Advances in Psychology
Vol. 13  No. 03 ( 2023 ), Article ID: 63125 , 9 pages
10.12677/AP.2023.133133

认知控制的脑机制及衰老对其脑机制 的影响

彭潘悦

西南大学心理学部,重庆

收稿日期:2023年2月20日;录用日期:2023年3月16日;发布日期:2023年3月27日

摘要

认知控制也叫执行功能,是指选择目标并控制自身的思想和行动以达到该目标的心理过程,其相应的行为被叫作目标导向行为。这是一个复合的过程,涉及到个体的决策、工作记忆、自上而下的注意,以及元认知。认知控制对于老年人来说尤其重要,是保证老年人日常生活正常运作的重要基础,但认知控制功能总是随着衰老不断减退,这十分影响老年人的心理健康与生活质量,因此,关注认知控制的老化,并探讨导致该功能衰退的神经基础尤为重要。本文回顾了近几十年的研究,在脑激活水平和脑网络水平上综述了认知控制功能在神经水平上的基础,并总结了衰老对脑神经的影响,阐述了支撑个体认知控制功能的关键脑区与脑连接,为后续的干预研究提供了锚点。

关键词

认知控制,脑机制,老年人

Brain Mechanism of Cognitive Control and the Effects of Aging

Panyue Peng

Faculty of Psychology, Southwest University, Chongqing

Received: Feb. 20th, 2023; accepted: Mar. 16th, 2023; published: Mar. 27th, 2023

ABSTRACT

Cognitive control, also known as executive function, refers to the psychological process of selecting a goal and controlling one’s own thoughts and actions to achieve the goal. The corresponding behavior is called goal-directed behavior. This is a compound process involving individual decision making, working memory, top-down attention, and meta-cognition. Cognitive control is especially important for the elderly, which is an important basis for ensuring the normal functioning of daily life. However, cognitive control function always decreases with aging, which greatly affects the mental health and quality of life of the elderly. Therefore, it is particularly important to pay attention to the aging of cognitive control and explore the neural basis leading to this decline. This article retrospects the research in recent decades and reviews the basis of cognitive control function at the neural level at the level of brain activation and brain network, also summarizes the impact of aging on brain nerves, and expounds the key brain regions and brain connections that support individual cognitive control function, providing an anchor for subsequent intervention research.

Keywords:Cognitive Control, Neural Mechanism, Older Adults

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

认知控制(Cognitive control)是一种高级认知功能,通过协调与内在目标相关的思想和行动来保持对目标的注意(Braver, 2012),其作用覆盖了个体的决策、记忆、情绪调节、元认知等心理过程。对于个体来说,完成日常的学习、工作任务,都离不开认知控制功能。例如,当你在咖啡店阅读某本推理小说,你需要排除掉周边的无关信息(窗外的鸟叫、余光撇到的店员走动、以及他人的交谈声),才能顺利地从书中了解到剧情中重要的关键线索。不同的人群所具备的认知控制能力也不同,比如,儿童电影往往都维持在一个小时左右,远低于普通电影的时长,这是因为小孩子还处于成长过程中,其注意力维持能力往往逊于成人,无法长时间地专注于剧情,更容易被新异刺激所吸引;而老年人正处于人生的夕阳阶段,其处理工作的能力、以及问题检索的能力都随着认知控制能力的衰退而减退。可见,认识认知控制这一心理过程于个人于群体都有着十分重大的意义。

2. 认知控制的神经机制

2.1. 认知控制相关的脑区

一直以来,前额叶皮层(Prefrontal cortex, PFC)都被认为在认知控制中起着核心的作用(Friedman & Robbins, 2022)。发现前额叶皮层与其他皮层与皮层下组织有广泛的投射关系,认为该皮层可以对自上而下的调节个体的行为,早期动物损伤研究提供了PFC参与复杂行为协调的证据,作为传入信息的临时存储,并使这些信息立即可用来指导反应选择(Fuster, 1991)。

