具”进行独立质量评价 [12]。评估内容主要包括随机分配办法、分配隐藏方案、盲法、结果数据的完整性、选择性发表及其他偏倚,分别按照评价标准划分为“低风险”、“不明确”和“高风险。如出现不同意见则请求第3名研究者协助讨论解决。

2.5. 统计学方法

本研究使用STATA12.0软件对纳入数据进行统计分析。各个研究采用不同的疼痛评分量表,因此采用标准化均数差(standardized mean difference, SMD)和95%置信区间(confidence interval, CI)报告效应量。根据p和I2值判断纳入研究之间的异质性,若p ≥ 0.1,I2 < 50%表明各研究间同质性良好,则选择固定效应模型 [13];若p < 0.1,I2 > 50%表明各研究间存在异质性,则选择随机效应模型,并经一步则采用亚组分析和敏感性分析寻找异质性来源 [14]。所有p值均采用双侧检验计算,p < 0.05认为差异具有统计学意义。

3. 结果

3.1. 文献筛选结果

经过数据库检索初步获取425篇文献,最终纳入13项符合排纳表标准的随机对照试验 [15] - [27],文献筛选流程图如图1所示。

Figure 1. Flow chart of literature screening

图1. 文献筛选流程图

3.2. 纳入研究的基本特征

表1总结了纳入研究的基本特征。纳入的13项RCT研究共有489名患者,其中大多数患有纤维肌痛或脊髓损伤继发的神经病理性疼痛。患者的年龄从32岁到85岁不等,女性比例高于男性。

纳入研究所应用的NIBS包括rTMS (n = 8),tDCS (n = 4),和CES (n = 1)。研究中应用的rTMS频率包括1 Hz、10 Hz和20 Hz,tDCS的强度包括1.4 mA和2 mA,CES使用的强度为100~500 uA。NIBS的刺激部位包括初级运动皮质(M1)和背外侧前额叶皮质(DLPFC)。平均随访时间为4.5周(4~12周)。

Table 1. Characteristics of included studies

表1. 纳入研究的基本特征

RMT:静息运动阈值;ITI:治疗间期;M1:初级运动皮质;DLPFC:背外侧前额叶皮质;rTMS:重复经颅磁刺激;tDCS:经颅直流电;CES:经颅电刺激;NRS:数字评分法;VAS:视觉模拟评分法;BPI:简易疼痛量表法。

3.3. 文献质量评价

纳入研究的偏倚风险评估结果如图2所示。大多数研究(10篇)报告了随机序列生成方法,而其余研究未描述。7项研究提供了较为具体的分配和隐藏实施方法,而另外6项研究均未描述。几乎所有研究(12篇)对研究者和受试人员实施了盲法,而只1项研究未设盲。在选择性报告方面,9项研究存在不明确的偏倚风险,而另外4项研究为低风险。所有纳入研究均完整报告了结局数据。

Figure 2. Summary of risk of bias

图2. 纳入研究偏倚风险评估

3.4. Meta分析结果

由于所纳入的研究应用不同量表对患者疼痛症状进行评分,因此本研究采用标准化均数差(SMD)来评估效应量大小。共有11项研究报告了NIBS治疗结束后NP患者疼痛改善情况,Meta分析结果表明NIBS在缓解NP患者疼痛方面显著优于NIBS假刺激(SMD = −0.60;95% CI:−1.00~−0.20;p = 0.004;图3(A))。仅7项研究报告了NIBS对NP患者疼痛改善的长期影响,Meta分析结果表明NIBS对改善疼痛的持续作用要显著优于假刺激(SMD = −0.51;95% CI:−0.79~−0.23;p = 0.000;图3(B))。

Figure 3. Meta-analysis of pain improvement between NIBS versus control in patients with neuropathic pain at post-treatment (A) and at follow-up (B)

图3. NIBS组与对照组疼痛改善情况的meta分析。A:治疗结束后;B:随访时

3.5. 亚组分析

为进一步分析不同NIBS方案的治疗效果,我们进行了亚组分析。如图4所示,治疗结束后疼痛显著减轻仅发生于接受tDCS (SMD = −0.38;95% CI:−0.71~−0.04;p = 0.030;图4(A) )和H-rTMS (SMD = −0.95;95% CI:−1.85~−0.04;p = 0.040;图4(A))治疗的NP患者,而接受L-rTMS (SMD = −0.55;95% CI:−1.23~0.13;p = 0.111;图4(A))和CES (SMD = −0.05;95% CI:−0.35~0.05;p = 0.812;图4(A))治疗患者的疼痛症状未见显著缓解。在随访期间,仅发现H-rTMS能持续改善NP患者的疼痛症状(SMD = −0.54;95% CI:−0.85~−0.24;p = 0.000;图4(B))。

