Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68528 , 6 pages
10.12677/ACM.2023.1371535

天然产物杨梅素抗卵巢癌研究进展

陈琳

西安医学院研究生院,陕西 西安

收稿日期:2023年6月11日;录用日期:2023年7月5日;发布日期:2023年7月12日

摘要

卵巢癌的致死率居妇科恶性肿瘤首位,患者的远期生存率低,开发高效、低毒的新药物对于卵巢癌治疗具有重要意义。近年来,越来越多的研究发现了天然黄酮类化合物杨梅素的抗肿瘤活性,杨梅素通过诱导肿瘤细胞凋亡、抑制增殖和迁移侵袭、提高化疗敏感性等多种机制发挥抗肿瘤作用。本文就杨梅素在卵巢癌中的研究进展进行阐述,为天然产物的临床应用提供科学依据。

关键词

杨梅素,卵巢癌,肿瘤,作用机制

Research Progress of Natural Product Myricetin against Ovarian Cancer

Lin Chen

Graduate School of Xi’an Medical University, Xi’an Shaanxi

Received: Jun. 11th, 2023; accepted: Jul. 5th, 2023; published: Jul. 12th, 2023

ABSTRACT

Ovarian cancer is the gynecological malignant tumor with the highest fatality rate, and the long-term survival rate of patients is low. The development of new drugs with high efficiency and low toxicity is of great significance for the treatment of ovarian cancer. In recent years, more and more studies have found the anti-tumor activity of natural flavonoids myricetin, which plays an anti-tumor effect by inducing tumor cell apoptosis, inhibiting proliferation, inhibiting migration and invasion, improving chemotherapy sensitivity, and so on. This paper reviews the research progress of myricetin in ovarian cancer in order to provide scientific basis for the clinical application of natural products.

Keywords:Myricetin, Ovarian Cancer, Tumor, Mechanism of Action

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

卵巢癌(Ovarian cancer)是常见的妇科恶性肿瘤之一,致死率居妇科恶性肿瘤首位。全世界每年约有31万新发卵巢癌病例,20.7万新增死亡病例 [1] 。卵巢癌起病隐匿,缺乏特异性症状和早筛查和早诊断的方法,70%的患者诊断时已经发生局部或远处转移 [2] 。近年来,手术联合以铂类为基础的化疗和靶向治疗显著改善了卵巢癌患者的无进展生存期,但复发率高达70%~80% [3] ,并且化疗药物的毒副作用很大,患者的远期生存率并未明显提高,总体5年生存率为50%,晚期患者仅为31% [2] ,因此开发高效、低毒的新药对于卵巢癌治疗具有重要意义。

杨梅素是一种药食同源的黄酮类化合物,又名杨梅树皮素,分子量为318.24,结构式为3, 5, 7, 3’, 4’, 5’-六羟基黄酮,化学式为C15H10O8 [4] 。杨梅素广泛存在于蔬菜、水果、茶叶及红酒中 [5] ,具有抗炎、抗氧化、抗肿瘤、保护心血管、保护神经等多种有利于健康的作用 [6] 。近年来,杨梅素的抗肿瘤活性在多种肿瘤中被发现,本文就杨梅素的抗肿瘤机制以及在卵巢癌中的研究进展进行综述,为天然产物的开发和应用提供科学依据。

2. 杨梅素的抗肿瘤机制

2.1. 诱导肿瘤细胞凋亡

细胞凋亡是指衰老细胞或损伤细胞的程序性死亡过程,杨梅素可以激活内源性和外源性细胞凋亡途径。杨梅素通过激活caspase级联反应使Bax/Bcl-2表达比值上调,并且促进细胞凋亡诱导因子(AIF)的释放导致线粒体膜电位改变,从而诱导甲状腺癌细胞内源性凋亡 [7] 。Zhang等人的研究发现在肝癌细胞中,杨梅素诱导促凋亡蛋白Bax向线粒体的易位,下调抗凋亡蛋白Bcl-2的表达并上调促凋亡蛋白Bad的表达,该研究还发现杨梅素促进细胞色素C从线粒体释放到细胞质中,并增加caspase-3的蛋白水解和PARP降解 [8] 。此外,Yang等人 [9] 的研究发现杨梅素也通过促进内质网中Ca2+的释放参与内质网应激,并促进活性氧(ROS)的产生导致脂质过氧化和谷胱甘肽耗竭,从而诱导绒毛膜癌细胞凋亡。在骨肉瘤中,杨梅素也促进活性氧的产生,提高脂质过氧化的水平和线粒体膜电位的去极化 [10] 。可见,杨梅素通过多种机制激活肿瘤细胞内源性凋亡途径。

