Advances in Clinical Medicine
Vol.07 No.01(2017), Article ID:20098,10 pages
10.12677/ACM.2017.71006

OSAHS: Another Independent Risk Factor of Type 2 Diabetes

Qingliu Shi1, Xianwei Ye2*, Dan Li2, Dan Zhao2, Yuanqin Zhao2, Chunhong Peng2, Xiangyan Zhang2

1Guizhou Medical University, Guiyang Guizhou

2Institute of Respiratory Disease, The Guizhou Provincial People’s Hospital, Guiyang Guizhou

Received: Mar. 19th, 2017; accepted: Mar. 28th, 2017; published: Mar. 31st, 2017

ABSTRACT

Obstructive Sleep Apnoea-Hypopnea Syndrome (OSAHS) is a highly prevalent respiratory disorder which can lead to multiple complications and contribute to high morbidity and mortality of cardiovascular disease and high risk of traffic accident. It has aggressively affected the public health and aroused increasing concern in respiratory medicine recently. Current evidence supports an independent association between OSAHS and insulin resistance, glucose intolerance and the risk of type 2 diabetes, independent of obesity. Additionally, OSAHS often leads to worse glycaemic control in diabetics. Efficient CPAP therapy can benefit OSAHS patients with impaired glucose metabolism. In conclusion, diabetics or patients with high risk of diabetes should be routinely screened for early diagnosis, early intervention and individualized treatment for OSAHS.

Keywords:Obstructive Sleep Apnoea-Hypopnea Syndrome, Type 2 Diabetes, Insulin Resistance

OSAHS:2型糖尿病的另一独立危险因素

石庆柳1,叶贤伟2*,李丹2,赵丹2,赵远琴2,彭春红2,张湘燕2

1贵州医科大学,贵州 贵阳

2贵州省人们医院,贵州省呼吸疾病研究所,贵州 贵阳

收稿日期:2017年3月19日;录用日期:2017年3月28日;发布日期:2017年3月31日

摘 要

OSAHS是一种常见的睡眠呼吸疾患,可导致多系统并发症,增加心血管疾病发病率及死亡率,严重影响患者健康,甚至引起交通安全隐患,近年来成为呼吸医学界关注的新焦点。大量研究证明OSAHS是2型糖尿病、胰岛素抵抗的独立危险因素。合并OSAHS的2型糖尿病患者血糖控制往往疗效欠佳。有效的持续正压通气治疗(CPAP)在一定程度上能够使OSAHS合并糖代谢紊乱的患者获益。故,糖尿病或糖尿病高风险患者应常规行OSAHS筛查,以便早期诊断、早期干预及个体化治疗。

关键词 :阻塞性睡眠呼吸暂停低通气综合征,2型糖尿病,胰岛素抵抗

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

睡眠呼吸暂停低通气综合征(OSAHS)是睡眠时反复出现上气道塌陷从而引起一系列病理生理紊乱的一种睡眠呼吸疾病,常增加心血管并发症的发病率及死亡率 [1] 。西方报道OSAHS在中年人的发病率为男性4%~9%,女性1%~2%,患病率为男性24%、女性9% [2] ;我国人群OSAHS发病率为3.5%~9.6% [3] ,而肥胖男性的患病率高达33%~77%,女性为11%~46% [4] 。2007年~2008年中国糖尿病协会调查结果表明,20岁以上成人糖尿病患病率达9.7%,尽管有越来越多的药物选择及有效的生活方式干预,但糖尿病造成的社会负担仍是非常巨大的,且其心脑血管并发症致残率高,成为目前一大公共卫生问题。流行病学研究显示,OSHAS与2型糖尿病密切相关,且独立于肥胖、家族史等危险因素 [5] [6] 。OSAHS影响糖尿病发生发展的整个过程。本文就OSAHS与糖尿病关系进行综述。