Figure 4. Subgroup analyses of different types of NIBS for pain reduction at post-treatment (A) and at follow-up (B)

图4. 不同类型NIBS对患者疼痛改善情况的亚组分析,A:治疗结束后;B:随访时

4. 讨论

为系统评价非侵入性脑刺激治疗神经性疼痛的有效性,本研究共纳入了13项随机对照试验。我们的meta分析发现,NIBS在缓解患者疼痛方面显著优于假刺激。针对不同治疗方案进行亚组分析,结果显示只有tDCS和H-rTMS具有显著效果。随访发现,NIBS改善疼痛的持续作用也显著优于假刺激,进一步亚组分析发现,只有H-rTMS可持续改善NP患者的疼痛评分。

目前有多种NIBS技术应用于神经病理性疼痛的治疗,其中rTMS和tDCS是临床最常用的两种干预手段,尽管它们的作用效果仍存在一定争议。既往的一篇meta分析结果显示rTMS和tDCS并不能显著改善脊髓损伤患者出现的神经病理性疼痛症状 [11],但该研究不能确定NIBS对其他类型NP的镇痛效果。本研究纳入了不同来源的NP患者(如中风、周围神经损伤、脊髓损伤),数据分析结果表明NIBS在调节NP方面具有显著的效果。两项研究出现不一致结论的可能原因是不同类型的神经病理性疼痛对脑刺激呈现不同的治疗反应 [28]。

NIBS发挥镇痛作用的确切机制仍不明确,刺激频率被认为是影响NIBS治疗效果的重要因素。Saitoh等人评估了不同频率的rTMS对NP的镇痛效果,结果发现10 Hz对患者疼痛改善作用显著优于5 Hz,而1 Hz无明显治疗作用 [29],其潜在机制可能与高频rTMS能够增强神经元放电效率从而减少疼痛信号传入有关,而低频rTMS具有相反的效果。本研究也得出相一致的结论,只有高频rTMS能够改善NP患者疼痛症状,而低频rTMS无显著镇痛作用。目前研究认为,神经病理性疼痛持续存在会引发皮质GABA能依赖性抑制——NMDA能依赖性兴奋回路失调,这些皮质可塑性变化最终导致患者运动皮质内抑制发生改变 [30],而高频rTMS可能是通过增强皮质网络兴奋性来逆转这一改变从而发挥缓解疼痛的作用 [31]。

本研究存在一定的局限性:1) 由于纳入的样本量总体偏小,缺乏大样本研究,影响结论的可靠性;2) 部分数据无法获取只能通过计算得出,可能会对meta结果产生一定的影响;3) 大多数研究没有报告疼痛的频率、持续时间和是否合并并发症等信息,无法进一步行亚组分析及敏感性分析。

综上所述,非侵入性脑刺激能够缓解神经病理性疼痛患者的疼痛程度。但所纳入文献总体质量一般且样本量偏小,尚需要更高质量、大样本随机对照试验进一步验证。

文章引用

雍智杰,高呈飞. 非侵入性脑刺激治疗神经病理性疼痛的Meta分析
The Effectiveness of Noninvasive Brain Stimulations on Patients with Neuropathic Pain: A Meta-Analysis[J]. 临床医学进展, 2022, 12(09): 8403-8413. https://doi.org/10.12677/ACM.2022.1291212

参考文献

  1. 1. Baron, R., Binder, A. and Wasner, G. (2010) Neuropathic Pain: Diagnosis, Pathophysiological Mechanisms, and Treat-ment. The Lancet Neurology, 9, 807-819. https://doi.org/10.1016/S1474-4422(10)70143-5

  2. 2. Toth, C., Lander, J. and Wiebe, S. (2009) The Prevalence and Impact of Chronic Pain with Neuropathic Pain Symptoms in the General Pop-ulation. Pain Medicine, 10, 918-929. https://doi.org/10.1111/j.1526-4637.2009.00655.x

  3. 3. Gilron, I., Baron, R. and Jensen, T. (2015) Neuropathic Pain: Principles of Diagnosis and Treatment. Mayo Clinic Proceedings, 90, 532-545. https://doi.org/10.1016/j.mayocp.2015.01.018

  4. 4. Hung, A.L., Lim, M. and Doshi, T.L. (2017) Targeting Cyto-kines for Treatment of Neuropathic Pain. Scandinavian Journal of Pain, 17, 287-293. https://doi.org/10.1016/j.sjpain.2017.08.002