当神经成像方法在心理学领域普遍使用后,发现认知控制相关的任务造成激活虽然随着任务的变化有所区别,但是大部分激活集中在背外侧前额叶皮质(Dorsolateral prefrontal cortex, dlPFC)、前扣带皮质(Anterior cingulate cortex, ACC)以及顶叶皮质(Parietal cortex) (Niendam et al., 2012)。dlPFC通常在维持任务相关的注意上发挥着重要作用,而ACC则负责对冲突的检测(Botvinick, Braver, Barch, Carter, & Cohen, 2001),一项研究通过Stroop范式,发现左侧dlPFC在任务的准备期被选择性的激活,说明该脑区在任务中会积极地维护任务的潜在注意需求。相反,ACC在被试的反应期间被选择性的激活,其激活更多出现在高冲突的任务条件中(MacDonald, Cohen, Stenger, & Carter, 2000)。通过经颅直流电刺激技术(Transcranial direct current stimulation, tDCS)刺激个体的左侧dlPFC,发现该措施在Flanker范式的不一致任务条件下可以更好的加强被试的选择性注意并优化了认知控制(Dubreuil-Vall, Chau, Ruffini, Widge, & Camprodon, 2019)。顶叶皮质在认知控制任务中的活动往往晚于背侧前额叶皮质(Brass, Ullsperger, Knoesche, Cramon, & Phillips, 2005),负责认知控制中的自主注意力转移(包括内侧顶上小叶和上楔前叶),是另一个自上而下控制信号的关键来源(Esterman, Chiu, Tamber-Rosenau, & Yantis, 2009; Menon & D’Esposito, 2022)。

2.2. 认知控制相关的脑网络

近二十年,认知控制相关的神经机制研究逐渐将目光转向了对各脑区协同合作的模式,也就是对脑网络与脑连接的探讨,现代认知神经科学已经形成共识,人类的心理活动并不仅仅是各个脑区独立发挥作用形成的,高级认知加工过程往往需要不同脑区之间的相互作用进行支撑。该视角的研究集中在不同大脑区域之间的分布式认知处理,认为这些区域被组织成大规模的网络(Gratton, Sun, & Petersen, 2018),其组织特点是脑网络内的节点与节点之间共享着密集的相互连接,并具有同步的神经活动。

已有文献对认知控制相关的网络进行了整理与回顾,总结出了六个与认知控制功能紧密相关的脑网络,分别为额顶网络、扣盖网络、背侧注意网络、腹侧注意网络、突显网络和默认模式网络(Menon & D’Esposito, 2022)。认知控制功能通常被认为是由额顶网络(也被称为中央执行网络或执行控制网络)与扣盖网络进行支持,额顶网络包括部分外侧前额叶皮质(Lateral prefrontal cortex, lPFC)和后顶叶皮质(Posterior parietal cortex, PPC),并被认为是通过启动和调节认知控制能力来参与任务活动,主要负责调动认知控制的灵活性,仅在相对较短的时间尺度上灵活地调整认知控制过程;扣盖网络包括背侧扣带回(Dorsal cingulate gyrus, dCG)以及前侧脑岛(Anterior insula, AI),该网络主要在认知控制过程中发挥维持作用,负责稳定认知控制资源在任务上的配置(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008)。认知控制的调用需要注意力的集中,两注意网络也在这一过程中发挥了关键的作用,分别为背侧注意网络和腹侧注意网络。背侧注意网络(包含顶内沟和额眶部分)自上而下的对注意力资源进行分配,并选择性的注意某一项事物;腹侧注意网络(包含颞顶联合与腹侧额叶皮质)负责检测新异性刺激,是自下而上的过程(Corbetta & Shulman, 2002)。默认模式网络在认知控制过程中也尤为重要,该网络主要包括腹内侧前额叶皮质(Ventral medial prefrontal cortex, vmPFC)和后扣带回皮质(Posterior cingulate gyrus, PCC),相关研究已发现,默认模式网络是一种负性网络,通常在休息期间处于激活状态,而在进行认知活动期间处于抑制状态(Gusnard & Raichle, 2001),只有当默认模式网络被有效抑制后,才能顺利地完成某项任务。默认模式网络在任务期间的抑制不足,则往往与和任务目标无关的行为有关,比如自我参照功能、反刍等(Anticevic et al., 2012; Mason et al., 2007),这将导致个体注意力的不集中,也就是说,认知控制功能的成功调用离不开默认模式网络在任务过程中的抑制。突显网络包含AI和前侧扣带皮质(Anterior cingulate cortex, ACC)以及部分皮质下区域,与腹侧注意网络有部分重叠。以AI为核心节点的突显网络负责监测外部的突出信息。凸显网络决定其他脑网络对信息的反应,主要包括对默认模式网络与额顶网络进行切换,在任务状态时让额顶网络发挥认知控制作用,并要求默认模式网络抑制其活动,以协助目标导向任务(Chand & Dhamala, 2016; Molnar-Szakacs & Uddin, 2022; Nia et al., 2014)。在以上脑网络中,仅默认模式网络为任务消极网络(在任务活动中被抑制),其余脑网络均为任务积极网络(在任务活动中被激活)。