2. OSAHS与糖尿病前期

糖尿病前期是指血糖增高尚未达到糖尿病诊断标准的糖代谢紊乱状态,通常指空腹血糖受损或糖耐量异常。横断面研究表明OSAHS与糖耐量受损、胰岛素抵抗有关,OSAHS患者糖尿病前期发生率明显高于非OSAHS患者 [1] [7] 。一项队列研究提示OSAHS患者平均夜间血氧饱和度与胰岛素抵抗独立相关,OSAHS是胰岛素抵抗的独立预测因子 [8] 。另一项纳入2500名患者的大样本研究提示,校正年龄、性别、种族、BMI、腹围等的影响后OSAHS患者糖耐量异常及空腹血糖受损发生率较非OSAHS患者明显增高 [9] 。Punjabi等人研究显示在校正性别、年龄、种族、体脂百分比等混杂因素后,对比非OSAHS患者,轻、中、重度OSAHS组胰岛素敏感性分别下降26.7%、36.5%、43.7% [10] 。

3. OSAHS与2型糖尿病

2型糖尿病患者中OSAHS的患病率可达18%~77%,而OSAHS患者中糖尿病的患病率高达32.9% [6] [11] [12] ,远高于一般人群糖尿病的患病率。多项纵向队列研究均发现OSAHS可增加糖尿病发生的整体风险,特别是在中重度OSAHS更明显 [13] [14] 。国内有人对6个前瞻性队列研究跟踪2.7~16年后进行荟萃分析结果提示OSAHS患者糖尿病发病率约为5.6%,中重度OSAHS患者糖尿病发病率较非OSAHS增加63% [6] 。2010年Aronsohn等人随机从门诊抽取的60名糖尿病进行标准多导睡眠监测(PSG)后发现OSAHS患病率高达77%,在消除混杂因素影响后,睡眠呼吸暂停低通气指数(AHI)、快速动眼睡眠期AHI及氧减指数均与糖化血红蛋白(HbA1c)明显正相关 [12] ,且随着OSAHS病情加重HbA1c明显升高,提示OSAHS通过夜间间歇低氧显著影响血糖稳态,且间歇低氧越严重血糖波动越大。法国一项多中心横断面研究纳入762名患者,其中497名为既往即已诊断2型糖尿病且已接受药物治疗,另外265名患者为新诊断的未治疗患者,通过多元回归分析糖尿病治疗组及新近糖尿病未治疗组患者OSAHS严重程度与糖化血红蛋白的关系,新诊断未治疗患者HbA1c与AHI和氧减指数正相关,且随着病情程度加重,HbA1c升高;但在糖尿病治疗组,HbA1c与年龄、代谢异常及胰岛素的使用相关,与OSAHS病情严重程度无明显关系 [15] ,提示OSAHS对新诊断未治疗的2型糖尿病的血糖控制影响更明显,而当进行药物或胰岛素干预治疗后,这种影响可能会被抵消。

4. OSAHS增加2型糖尿病并发症风险

OSAHS通过间歇低氧、高二氧化碳血症、微觉醒导致交感神经兴奋及氧化应激,进而引起NO等舒张血管活性物质合成减少、促炎因子释放、血液高凝状态等介导血管内皮损伤 [16] [17] ,增加2型糖尿病患者心脑血管并发症风险 [18] 。另有研究显示OSAHS可加重2型糖尿病患者的肾脏损害 [19] [20] ,甚至OSAHS严重程度与糖尿病肾病风险正相关 [21] 。OSAHS亦可加重糖尿病患者周围神经病变、视网膜病变及黄斑病变 [22] [23] [24] 。

5. OSAHS影响糖代谢的机制

OSAHS引起糖代谢紊乱的具体机制尚未阐明,但有大量临床及相关动物实验提示OSAHS主要通过间歇低氧(IH)及睡眠片段化引发交感神经兴奋性增强、氧化应激、下丘脑-垂体-肾上腺功能失调、全身炎症反应、脂肪细胞因子改变等病理生理紊乱介导胰岛细胞功能损伤、胰岛素抵抗进而影响糖代谢。