细胞凋亡的外源性途径主要是由TRAIL-DR4、TRAIL-DR5、Fas-FasL和TNF-TNFR1等配体与死亡受体结合而激活的,最终引起caspase-8的招募和其下游caspase3/6/7的激活。Siegelin等人 [11] 的研究发现杨梅素与TRAIL共同处理导致恶性神经胶质瘤细胞中c-FLIP和bcl-2的表达下调,并激活了caspase级联反应,从而诱导恶性胶质瘤细胞发生外源性凋亡。

2.2. 抑制肿瘤细胞增殖

无限增殖和细胞周期异常是肿瘤细胞的典型特征。杨梅素通过下调细胞周期蛋白B1和细胞周期蛋白依赖性激酶CDC2导致膀胱癌细胞G2/M期细胞周期阻滞,从而抑制膀胱癌细胞系增殖和异种移植瘤生长 [12] 。在肝癌细胞中,杨梅素通过增加CDK1蛋白Thr14/Tyr15处的磷酸化,使细胞周期蛋白B/CDK1复合体失活,也可以促进p57、p21和p27的表达灭活细胞周期蛋白复合体 [13] 。拓扑异构酶在肿瘤细胞DNA复制中发挥重要作用,被认为是肿瘤治疗的靶点,Shiomi等人 [14] 的研究发现杨梅素通过促进拓扑异构酶-DNA复合体的形成抑制拓扑异构酶I和II的活性,使细胞周期停滞从而抑制肿瘤细胞增殖,但对DNA聚合酶的活性影响不显著,因此杨梅素有望用于开发拓扑异构酶的靶向药物。

2.3. 抑制肿瘤细胞侵袭迁移

肿瘤血管生成是肿瘤生长和转移的重要原因,杨梅素下调血管内皮生长因子(VEGF)和血管内皮生长因子受体(VEGFR)的表达,抑制乳腺癌血管生成,从而抑制乳腺癌侵袭和转移 [15] 。研究发现杨梅素可以抑制结直肠癌 [16] 、胃癌、胰腺癌 [17] 、胶质母细胞瘤等多种肿瘤中PI3K/AKT信号的激活,并通过抑制MAPK和PI3K/AKT信号通路,抑制了恶性滋养细胞JAR和JEG-3的侵袭和促血管生成特性 [9] 。肿瘤中细胞基质金属蛋白酶(MMP)的表达往往上调,通过降解细胞外基质促进肿瘤细胞转移,有研究对比了36种黄酮类化合物对MMP2的抑制作用,发现杨梅素是最有效的MMP2抑制剂,可以抑制PKC易位和ERK磷酸化 [18] 。此外,乳腺癌和皮肤癌等其他肿瘤中也证实了杨梅素对MMP表达和活性的抑制作用 [19] [20] 。上皮–间充质转化(EMT)是肿瘤侵袭和转移的另一重要因素,Ma等人的研究发现杨梅素通过上调E钙粘蛋白、下调N钙粘蛋白的表达抑制EMT,进而抑制了肝癌细胞的迁移和侵袭 [21] 。