脑网络连接是动态变化的,一方面它通过形成内在紧密连接的局部网络来促进功能的分离,另一方面,它又通过网络枢纽促进局部网络之间的沟通,从而促进功能的整合(Sporns, 2013)。脑网络分离整合的平衡对维持认知功能十分关键。脑网络的整体整合程度越高,那么个体的总体认知能力越强,而晶体智力和处理速度与更高的网络分离度有关,而记忆则受益于网络分离和整合的平衡趋势(Wang et al., 2021)。研究已发现,在完成工作记忆任务时,个体的额顶网络与扣盖网络之间的整合变强,这意味着这两个脑网络进行动态重构以增加它们的网络间通信,这是成功的认知控制的基础(Cohen, Gallen, Jacobs, Lee, & D’Esposito, 2014)。Ray et al. (2020)使用图论分析(Graph theory)发现额顶网络、腹侧注意网络和视觉系统之间都表现出了认知控制的网络连接效应,显示额顶网络与腹侧注意网络在认知控制过程中的网络整合效应。简而言之,任务积极网络之间的整合可以更好地调动个体的认知控制能力。

通常地,默认模式网络与任务积极网络之间会呈现出显著的网络分离状态(脑网络连接呈负相关),并与认知控制功能相关联(Gopinath, Krishnamurthy, Cabanban, & Crosson, 2015; Medaglia et al., 2018; Parente & Colosimo, 2020)。并且在任务状态下,这些网络显示出了反相关的激活模式,并随着任务负荷的加重,该模式会变得更加明显(Douw, Wakeman, Tanaka, Liu, & Stufflebeam, 2016)。这一研究发现也符合前文所提到各网络的特点与功能。此外,一项研究通过使用经颅磁刺激(Transcranial magnetic stimulation, TMS)技术对额顶网络和突显网络的关键脑区分别实施了兴奋性与抑制性的刺激,发现当兴奋性重复TMS刺激作用于额顶网络时,会同时使额顶网络和突显网络与默认模式网络形成负相关的功能连接,而抑制性重复TMS刺激作用于相同网络节点时却导致默认模式网络的活动增强,更加说明额顶网络因果性地调节默认模式网络的活动,并保持默认模式网络与其自身以及突显网络之间的负耦合模式(Chen et al., 2013)。

总而言之,个体不仅依靠着单个脑区的激活来维持认知控制功能,还依赖于脑区与脑区之间通过功能连接形成的脑网络的组织形态来进行认知控制活动。以网络的视角对认知控制进行研究逐渐占据研究的主流,并揭示了大脑各脑区功能上的整合与分离对认知控制的意义。

3. 认知控制老化

目前,世界上的各个国家都在逐渐步入老龄化社会,这也让多数人越来越关心老龄化人口的身心健康问题。随着个体的衰老,其各领域的认知功能都会经历不同程度的下降,包括情景记忆、认知控制、逻辑推理等功能的减退。个体认知功能的衰退会严重影响老年人的心理健康与生活能力,从而大幅降低了个体晚年的生活质量。在这一部分,本研究将对认知控制老化这一主题进行讨论,并总结其已有的研究结果。

3.1. 认知老化理论

首先,本研究总结了近几十年所提出的认知老化理论以解释认知控制在老化过程中的衰退。相关的认知老化研究表明,老年人的认知能力大幅降低(Stemmler et al., 2013)。最早系统性地对认知老化进行报告的文献发表于1965年,在该研究中,年轻人和老年人都需要尽可能快地将卡片分类。根据不同实验条件下目标刺激类别的数量,被试需要将其分为2组或8组。此外,每张卡片都包含0、1、4或8个不相关的刺激,而老年人的分类时间更容易受到无关信息的影响,并且无关信息越多,其受到的影响越大(Rabbitt, 1965),而许多研究也报告了信息处理的速度(Myerson, Robertson, & Hale, 2007; Salthouse, 2000)、工作记忆系统的容量(Cappell, Gmeindl, & Reuter-Lorenz, 2010)、学习和回忆信息的能力(Old & Naveh-Benjamin, 2008)、推理过程的清晰度和效率(Viskontas, Morrison, Holyoak, Hummel, & Knowlton, 2004)、以及认知控制功能(Friedman, Nessler, Cycowicz, & Horton, 2009)显示出与年龄相关的健康成年人的下降。而至今为止,对于认知老化机制的阐述仍旧众说纷纭。为了了解认知的老化,研究者们提出了一系列相关的理论框架来解释这一现象。

一种观点认为,是老年人感觉器官的衰退导致了认知控制功能降低。一项研究对年龄在25~103岁之间的个体进行了横断面研究,以检查感觉功能(视觉和听觉敏锐度)和智力(14项认知任务)之间的关系,发现视力与听力随着年龄的增长逐渐衰退,并且其个体差异可以显著地预测智力随年龄的下降,同时年龄组的比较显示,从青年到老年,感觉和智力之间的关联显著增加(Baltes & Lindenberger, 1997)。因此,感觉功能和智力之间的年龄相关性的增加可能反映了大脑的认知老化,进而影响个体的认知控制功能。