Louis 和Punjabi [25] 在健康成年人做常氧和间歇低氧实验对比,每日24次的间歇低氧模拟中度OSAHS,OGTT实验结果显示胰岛素敏感性和高糖反应下降(血糖升高所致肝脏糖异生减少及组织糖摄取增加),心率变异率增加提示交感神经兴奋性增强,但胰腺的胰岛素分泌和血清皮质醇水平保持不变。动物模型试验提示间歇性低氧可降低胰岛素敏感性,使胰岛素稳态模型参数升高 [26] [27] 。另外间歇性低氧亦可以直接影响肝细胞,导致非酒精性脂肪肝 [28] ,引起肝糖原增加及糖异生活跃 [26] 。睡眠片段化或睡眠剥夺亦可影响糖代谢,睡眠片段化啮齿动物模型显示睡眠紊乱通过增加炎症、氧化应激、血清激素水平而导致肥胖、胰岛素抵抗及高血糖 [27] 。健康成年人予人工睡眠片段化及减少慢波睡眠干预后可出现胰岛素敏感性下降 [29] [30] ,对于OSAHS及2型糖尿病患者,睡眠片段化同样的会影响血糖稳态 [31] [32] 。

(一) IH通过氧化应激直接影响胰岛细胞功能

氧化应激可直接导致胰岛细胞凋亡,抗氧化剂对IH暴露的胰岛细胞有一定保护作用 [33] 。小鼠实验观察到短时间IH暴露可导致胰腺β细胞增殖和凋亡并存,抗氧化剂可逆转IH引起的β细胞凋亡,但对细胞增殖无明显影响 [34] [35] 。芝加哥大学一项研究提示,小鼠CIH暴露30天(5% O25秒/常氧5分钟,8小时/天),可导致空腹胰岛素水平明显增加、胰岛素抵抗,胰岛β细胞胰岛素储备明显下降,血糖刺激的胰岛细胞分泌功能受损,胰岛素原转化酶-1表达下调,胰岛素原转化率降低,同时观察到胰岛细胞线粒体活性氧生成明显增加,而抗氧化剂处理可逆转空腹胰岛素升高、胰岛素抵抗及胰岛素原转化障碍,但CIH对血糖无明显影响,胰岛细胞形态学亦无明显改变,提示CIH通过线粒体氧化应激产生活性氧直接影响胰岛β细胞,引起胰岛细胞基础胰岛素分泌增强、胰岛素抵抗、胰岛素转化障碍,并损害胰岛细胞对血糖的反应,但由于存在代偿性基础胰岛素分泌增强,血糖尚可维持在正常水平 [36] 。另有研究显示短时间IH暴露可诱导胰岛细胞代偿性增殖以抵抗胰岛素抵抗、维持血糖稳态,这种效应可持续4至8周,而随着时间延长,CIH将引起胰岛细胞凋亡,最终导致胰岛细胞功能障碍,而同时存在高糖状态时可增加胰岛细胞对低氧的敏感性,使胰岛细胞凋亡进一步加重 [37] [38] 。