2.4. 提高化疗敏感性

Wang等人 [22] 的研究发现5-氟尿嘧啶(5-FU)联合杨梅素使得食管癌细胞中的促癌因子Survivin、Cyclin D、Bcl2的表达降低,而抑癌因子Caspase-3、P53的表达增强,并且联合用药使小鼠移植瘤生长速度明显减慢,提示杨梅素可以提高食管癌对化疗药物的敏感性。肝癌对奥沙利铂的耐药与多药耐药蛋白MRP2的过表达显著相关,研究发现杨梅素可以作为MRP2的抑制剂,用杨梅素或MRP2的小干扰RNA抑制MRP2的表达可以逆转肝癌细胞对奥沙利铂的敏感性 [23] 。Hippo通路的关键效应分子YAP表达上调与顺铂耐药密切相关 [24] ,杨梅素可以促进YAP的磷酸化和降解,并且在体内外抑制YAP及其靶基因的表达,使肝癌细胞对顺铂化疗更敏感 [25] 。此外,杨梅素与阿糖胞苷协同发挥抗白血病细胞的作用,可以增加白血病细胞对阿糖胞苷的敏感性 [26] 。

3. 杨梅素在卵巢癌治疗中的研究

铂类耐药是卵巢癌患者死亡的主要原因,克服化疗药物抵抗是卵巢癌治疗的关键。Huang等人 [27] 的研究发现杨梅素对两种顺铂耐药的卵巢癌细胞系OVCAR-3和A2780/CP70表现出较强的毒性,而对正常卵巢细胞系IOSE-364的细胞毒性则较小,并且杨梅素诱导耐药细胞系发生Bcl-2依赖性内在凋亡和 DR5依赖性外在凋亡。Zhang等人 [28] 发现杨梅叶中的总黄酮(BLF,主要为杨梅素,包含部分槲皮素)对卵巢癌耐药细胞株A2780/CP70的生长有抑制作用,并认为这种抑制作用可能是通过诱导细胞凋亡和细胞周期停滞来实现的。BLF通过上调促凋亡蛋白(Bad和Bax),下调抗凋亡蛋白(Bclxl和Bcl2),上调caspase3和7的表达,并通过ERK依赖的caspase9激活固有的细胞凋亡途径,此外,BLF通过降低细胞周期蛋白D1、CDK4和p-Erk的表达,从而导致细胞周期阻滞。许多研究已经证实杨梅素等多种黄酮类化合物可以诱导卵巢癌细胞凋亡,但具体的作用靶点尚不清楚。Abd Ghani等人 [29] 通过分子对接技术分析了五种黄酮类化合物(生物链素A、杨梅素、芹菜素、高良姜素和非瑟酮)与潜在抗凋亡靶蛋白(Bcl-2和Bcl-xl)的结合能力和相互作用,发现五种黄酮类化合物均与Bcl-xl有较好的亲和力,可以用于开发Bcl-xl的抑制剂,诱导肿瘤细胞凋亡。

杨梅素作为一种强的抗氧化剂,可以清除体内ROS,避免氧化损伤。Li等人 [30] 的研究发现杨梅素通过激活了p38/Sapla信号通路,抑制氧化应激并降低卵巢癌细胞中的ROS水平,从而抑制卵巢癌细胞增殖、迁移和侵袭,但对正常卵巢上皮细胞的活性影响不显著。但在某些特定的微环境中杨梅素也可以表现出促氧化的作用,在铜离子(Cu2+)存在或低pH的微环境中杨梅素可与DNA形成复合物,促进ROS的产生,诱导DNA损伤 [31] [32] 。Xu等人 [33] 的研究发现杨梅素可以引起SKOV3卵巢癌细胞系染色质断裂和浓缩,使DNA损伤标志物H2AX的磷酸化水平显著增加,并且内质网应激相关蛋白也上调,DNA损伤和内质网应激可能是杨梅素诱导SKOV3细胞凋亡的潜在机制。

晚期卵巢癌患者多数伴有大量腹水,腹水的形成与肿瘤血管生成密切相关,肿瘤新生血管结构畸形,渗透性高,并且癌栓阻碍了淋巴回流,导致组织间液积聚,大量腹水是肿瘤复发的高危因素。研究发现杨梅素可以通过抑制Akt/p70S6K/HIF-1α途径抑制卵巢癌OVCAR-3细胞系VEGF的分泌,从而抑制卵巢癌血管生成,可以作为潜在的抗血管生成剂 [34] 。