  5. 5. Cruccu, G., Aziz, T.Z., Garcia-Larrea, L., Hansson, P., Jensen, T.S., Lefaucheur, J.P., et al. (2007) EFNS Guidelines on Neurostimulation Therapy for Neuropathic Pain. European Journal of Neurology, 14, 952-970. https://doi.org/10.1111/j.1468-1331.2007.01916.x

  6. 6. Marshansky, S., Mayer, P., Rizzo, D., Baltzan, M., Denis, R. and Lavigne, G.J. (2018) Sleep, Chronic Pain, and Opioid Risk for Apnea. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 87, 234-244. https://doi.org/10.1016/j.pnpbp.2017.07.014

  7. 7. Dworkin, R.H., O’Connor, A.B., Backonja, M., Farrar, J.T., Finnerup, N.B., Jensen, T.S., et al. (2007) Pharmacologic Management of Neuropathic Pain: Evidence-Based Recom-mendations. Pain, 132, 237-251. https://doi.org/10.1016/j.pain.2007.08.033

  8. 8. Finnerup, N.B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R.H., et al. (2015) Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Me-ta-Analysis. The Lancet Neurology, 14, 162-173. https://doi.org/10.1016/S1474-4422(14)70251-0

  9. 9. Finnerup, N.B., Kuner, R. and Jensen, T.S. (2021) Neuro-pathic Pain: from Mechanisms to Treatment. Physiological Reviews, 101, 259-301. https://doi.org/10.1152/physrev.00045.2019

  10. 10. David, M., Moraes, A.A., Costa, M.L.D. and Franco, C.I.F. (2018) Transcranial Direct Current Stimulation in the Modulation of Neuropathic Pain: A Systematic Review. Neurolog-ical Research, 40, 555-563. https://doi.org/10.1080/01616412.2018.1453190

  11. 11. Yu, B., Qiu, H., Li, J., Zhong, C. and Li, J. (2020) Nonin-vasive Brain Stimulation Does Not Improve Neuropathic Pain in Individuals with Spinal Cord Injury: Evidence from a Meta-Analysis of 11 Randomized Controlled Trials. American Journal of Physical Medicine & Rehabilitation, 99, 811-820. https://doi.org/10.1097/PHM.0000000000001421

  12. 12. Cumpston, M., Li, T., Page, M.J., Chandler, J., Welch, V.A., Higgins, J.P., et al. (2019) Updated Guidance for Trusted Systematic Reviews: A New Edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database of Systematic Reviews, No. 10, Arti-cle No. ED000142. https://doi.org/10.1002/14651858.ED000142

  13. 13. Higgins, J.P., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring Inconsistency in Meta-Analyses. BMJ, 327, 557-560. https://doi.org/10.1136/bmj.327.7414.557

  14. 14. Copas, J. and Shi, J.Q. (2000) Meta-Analysis, Funnel Plots and Sensitivity Analysis. Biostatistics, 1, 247-262. https://doi.org/10.1093/biostatistics/1.3.247

  15. 15. O’Neill, F., Sacco, P., Bowden, E., Asher, R., Burnside, G., Cox, T., et al. (2018) Patient-Delivered TDCS on Chronic Neuropathic Pain in Prior Responders to TMS (A Randomized Controlled Pilot Study). Journal of Pain Research, 11, 3117-3128. https://doi.org/10.2147/JPR.S186079

  16. 16. Young, J., Zoghi, M., Khan, F. and Galea, M.P. (2020) The Effect of Transcranial Direct Current Stimulation on Chronic Neuropathic Pain in Patients with Multiple Sclerosis: Randomized Controlled Trial. Pain Medicine, 21, 3451-3457. https://doi.org/10.1093/pm/pnaa128

  17. 17. Zhao, C.G., Sun, W., Ju, F., Jiang, S., Wang, H., Sun, X.L., et al. (2021) Analgesic Effects of Navigated Repetitive Transcranial Magnetic Stimulation in Patients with Acute Central Poststroke Pain. Pain and Therapy, 10, 1085-1100. https://doi.org/10.1007/s40122-021-00270-z

  18. 18. Leung, A., Metzger-Smith, V., He, Y., Cordero, J., Ehlert, B., Song, D., et al. (2018) Left Dorsolateral Prefrontal Cortex rTMS in Alleviating MTBI Related Headaches and Depressive Symptoms. Neuromodulation, 21, 390-401. https://doi.org/10.1111/ner.12615

  19. 19. Khedr, E.M., Kotb, H.I., Mostafa, M.G., Mohamad, M.F., Amr, S.A., Ahmed, M.A., et al. (2015) Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain Secondary to Malignancy: A Randomized Clinical Trial. European Journal of Pain, 19, 519-527. https://doi.org/10.1002/ejp.576