(二) 全身炎症反应激活

大量临床研究及动物实验均显示OSAHS或间歇性低氧可通过激活NF-κB上调 TNF-α、IL-6、IL-1等炎性因子表达,且有研究提示炎症因子水平升高与病情严重程度相关 [39] [40] [41] ,经CPAP治疗后上调的NF-κB及其下游炎症因子显著下降 [39] [41] 。间歇低氧处理的脂肪细胞及大鼠IL-6及TNF-α的水平较持续缺氧组明显升高,重度间歇缺氧组最高,与缺氧程度呈剂量依赖性关系 [42] 。TNF-α具有强烈的脂解作用,并可刺激瘦素分泌,导致明显的胰岛素抵抗 [43] 。有研究提示TNF-α可能通过下调肌肉组织胰岛素介导的胰岛素受体(IR)磷酸化而介导胰岛素抵抗 [44] ,但TNF-α对肌肉胰岛素信号的调节是直接作用于胰岛素信号通路还是通过游离脂肪酸(FFA)等代谢产物进行调节尚不可知,因为该研究结果提示TNF-α增高亦伴随有FFA明显增高,FFA暴露后胰岛素结合及胰岛素受体的内化可能会减少,但胰岛素受体激酶却不受影响 [45] [46] ,同时该研究也观察到TNF-α抑制剂处理后可逆转胰岛素介导的肝脏葡萄糖输出减少,但其对肝脏葡萄糖代谢的影响却不是通过胰岛素受体激酶,故认为TNF-α可能是通过影响其下游的信号通路或刺激脂解作用产生FAA进而影响肝脏糖代谢。IL-6在胰岛素抵抗中同样发挥重要的作用,血浆中IL-6的升高与肥胖和糖尿病的发病率呈正相关,同时IL-6在多种组织(如肝脏、肌肉、脂肪组织、大脑等)中对血糖代谢发挥着交互作用 [47] [48] 。美国一项临床研究显示,在血糖异常的对象中,OSAHS患者夜间反复低氧程度与IL-6密切相关,而在血糖正常对象中,反复夜间低氧仅仅与TNF-α相关,且这两种炎症因子在个体内存在相互联系,这表现在IL-6/TNF-α比值与夜间低氧严重程度亦呈相关性 [49] [50] ,这提示上述两种细胞因子之间可能存在某种相互调控机制。JNK通路是MAPK家族成员之一,是氧化应激重要信号通路,在2型糖尿病胰岛素抵抗中发挥重要作用,可通过IKK(IκB激酶)与NF-κB通路互相联系。有研究提示IL-6、TNF-α可能通过JNK和NF-κB途径激活信号级联反应,从而介导氧化应激及炎症的病理生理过程,进而影响胰岛素信号转导及糖代谢,其中IKK甚至可直接磷酸化胰岛素受体底物-1(IRS-1),因构象变化而干扰胰岛素作用下的酪氨酸磷酸化, 从而阻断下游PI3K 信号途径引起胰岛素抵抗 [51] [52] [53] 。另有研究提示CIH可直接激活ERK、JNK、P38等MAPK家族成员导致炎症反应、干扰胰腺胰岛素分泌、导致胰岛细胞损伤及凋亡 [54] 。

(三) 脂肪细胞因子改变

学者普遍认为脂肪组织分泌的脂肪细胞因子被认为是代谢综合征、2型糖尿病、心血管疾病的重要致病因子 [55] [56] 。脂肪组织也受可到IH影响,IH可导致脂联素(一种胰岛素增敏剂)下调、抵抗素及瘦素上调 [57] [58] 。

瘦素在下丘脑核、炎症及内皮系统起调节作用 [59] ,可下调胰腺胰岛素基因的表达及胰岛素分泌,在外周组织促进糖摄取 [60] ,可作为促炎因子调节IL-6、TNF-α,同时本身亦受促炎因子的调节 [61] ,通常在肥胖患者体内明显增高,但有研究显示OSAHS患者体内瘦素水平亦明显增高,且经CPAP治疗后显著下降 [62] 。人体脂肪组织体外实验及大鼠实验提示瘦素升高水平与间歇缺氧的时间呈剂量依赖关系,可导致空腹胰岛素增高及糖耐量受损 [42] ,且经CPAP治疗后可下降 [63] ,但也有实验提示持续缺氧处理比间歇缺氧升高更明显 [64] ,甚至短时间间歇缺氧处理瘦素水平可轻度下降的报道 [65] 。瘦素受低氧诱导因子-1(HIF-1)调节,瘦素增高可能伴随HIF-1升高,作为IH引起的系统性炎症反应的适应性反应过程 [66] 。国内有人进行脂肪细胞体外实验提示亦提示间歇缺氧暴露可导致瘦素上调、脂联素下调,同时伴有HIF-1α和Glut-1表达升高,提示HIF-1α和Glut-1亦可能是引起OSAHS患者血糖升高及胰岛素抵抗的机制之一 [38] [42] 。