铂类联合紫杉醇是卵巢癌的一线化疗方案,紫杉醇通过作用于细胞微管蛋白抑制有丝分裂过程中纺锤体的形成从而阻碍细胞正常分裂,是天然产物抗肿瘤的经典药物。卵巢癌患者对紫杉醇的耐药仍不可避免,多药耐药蛋白的过表达是耐药机制之一。Zheng等人 [35] 的研究发现杨梅素通过下调多药耐药蛋白MDR-1提高卵巢癌细胞A2780和OVCAR3对紫杉醇的敏感性,为紫杉醇耐药卵巢癌患者提供了新的选择。

4. 展望

由于杨梅素的水溶性和稳定性较差,口服吸收效果不佳,因此生物利用度不高,限制了其临床应用。鉴于杨梅素广泛的作用靶点和有利于健康的生物活性,许多学者试图通过生物和化学方法提高其生物利用度。通过改造其化学结构合成多种衍生物,乙酰化衍生物提高了杨梅素的稳定性但水溶性变化不大,甲基化衍生物可以提高杨梅素的抗肿瘤活性,糖基化衍生物可以提高其水溶性 [5] 。此外,许多研究将杨梅素用纳米材料包裹以改善其溶解度和利用率,提高其抗肿瘤活性。纳米材料形式多样,包括纳米晶体、纳米乳液、金属纳米颗粒、树枝状大分子、碳纳米管、聚合物胶束和纳米脂质体等,合成了不同的杨梅素纳米制剂,具有靶向递送药物的优势。杨梅素的开发具有广泛的应用前景,对于卵巢癌等多种肿瘤的治疗具有现实意义。

文章引用

陈 琳. 天然产物杨梅素抗卵巢癌研究进展
Research Progress of Natural Product Myricetin against Ovarian Cancer[J]. 临床医学进展, 2023, 13(07): 10996-11001. https://doi.org/10.12677/ACM.2023.1371535

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Siegel, R.L., Miller, K.D., Wagle, N.S., et al. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763

  3. 3. Lheureux, S., Braunstein, M. and Oza, A.M. (2019) Epithelial Ovarian Cancer: Evolution of Management in the Era of Precision Medi-cine. CA: A Cancer Journal for Clinicians, 69, 280-304. https://doi.org/10.3322/caac.21559

  4. 4. Javed, Z., Khan, K., Herrera-Bravo, J., et al. (2022) Myricetin: Targeting Signaling Networks in Cancer and Its Implication in Chemo-therapy. Cancer Cell International, 22, Article No. 239. https://doi.org/10.1186/s12935-022-02663-2

  5. 5. 杨冲, 张良, 宋晓峰, 等. 杨梅素及其衍生物研究进展[J]. 药学进展, 2019, 43(3): 217-225.

  6. 6. Devi, K.P., Rajavel, T., Habtemariam, S., et al. (2015) Molecular Mechanisms Underlying Anticancer Effects of Myricetin. Life Sciences, 142, 19-25. https://doi.org/10.1016/j.lfs.2015.10.004

  7. 7. Ha, T.K., Jung, I., Kim, M.E., et al. (2017) Anti-Cancer Ac-tivity of Myricetin against Human Papillary Thyroid Cancer Cells Involves Mitochondrial Dysfunction-Mediated Apop-tosis. Biomedicine & Pharmacotherapy, 91, 378-384. https://doi.org/10.1016/j.biopha.2017.04.100

  8. 8. Zhang, X.H., Chen, S.Y., Tang, L., et al. (2013) Myricetin In-duces Apoptosis in HepG2 Cells through Akt/p70S6K/Bad Signaling and Mitochondrial Apoptotic Pathway. An-ti-Cancer Agents in Medicinal Chemistry, 13, 1575-1581. https://doi.org/10.2174/1871520613666131125123059

  9. 9. Yang, C., Lim, W., Bazer, F.W., et al. (2017) Myrice-tin Suppresses Invasion and Promotes Cell Death in Human Placental Choriocarcinoma Cells through Induction of Oxi-dative Stress. Cancer Letters, 399, 10-19. https://doi.org/10.1016/j.canlet.2017.04.014

  10. 10. Park, H., Park, S., Bazer, F.W., et al. (2018) Myricetin Treatment Induces Apoptosis in Canine Osteosarcoma Cells by Inducing DNA Fragmentation, Disrupting Redox Homeostasis, and Mediating Loss of Mitochondrial Membrane Potential. Journal of Cellular Physiology, 233, 7457-7466. https://doi.org/10.1002/jcp.26598