  20. 20. Tan, G., Rintala, D.H., Jensen, M.P., Richards, J.S., Holmes, S.A., Parachuri, R., et al. (2011) Efficacy of Cranial Electrotherapy Stimulation for Neuropathic Pain Following Spinal Cord Injury: A Multi-Site Randomized Controlled Trial with a Sec-ondary 6-Month Open-Label Phase. The Journal of Spinal Cord Medicine, 34, 285-296. https://doi.org/10.1179/2045772311Y.0000000008

  21. 21. Fagerlund, A.J., Hansen, O.A. and Aslaksen, P.M. (2015) Transcranial Direct Current Stimulation as a Treatment for Patients with Fibromyalgia: A Randomized Controlled Trial. Pain, 156, 62-71. https://doi.org/10.1016/j.pain.0000000000000006

  22. 22. Mhalla, A., Baudic, S., De Andrade, D.C., Gautron, M., Perrot, S., Teixeira, M.J., et al. (2011) Long-Term Maintenance of the Analgesic Effects of Transcranial Magnetic Stim-ulation in Fibromyalgia. Pain, 152, 1478-1485. https://doi.org/10.1016/j.pain.2011.01.034

  23. 23. Lee, S.J., Kim, D.Y., Chun, M.H. and Kim, Y.G. (2012) The Ef-fect of Repetitive Transcranial Magnetic Stimulation on Fibromyalgia: A Randomized Sham-Controlled Trial with 1-Mo Follow-Up. American Journal of Physical Medicine & Rehabilitation, 91, 1077-1085. https://doi.org/10.1097/PHM.0b013e3182745a04

  24. 24. Yagci, I., Agirman, M., Ozturk, D. and Eren, B. (2014) Is the Transcranial Magnetic Stimulation an Adjunctive Treatment in Fibromyalgia Patients? Türkiye Fiziksel Tip VeRehabil-itasyon Dergisi, 60, 206-211. https://doi.org/10.5152/tftrd.2014.37074

  25. 25. Ayache, S.S., Palm, U., Chalah, M.A., Al-Ani, T., Brignol, A., Ab-dellaoui, M., et al. (2016) Prefrontal TDCS Decreases Pain in Patients with Multiple Sclerosis. Frontiers in Neuroscience, 10, Article No. 147. https://doi.org/10.3389/fnins.2016.00147

  26. 26. Short, B.E., Borckardt, J.J., Anderson, B.S., Frohman, H., Beam, W., Reeves, S.T., et al. (2011) Ten Sessions of Adjunctive Left Prefrontal RTMS Significantly Reduces Fibromyalgia Pain: A Randomized, Controlled Pilot Study. Pain, 152, 2477-2484. https://doi.org/10.1016/j.pain.2011.05.033

  27. 27. Malavera, A., Silva, F.A., Fregni, F., Carrillo, S. and Garcia, R.G. (2016) Repetitive Transcranial Magnetic Stimulation for Phantom Limb Pain in Land Mine Victims: A Double-Blinded, Randomized, Sham-Controlled Trial. The Journal of Pain, 17, 911-918. https://doi.org/10.1016/j.jpain.2016.05.003

  28. 28. Fitzcharles, M.A., Cohen, S.P., Clauw, D.J., Littlejohn, G., Usui, C. and Häuser, W. (2021) Nociplastic Pain: Towards an Understanding of Prevalent Pain Conditions. Lancet, 397, 2098-2110. https://doi.org/10.1016/S0140-6736(21)00392-5

  29. 29. Saitoh, Y., Hirayama, A., Kishima, H., Shimokawa, T., Oshino, S., Hirata, M., et al. (2007) Reduction of Intractable Deafferentation Pain Due to Spinal Cord or Peripheral Le-sion by High-Frequency Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex. Journal of Neuro-surgery, 107, 555-559. https://doi.org/10.3171/JNS-07/09/0555

  30. 30. Lefaucheur, J.P., Drouot, X., Ménard-Lefaucheur, I., Keravel, Y. and Nguyen, J.P. (2006) Motor Cortex RTMS Restores Defective Intracortical Inhibition in Chronic Neuropathic Pain. Neu-rology, 67, 1568-1574. https://doi.org/10.1212/01.wnl.0000242731.10074.3c

  31. 31. Ostergard, T., Munyon, C. and Miller, J.P. (2014) Motor Cortex Stimulation for Chronic Pain. Neurosurgery Clinics of North America, 25, 693-698. https://doi.org/10.1016/j.nec.2014.06.004

  32. NOTES

    *第一作者。

    #通讯作者Email: gaocf@qduhospital.cn

期刊菜单