另一观点则认为,个体老龄化限制了可用的认知资源:与年轻人相比,随着任务难度的增加,老年人会更快地耗尽认知资源,因此认知控制表现显著下降(Salthouse, 1988, 1990)。与年龄相关的工作记忆容量的变化,是个体认知控制老化的标志(Myerson, Emery, White, & Hale, 2003)。在简单的短期记忆任务中(只需要利用记忆的存储容量,例如数字广度),老年人受到的影响可以忽略不计;然而与年轻人相比,他们在需要额外认知控制能力的工作记忆任务(即需要个体同时存储和操作项目)中则表现不佳。

还有研究者认为,是个体认知加工速度减缓导致了认知功能下降(Salthouse, 1996)。该理论的核心假设是,年龄的增长与许多处理执行速度的降低有关,由于其有限的处理时间和同步处理多项信息的需求,这种加工速度的降低导致认知功能的损害。在部分研究中已证明,速度的各种测量方法被检验为年龄和不同类型记忆和认知的变量之间关系的潜在中介变量(Foong, Hamid, Ibrahim, & Haron, 2018)。尽管个人执行认知活动的速度不仅仅是该活动过程所需的所有功能,但该理论的提出者Salthouse依旧认为这是许多认知测量中成年人表现出认知年龄差异的主要原因。

综上所述,认知控制的降低可能是由于感觉器官的衰退、认知资源的缩减、以及加工速度的减缓。目前这几个理论都有相应的研究结果支撑,认知控制的老龄化降低可能是由这些因素的交互作用所造成的。

3.2. 认知控制老化的神经机制

老龄化会带来神经水平的变化,并影响个体的认知控制水平。在任务态磁共振成像研究中,已有研究发现,在老年人表现出更强的Stroop干扰效应的同时,其多个额叶脑区(尤其是额下回)的激活增强,表明为了帮助执行认知控制任务而进行了更努力地募集(Langenecker, Nielson, & Rao, 2004)。许多的研究报告,除了老年人有额外的激活区域之外,年轻人和健康老年人的激活基本上没有差异(Cabeza, 2002; DiGirolamo et al., 2001; Zysset, Schroeter, Neumann, & von Cramon, 2007)。但也有研究报告,认为尽管老年人与年轻人的激活区域相似,但老年人在这些区域的激活程度更低(Rypma & D’Esposito, 2000)。Prakash et al. (2009)比较了在Stroop任务中,随着难度的增加年轻人和老年人激活模式的差异。难度的增加伴随着年轻人激活的增加,但在老年人中,在任务基线时的激活强度相比年轻人已经增加,然而在难度增加后并没有显示出年轻人的激活增加模式,这种缺失在dlPFC脑区中尤其如此。也就是说,老年人的认知控制功能不再灵活,尽管在任务中显示出了补偿效应,但老年人仍然不能适应更高水平的冲突。

基于功能连接建立,有报告发现当个体进入老龄期时,随着年龄的增长,其静息态全脑功能连接逐渐减弱,这在75~79岁之间的老人群体上尤其明显。而高龄组(≥80岁)与其他组(60~79岁)相比,其功能连接略有增加,作者解释说这可能与脑功能的代偿机制有关(Farras-Permanyer et al., 2019)。在脑网络水平,在静息态与任务态中都有相关文献报告了默认模式网络在老年人群体中的异常。在静息态中,老年人的默认模式网络内连接往往会降低,而默认模式与其他神经网络之间的连接反而加强了(Betzel et al., 2014; Biswal et al., 2010; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Mak et al., 2017; Wu et al., 2011)。在任务态中,老年人也显示出对默认模式网络抑制作用的减弱,并导致了认知控制任务表现的下降(Grady, Springer, Hongwanishkul, McIntosh, & Winocur, 2006; Lustig et al., 2003; Persson, Lustig, Nelson, & Reuter-Lorenz, 2007),可见默认模式网络的连接改变是衰老带来的较典型的变化。此外,额顶网络在老年人的认知控制功能中也发挥着重要的作用,一研究在控制了各网络间的相关性后,发现额顶网络和认知控制之间显示出了显著的正相关,研究进一步分析发现,额顶网络中介了其他网络与认知控制的关系,表明该网络可能在理解衰老过程中认知的个体差异中发挥核心作用(Shaw, Schultz, Sperling, & Hedden, 2015)。