  11. 11. Siegelin, M.D., Gaiser, T., Habel, A., et al. (2009) Myricetin Sensitizes Ma-lignant Glioma Cells to TRAIL-Mediated Apoptosis by Down-Regulation of the Short Isoform of FLIP and bcl-2. Can-cer Letters, 283, 230-238. https://doi.org/10.1016/j.canlet.2009.04.002

  12. 12. Sun, F., Zheng, X.Y., Ye, J., et al. (2012) Potential Anticancer Activity of Myricetin in Human T24 Bladder Cancer Cells both in Vitro and in Vivo. Nutrition and Cancer, 64, 599-606. https://doi.org/10.1080/01635581.2012.665564

  13. 13. Zhang, X.H., Zou, Z.Q., Xu, C.W., et al. (2011) Myricetin Induces G2/M Phase Arrest in HepG2 Cells by Inhibiting the Activity of the Cyclin B/Cdc2 Complex. Molecular Medi-cine Reports, 4, 273-277. https://doi.org/10.3892/mmr.2011.417

  14. 14. Shiomi, K., Kuriyama, I., Yoshida, H., et al. (2013) Inhibitory Effects of Myricetin on Mammalian DNA Polymerase, Topoisomerase and Human Cancer Cell Proliferation. Food Chemistry, 139, 910-918. https://doi.org/10.1016/j.foodchem.2013.01.009

  15. 15. Zhou, Z., Mao, W., Li, Y., et al. (2019) Myricetin Inhibits Breast Tumor Growth and Angiogenesis by Regulating VEGF/VEGFR2 and p38MAPK Signaling Pathways. The Ana-tomical Record (Hoboken), 302, 2186-2192. https://doi.org/10.1002/ar.24222

  16. 16. Zhu, M.L., Zhang, P.M., Jiang, M., et al. (2020) Myricetin Induces Apopto-sis and Autophagy by Inhibiting PI3K/Akt/mTOR Signalling in Human Colon Cancer Cells. BMC Complementary Med-icine and Therapies, 20, Article No. 209. https://doi.org/10.1186/s12906-020-02965-w

  17. 17. Phillips, P.A., Sangwan, V., Borja-Cacho, D., et al. (2011) Myricetin Induces Pancreatic Cancer Cell Death via the Induction of Apop-tosis and Inhibition of the Phosphatidylinositol 3-Kinase (PI3K) Signaling Pathway. Cancer Letters, 308, 181-188. https://doi.org/10.1016/j.canlet.2011.05.002

  18. 18. Ko, C.H., Shen, S.C., Lee, T.J., et al. (2005) Myricetin Inhibits Matrix Metalloproteinase 2 Protein Expression and Enzyme Activity in Colorectal Carcinoma Cells. Molecular Cancer Therapeutics, 4, 281-290. https://doi.org/10.1158/1535-7163.281.4.2

  19. 19. Ci, Y., Zhang, Y., Liu, Y., et al. (2018) Myricetin Suppresses Breast Cancer Metastasis through Down-Regulating the Activity of Matrix Metalloproteinase (MMP)-2/9. Phytotherapy Research, 32, 1373-1381. https://doi.org/10.1002/ptr.6071

  20. 20. Jung, S.K., Lee, K.W., Kim, H.Y., et al. (2010) Myricetin Suppresses UVB-Induced Wrinkle Formation and MMP-9 Expression by Inhibiting Raf. Biochemical Pharmacology, 79, 1455-1461. https://doi.org/10.1016/j.bcp.2010.01.004

  21. 21. Ma, H., Zhu, L., Ren, J., et al. (2019) Myricetin Inhibits Migration and Invasion of Hepatocellular Carcinoma MHCC97H Cell Line by Inhibiting the EMT Process. Oncology Letters, 18, 6614-6620. https://doi.org/10.3892/ol.2019.10998