脂联素是一种不具有促炎作用的脂肪细胞因子,反而具有抗炎作用和胰岛素增敏作用 [56] ,是调节能量平衡、血糖和血脂代谢的重要因子 [67] ,其通过增加骨骼肌对游离脂肪酸的氧化而降低循环游离脂肪酸水平及骨骼肌甘油三酯水平,从而改善胰岛素敏感性和胰岛素抵抗,另外脂联素可抑制单核细胞活性及巨噬细胞吞噬活性,抑制巨噬细胞产生TNF-α、抑制NF-κB及其下游炎症因子的产生,还可以促进抗炎因子IL-10的产生,反过来氧化应激、TNF-α、IL-6抑制脂联素的生成 [61] [68] 。OSAHS患者血清脂联素水平有争议,有人观察到重度OSAHS患者血清脂联素水平受抑制,且独立于肥胖的影响 [42] [69] ,经过2-3个月CPAP治疗后血清脂联素水平明显升高 [70] 。但也有观察到OSAHS患者血清脂联素水平较非OSAHS高 [71] 。Kanbay等人的研究提示排除肥胖的影响后OSAHS患者血清脂联素下降、TNF-α明显增高,血清脂联素水平与AHI、TNF-α呈负相关,并认为脂联素下调可能是OSAHS患者发生心血管并发症及代谢紊乱的重要机制 [57] 。OSAHS患者脂联素水平下降的可能原因是间歇性低氧抑制组蛋白去乙酰化酶3(HDAC3)转位进入细胞核,从而抑制过氧化物酶体增殖物激活受体γ(PPAR-γ)依赖的信号通路,PPAR-γ是脂联素合成的重要转录调节因子,可被TNF-α抑制,PPAR-γ受抑制后脂联素的合成和分泌将减少 [72] 。

(四) 下丘脑-垂体-肾上腺轴激活及交感神经兴奋增强

IH可引起下丘脑-垂体-肾上腺轴激活 [27] [37] ,导致糖皮质激素释放,糖皮质激素通过增加脂肪分解、抑制胰岛素依赖的Glut-4向肌肉细胞表面易位、抑制肌肉糖摄取及糖原合成和增加糖异生诱导胰岛素抵抗 [73] [74] 。在动物实验和人体内均可观察到IH可激活交感神经 [75] [76] ,交感神经兴奋后可刺激脂解作用,导致FFA生成增多,而FFA通过干扰骨骼肌胰岛素信号通路进而减少全身骨骼肌血糖摄取 [73] ;此外IH诱导的交感神经兴奋所释放的儿茶酚胺可直接刺激肝脏糖原动员、抑制肌肉的葡萄糖摄取、刺激胰高血糖素分泌、抑制胰岛素分泌,并增加肝脏中的糖异生作用。

6. CPAP治疗对OSAHS患者糖代谢的影响

OSAHS治疗措施包括睡眠及生活习惯改变、体重控制、手术及CPAP治疗等,有研究显示药物或手术控制体重均可显著改善OSAHS的血糖水平,2型糖尿病患者生活习惯改变诱导体重下降也可显著改善OSAHS病情 [77] [78] 。近年鼻、咽喉、颌面部手术及正畸治疗运用越来越广泛,但CPAP仍然是OSAHS治疗的首选措施。有研究提示对OSAHS合并糖尿病前期患者,无论是否合并肥胖,CPAP治疗均可改善血糖稳态 [79] [80] ,并可显著改善OGTT实验的胰岛素敏感性 [81] [82] ,降低24小时血压水平 [79] ,与另一针对非糖尿病患者的荟萃分析结果CPAP治疗显著改善胰岛素稳态模型参数结果类似 [83] 。Guest等人的研究显示CPAP治疗5年后HbA1C明显下降 [84] 。然而亦有研究提示经过三个月每晚6.6小时的CPAP治疗胰岛素敏感性并无明显改善,CPAP治疗2年后HbA1C水平无明显下降 [85] 。虽然相对于口服降糖药物或胰岛素应用来说,CPAP治疗对糖代谢紊乱的改善效果可能没那么显著,但从目前相关临床实验数据看还是有一定的临床意义,且对于依从性好、中重度患者、合并肥胖、糖尿病前期及血糖控制差患者效果更显著,有望在治疗3月后显效 [80] [86] 。