不管在任务期间还是静息期间,老年人都发生了与认知相关的脑网络的功能重组,一项研究在Oddball任务期间观察了老年人与年轻人的功能连接变化,与年轻人相比,老年人在属于同一功能网络的脑区之间的连接降低,特别是在默认模式网络和躯体运动网络中。此外,在所有已识别的网络中,老年人在这些网络内的区域与属于不同功能网络的区域之间的连接增加(Geerligs, Maurits, Renken, & Lorist, 2014),老龄化所带来的去分化的趋势在任务过程中也有所体现。一项纵向研究通过对老年人静息态脑成像的追踪,发现默认模式模式、额顶叶控制网络和腹侧注意网络的功能分离在4年间逐步下降,证明了老年人脑网络在功能上去分化的趋势,这是一种各脑网络之间的连接较少,而脑网络内连接较多的现象(Malagurski, Liem, Oschwald, Mérillat, & Jäncke, 2020)。有研究发现,网络去分化是衰老的一个重要神经标志(Archer, Lee, Qiu, & Chen, 2016; Damoiseaux, 2017; Ferreira et al., 2016),如前文所述,该现象也被认为与个体认知控制表现高低的有关联。

简而言之,老年人相比年轻人在神经层面发生了激活上与连接上、任务态与静息态的变化,并且这些变化,特别是默认模式网络与额顶网络,与老年人的认知控制表现的降低有紧密的关联。

4. 总结与展望

认知控制对个体来说是一种十分重要的高级认知功能,其衰退对老年人来说影响尤为重大。因此,深入了解认知控制功能的脑机制及其在衰老过程中的变化是十分必要的。本研究回顾了近几十年的认知控制相关的脑机制研究,并系统阐述了老年人神经水平的变化,总结发现,个体的前额叶皮质在认知控制中发挥了核心的作用,而各认知控制相关的脑网络之间的动态交互也支持着认知控制的活动,而前额叶在衰老中的损伤降低了老人的任务表现,且其脑网络也进行了功能上的重组。在后续研究中,应着重关注脑连接在认知控制中发挥的作用,因为认知不仅是各脑区的独立活动在支持,还包含了脑区间的信息传递。脑网络是一个大范围的大脑区域,而其网络内节点与其他脑区的交互值得被探讨。

文章引用

彭潘悦. 认知控制的脑机制及衰老对其脑机制的影响
Brain Mechanism of Cognitive Control and the Effects of Aging[J]. 心理学进展, 2023, 13(03): 1109-1117. https://doi.org/10.12677/AP.2023.133133

参考文献

  1. 1. Chand, G. B., & Dhamala, M. (2016). Interactions among the Brain Default-Mode, Salience, and Central-Executive Networks During Perceptual Decision-Making of Moving Dots. Brain Connect, 6, 249-254. https://doi.org/10.1089/brain.2015.0379

  2. 2. Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., & Etkin, A. (2013). Causal Interactions between Fronto-Parietal Central Executive and Default-Mode Networks in Humans. Proceedings of the National Academy of Sciences, 110, 19944-19949. https://doi.org/10.1073/pnas.1311772110

  3. 3. Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D'Esposito, M. (2014). Quantifying the Reconfiguration of Intrinsic Networks during Working Memory. PLOS ONE, 9, e106636. https://doi.org/10.1371/journal.pone.0106636

  4. 4. Corbetta, M., & Shulman, G. L. (2002). Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nature Reviews Neuroscience, 3, 201-215. https://doi.org/10.1038/nrn755

  5. 5. Damoiseaux, J. S. (2017). Effects of Aging on Functional and Structural Brain Connectivity. Neuroimage, 160, 32-40. https://doi.org/10.1016/j.neuroimage.2017.01.077

  6. 6. DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., & Webb, A. (2001). General and Task-Specific Frontal Lobe Recruitment in Older Adults during Executive Processes: A fMRI Investigation of Task-Switch- ing. Neuroreport, 12, 2065-2071. https://doi.org/10.1097/00001756-200107030-00054

  7. 7. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A Dual-Networks Architecture of Top-Down Control. Trends in Cognitive Sciences, 12, 99-105. https://doi.org/10.1016/j.tics.2008.01.001

  8. 8. Douw, L., Wakeman, D. G., Tanaka, N., Liu, H., & Stuf-flebeam, S. M. (2016). State-Dependent Variability of Dynamic Functional Connectivity between Frontoparietal and Default Networks Relates to Cognitive Flexibility. Neuroscience, 339, 12-21. https://doi.org/10.1016/j.neuroscience.2016.09.034

  9. 9. Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to the Left DLPFC Modulates Cognitive and Physiological Correlates of Executive Function in a State-Dependent Manner. Brain Stimulation, 12, 1456- 1463. https://doi.org/10.1016/j.brs.2019.06.006