  22. 22. Wang, L., Feng, J., Chen, X., et al. (2014) Myricetin Enhance Chemo-sensitivity of 5-Fluorouracil on Esophageal Carcinoma in Vitro and in Vivo. Cancer Cell International, 14, Article No. 71. https://doi.org/10.1186/s12935-014-0071-2

  23. 23. Biswas, R., Bugde, P., He, J., et al. (2019) Transport-Mediated Oxaliplatin Resistance Associated with Endogenous Overexpression of MRP2 in Caco-2 and PANC-1 Cells. Cancers (Basel), 11, Article No. 1330. https://doi.org/10.3390/cancers11091330

  24. 24. Xiao, L., Shi, X.Y., Zhang, Y., et al. (2016) YAP Induces Cisplatin Resistance through Activation of Autophagy in Human Ovarian Carcinoma Cells. OncoTargets and Therapy, 9, 1105-1114. https://doi.org/10.2147/OTT.S102837

  25. 25. Li, M., Chen, J., Yu, X., et al. (2019) Myricetin Suppress-es the Propagation of Hepatocellular Carcinoma via Down-Regulating Expression of YAP. Cells, 8, Article No. 358. https://doi.org/10.3390/cells8040358

  26. 26. Nadova, S., Miadokova, E. and Cipak, L. (2007) Flavonoids Potentiate the Efficacy of Cytarabine through Modulation of Drug-Induced Apoptosis. Neoplasma, 54, 202-206.

  27. 27. Huang, H., Chen, A.Y., Ye, X., et al. (2015) Myricetin Inhibits Proliferation of Cisplatin-Resistant Cancer Cells through a p53-Dependent Apoptotic Pathway. International Journal of Oncology, 47, 1494-1502. https://doi.org/10.3892/ijo.2015.3133

  28. 28. Zhang, Y., Chen, S., Wei, C., et al. (2018) Flavonoids from Chinese Bayberry Leaves Induced Apoptosis and G1 Cell Cycle Arrest via Erk Pathway in Ovarian Cancer Cells. European Journal of Medicinal Chemistry, 147, 218-226. https://doi.org/10.1016/j.ejmech.2018.01.084

  29. 29. Abd, G.M., Othman, R. and Nordin, N. (2020) Molecular Docking Study of Naturally Derived Flavonoids with Antiapoptotic BCL-2 and BCL-XL Proteins toward Ovarian Can-cer Treatment. Journal of Pharmacy and Bioallied Sciences, 12, S676-S680. https://doi.org/10.4103/jpbs.JPBS_272_19

  30. 30. Li, Q., Tan, Q., Ma, Y., et al. (2022) Myricetin Suppresses Ovar-ian Cancer in Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Fron-tiers in Oncology, 12, Article ID: 903394. https://doi.org/10.3389/fonc.2022.903394

  31. 31. Das, A., Majumder, D. and Saha, C. (2017) Correlation of Binding Efficacies of DNA to Flavonoids and Their Induced Cellular Damage. Journal of Photochemistry and Photobiology B, 170, 256-262. https://doi.org/10.1016/j.jphotobiol.2017.04.019

  32. 32. Jomova, K., Hudecova, L., Lauro, P., et al. (2019) A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3’,4’-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study. Molecules, 24, Article No. 4335. https://doi.org/10.3390/molecules24234335

  33. 33. Xu, Y., Xie, Q., Wu, S., et al. (2016) Myricetin Induces Apopto-sis via Endoplasmic Reticulum Stress and DNA Double-Strand Breaks in Human Ovarian Cancer Cells. Molecular Medicine Reports, 13, 2094-2100. https://doi.org/10.3892/mmr.2016.4763

  34. 34. Huang, H., Chen, A.Y., Rojanasakul, Y., et al. (2015) Dietary Com-pounds Galangin and Myricetin Suppress Ovarian Cancer Cell Angiogenesis. Journal of Functional Foods, 15, 464-475. https://doi.org/10.1016/j.jff.2015.03.051

  35. 35. Zheng, A.W., Chen, Y.Q., Zhao, L.Q., et al. (2017) Myricetin In-duces Apoptosis and Enhances Chemosensitivity in Ovarian Cancer Cells. Oncology Letters, 13, 4974-4978. https://doi.org/10.3892/ol.2017.6031

期刊菜单