  10. 10. Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J., & Yantis, S. (2009). Decoding Cognitive Control in Human Parietal Cortex. Proceedings of the National Academy of Sciences, 106, 17974-17979. https://doi.org/10.1073/pnas.0903593106

  11. 11. Farras-Permanyer, L., Mancho-Fora, N., Mon-talà-Flaquer, M., Bartrés-Faz, D., Vaqué-Alcázar, L., Peró-Cebollero, M., & Guàrdia-Olmos, J. (2019). Age-Related Changes in Resting-State Functional Connectivity in Older Adults. Neural Regeneration Research, 14, 1544. https://doi.org/10.4103/1673-5374.255976

  12. 12. Ferreira, L. K., Regina, A. C. B., Kovacevic, N., Martin, M. d. G. M., Santos, P. P., Carneiro, C. d. G., & Busatto, G. F. (2016). Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders. Cerebral Cortex, 26, 3851-3865. https://doi.org/10.1093/cercor/bhv190

  13. 13. Foong, H. F., Hamid, T. A., Ibrahim, R., & Haron, S. A. (2018). Information Processing Speed as a Mediator between Psychosocial Stress and Global Cognition in Older Adults. Psychogeriatrics, 18, 21-29. https://doi.org/10.1111/psyg.12279

  14. 14. Friedman, D., Nessler, D., Cycowicz, Y. M., & Horton, C. (2009). Development of and Change in Cognitive Control: A Comparison of Children, Young Adults, and Older Adults. Cognitive, Affective, & Behavioral Neuroscience, 9, 91-102. https://doi.org/10.3758/CABN.9.1.91

  15. 15. Friedman, N. P., & Robbins, T. W. (2022). The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 72-89. https://doi.org/10.1038/s41386-021-01132-0

  16. 16. Fuster, J. M. (1991). Behavioral Electrophysiology of the Prefrontal Cortex of the Primate. Progress in Brain Research, 85, 313-324. https://doi.org/10.1016/S0079-6123(08)62687-4

  17. 17. Geerligs, L., Maurits, N. M., Renken, R. J., & Lorist, M. M. (2014). Reduced Specificity of Functional Connectivity in the Aging Brain during Task Performance. Human Brain Mapping, 35, 319-330. https://doi.org/10.1002/hbm.22175

  18. 18. Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A Brain-Wide Study of Age-Related Changes in Functional Connectivity. Cerebral Cortex, 25, 1987-1999. https://doi.org/10.1093/cercor/bhu012

  19. 19. Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X.-J., & Krystal, J. H. (2012). The Role of Default Network Deactivation in Cognition and Disease. Trends in Cognitive Sciences, 16, 584-592. https://doi.org/10.1016/j.tics.2012.10.008

  20. 20. Gopinath, K., Krishnamurthy, V., Cabanban, R., & Crosson, B. A. (2015). Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture. Brain Connectivity, 5, 267-275. https://doi.org/10.1089/brain.2014.0323

  21. 21. Archer, J. A., Lee, A., Qiu, A., & Chen, S.-H. A. (2016). A Comprehensive Analysis of Connectivity and Aging over the Adult Life Span. Brain Connectivity, 6, 169-185. https://doi.org/10.1089/brain.2015.0345

  22. 22. Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-Related Changes in Brain Activity across the Adult Lifespan. Journal of Cognitive Neuroscience, 18, 227-241. https://doi.org/10.1162/jocn.2006.18.2.227

  23. 23. Baltes, P. B., & Lindenberger, U. (1997). Emergence of a Powerful Connection between Sensory and Cognitive Functions across the Adult Life Span: A New Window to the Study of Cognitive Aging? Psychology and Aging, 12, 12. https://doi.org/10.1037/0882-7974.12.1.12

  24. 24. Gratton, C., Sun, H., & Petersen, S. E. (2018). Control Networks and Hubs. Psychophysiology, 55, e13032. https://doi.org/10.1111/psyp.13032

  25. 25. Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in Structural and Functional Connectivity among Resting-State Networks across the Human Lifespan. Neuroimage, 102, 345-357. https://doi.org/10.1016/j.neuroimage.2014.07.067

  26. 26. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a Baseline: Functional Imaging and the Resting Human Brain. Nature Reviews Neuroscience, 2, 685-694. https://doi.org/10.1038/35094500

  27. 27. Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., & Colcombe, S. (2010). Toward Discovery Science of Human Brain Function. Proceedings of the National Academy of Sciences, 107, 4734-4739. https://doi.org/10.1073/pnas.0911855107

  28. 28. Langenecker, S. A., Nielson, K. A., & Rao, S. M. (2004). fMRI of Healthy Older Adults during Stroop Interference. Neuroimage, 21, 192-200. https://doi.org/10.1016/j.neuroimage.2003.08.027

  29. 29. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict Monitoring and Cognitive Control. Psychological Review, 108, 624. https://doi.org/10.1037/0033-295X.108.3.624

  30. 30. Brass, M., Ullsperger, M., Knoesche, T. R., Cramon, D. Y. V., & Phillips, N. A. (2005). Who Comes First? The Role of the Prefrontal and Parietal Cortex in Cognitive Control. Journal of Cognitive Neuroscience, 17, 1367-1375. https://doi.org/10.1162/0898929054985400

  31. 31. Lustig, C., Snyder, A. Z., Bhakta, M., O'Brien, K. C., McAvoy, M., Raichle, M. E., & Buckner, R. L. (2003). Functional Deactivations: Change with Age and Dementia of the Alzheimer Type. Proceedings of the National Academy of Sciences, 100, 14504-14509. https://doi.org/10.1073/pnas.2235925100

  32. 32. Braver, T. S. (2012). The Variable Nature of Cognitive Control: A Dual Mechanisms Framework. Trends in Cognitive Sciences, 16, 106-113. https://doi.org/10.1016/j.tics.2011.12.010

  33. 33. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288, 1835-1838. https://doi.org/10.1126/science.288.5472.1835

  34. 34. Cabeza, R. (2002). Hemispheric Asymmetry Reduction in Older Adults: The HAROLD Model. Psychology and Aging, 17, 85. https://doi.org/10.1037/0882-7974.17.1.85

  35. 35. Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The Default Mode Network in Healthy Individuals: A Systematic Review and Meta-Analysis. Brain Connect, 7, 25-33. https://doi.org/10.1089/brain.2016.0438

  36. 36. Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. (2020). Functional Dedifferentiation of Associative Resting State Networks in Older Adults—A Longitudinal Study. Neuroimage, 214, Article ID: 116680. https://doi.org/10.1016/j.neuroimage.2020.116680

  37. 37. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering Minds: The Default Network and Stimulus-Independent Thought. Science, 315, 393-395. https://doi.org/10.1126/science.1131295

  38. 38. Medaglia, J. D., Satterthwaite, T. D., Kelkar, A., Ciric, R., Moore, T. M., Ruparel, K., & Bassett, D. S. (2018). Brain State Expression and Transitions Are Related to Complex Executive Cognition in Normative Neurodevelopment. Neuroimage, 166, 293-306. https://doi.org/10.1016/j.neuroimage.2017.10.048

  39. 39. Menon, V., & D’Esposito, M. (2022). The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 90-103. https://doi.org/10.1038/s41386-021-01152-w

  40. 40. Molnar-Szakacs, I., & Uddin, L. Q. (2022). Anterior Insula as a Gatekeeper of Executive Control. Neuroscience & Biobehavioral Reviews, 139, Article ID: 104736. https://doi.org/10.1016/j.neubiorev.2022.104736

  41. 41. Myerson, J., Emery, L., White, D. A., & Hale, S. (2003). Effects of Age, Domain, and Processing Demands on Memory Span: Evidence for Differential Decline. Aging, Neuropsychology, and Cognition, 10, 20-27. https://doi.org/10.1076/anec.10.1.20.13454

  42. 42. Myerson, J., Robertson, S., & Hale, S. (2007). Aging and Intraindividual Variability in Performance: Analyses of Response Time Distributions. Journal of the Experimental Analysis of Behavior, 88, 319-337. https://doi.org/10.1901/jeab.2007.88-319

  43. 43. Nia, G., Aygul, K., Nicholas, J. D., Robert, M. B., Arun, L. B., Jonathan, P. M., & Paul, G. M. (2014). The Salience Network Is Responsible for Switching between the Default Mode Network and the Central Executive Network: Replication from DCM. Neuroimage, 99, 180-190. https://doi.org/10.1016/j.neuroimage.2014.05.052

  44. 44. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-Analytic Evidence for a Superordinate Cognitive Control Network Subserving Diverse Executive Functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241-268. https://doi.org/10.3758/s13415-011-0083-5

  45. 45. Old, S. R., & Naveh-Benjamin, M. (2008). Differential Effects of Age on Item and Associative Measures of Memory: A Meta-Analysis. Psychology and Aging, 23, 104. https://doi.org/10.1037/0882-7974.23.1.104

  46. 46. Parente, F., & Colosimo, A. (2020). Functional Connections between and within Brain Subnetworks under Resting-State. Scientific Reports, 10, Article No. 3438. https://doi.org/10.1038/s41598-020-60406-7

  47. 47. Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age Differences in Deactivation: A Link to Cognitive Control? Journal of Cognitive Neuroscience, 19, 1021-1032. https://doi.org/10.1162/jocn.2007.19.6.1021

  48. 48. Prakash, R. S., Erickson, K. I., Colcombe, S. J., Kim, J. S., Voss, M. W., & Kramer, A. F. (2009). Age-Related Differences in the Involvement of the Prefrontal Cortex in Attentional Control. Brain and Cognition, 71, 328-335. https://doi.org/10.1016/j.bandc.2009.07.005

  49. 49. Rabbitt, P. (1965). An Age-Decrement in the Ability to Ignore Irrelevant Information. Journal of Gerontology, 20, 233-238. https://doi.org/10.1093/geronj/20.2.233

  50. 50. Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age Differences in Prefontal Recruitment during Verbal Working Memory Maintenance Depend on Memory Load. Cortex, 46, 462-473. https://doi.org/10.1016/j.cortex.2009.11.009

  51. 51. Ray, K. L., Ragland, J. D., MacDonald, A. W., Gold, J. M., Silverstein, S. M., Barch, D. M., & Carter, C. S. (2020). Dynamic Reorganization of the Frontal Parietal Network during Cognitive Control and Episodic Memory. Cognitive, Affective, & Behavioral Neuroscience, 20, 76-90. https://doi.org/10.3758/s13415-019-00753-9

  52. 52. Rypma, B., & D’Esposito, M. (2000). Isolating the Neural Me-chanisms of Age-Related Changes in Human Working Memory. Nature Neuroscience, 3, 509-515. https://doi.org/10.1038/74889

  53. 53. Salthouse, T. A. (1988). The Role of Processing Resources in Cognitive Aging. In M. L. Howe, & C. J. Brainerd (Eds.), Cognitive Development in Adulthood: Progress in Cognitive Development Re-search (pp. 185-239). Springer. https://doi.org/10.1007/978-1-4612-3852-2_7

  54. 54. Salthouse, T. A. (1990). Working Memory as a Processing Resource in Cognitive Aging. Developmental Review, 10, 101-124. https://doi.org/10.1016/0273-2297(90)90006-P

  55. 55. Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. Psychological Review, 103, 403. https://doi.org/10.1037/0033-295X.103.3.403

  56. 56. Salthouse, T. A. (2000). Aging and Measures of Processing Speed. Biological Psychology, 54, 35-54. https://doi.org/10.1016/S0301-0511(00)00052-1

  57. 57. Shaw, E. E., Schultz, A. P., Sperling, R. A., & Hedden, T. (2015). Functional Connectivity in Multiple Cortical Networks Is Associated with Performance across Cognitive Domains in Older Adults. Brain Connectivity, 5, 505-516. https://doi.org/10.1089/brain.2014.0327

  58. 58. Sporns, O. (2013). Network Attributes for Segregation and Integration in the Human Brain. Current Opinion in Neurobiology, 23, 162-171. https://doi.org/10.1016/j.conb.2012.11.015

  59. 59. Stemmler, M., Petermann, F., Daseking, M., Siebert, J., Schott, H., Lehfeld, H., & Horn, R. (2013). The Assessment and Course of Development of Cognitive Abilities in the Elderly. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)), 75, 761-767. https://doi.org/10.1055/s-0033-1357164

  60. 60. Viskontas, I. V., Morrison, R. G., Holyoak, K. J., Hummel, J. E., & Knowlton, B. J. (2004). Relational Integration, Inhibition, and Analogical Reasoning in Older Adults. Psychology and Aging, 19, 581. https://doi.org/10.1037/0882-7974.19.4.581

  61. 61. Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., & Zhou, C. (2021). Segregation, Integration, and Balance of Large- Scale Resting Brain Networks Configure Different Cognitive Abilities. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022288118. https://doi.org/10.1073/pnas.2022288118

  62. 62. Wu, J. T., Wu, H. Z., Yan, C. G., Chen, W. X., Zhang, H. Y., He, Y., & Yang, H. S. (2011). Aging-Related Changes in the Default Mode Network and Its Anti-Correlated Networks: A Resting-State fMRI Study. Neuroscience Letters, 504, 62-67. https://doi.org/10.1016/j.neulet.2011.08.059

  63. 63. Zysset, S., Schroeter, M. L., Neumann, J., & von Cramon, D. Y. (2007). Stroop Interference, Hemodynamic Response and Aging: An Event-Related fMRI Study. Neurobiology of Aging, 28, 937-946. https://doi.org/10.1016/j.neurobiolaging.2006.05.008

期刊菜单