总之,OSAHS患者2型糖尿病发病率明显高于普通人群,是胰岛素抵抗的独立危险因素,目前OSAHS发生糖代谢紊乱的机制尚未完全阐明,有待进一步深入研究。OSAHS可增加糖尿病心脑血管病变、肾脏损害、糖尿病视网膜病变等并发症的整体风险,影响糖尿病药物治疗效果。有效的CPAP治疗可在一定程度上使OSAHS合并糖代谢紊乱患者获益,故对于合并2型糖尿病或糖尿病发生风险高的患者应针对OSAHS进行早期诊断及干预,并实施个体优化治疗。

基金项目

贵州省优秀科技教育人才省长专项资金项目,黔省专合字(2012)14号;贵州省科技合作计划项目,黔科合LH字[2015]7127号;贵州省科技支撑计划社会发展公关项目,黔科合SY字[2009]3055。

文章引用

石庆柳,叶贤伟,李 丹,赵 丹,赵远琴,彭春红,张湘燕. OSAHS:2型糖尿病的另一独立危险因素
OSAHS: Another Independent Risk Factor of Type 2 Diabetes[J]. 临床医学进展, 2017, 07(01): 30-39. http://dx.doi.org/10.12677/ACM.2017.71006

参考文献 (References)

  1. 1. Morgenstern, M., Wang, J., Beatty, N., Batemarco, T., Sica, A.L. and Greenberg, H. (2014) Obstructive Sleep Apnea: An Unexpected Cause of Insulin Resistance and Diabetes. Diabetes Mellitus. Associated Conditions Endocrinology and Metabolism Clinics of North America, 43, 187-204.

  2. 2. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S. and Badr, S. (1993) The Occurrence of Sleep-Disordered Breathing among Middle-Aged Adults. The New England Journal of Medicine, 328, 1230-1235. https://doi.org/10.1056/NEJM199304293281704

  3. 3. 魏永祥, 付春华, 杨非衡, 肖明明, 林莎. 北京市朝阳区成人打鼾及阻塞性睡眠呼吸暂停低通气综合征流行病学调查[J]. 中国医药导报, 2013, 10(27): 108-111.

  4. 4. Young, T., Peppard, P.E. and Taheri, S. (2005) Excess Weight and Sleep-Disordered Breathing. Journal of Applied Physiology, 99, 1592-1599.

  5. 5. Rajan, P. and Greenberg, H. (2015) Obstructive Sleep Apnea as a Risk Factor for Type 2 Diabetes Mellitus. Nature and Science of Sleep, 7, 113-125.

  6. 6. Wang, X., Bi, Y., Zhang, Q. and Pan, F. (2013) Obstructive Sleep Apnoea and the Risk of Type 2 Diabetes: A Meta-Analysis of Prospective Cohort Studies. Respirology, 18, 140-146. https://doi.org/10.1111/j.1440-1843.2012.02267.x

  7. 7. Araújo, L.S., Fernandes, J.F.R., Klein, M.R.S.T. and Sanjuliani, A.F. (2015) Obstructive Sleep Apnea Is Independently Associated with Inflammation and Insulin Resistance, But Not with Blood Pressure, Plasma Catecholamines, and Endothelial Function in Obese Subjects. Nutrition, 31, 1351-1357.

  8. 8. Borel, A., Monneret, D., Tamisier, R., et al. (2013) The Severity of Nocturnal Hypoxia But Not Abdominal Adiposity Is Associated with Insulin Resistance in Non-Obese Men with Sleep Apnea. PLoS ONE, 8, e71000. https://doi.org/10.1371/journal.pone.0071000

  9. 9. Seicean, S., Kirchner, H.L., Gottlieb, D.J., et al. (2008) Sleep-Disordered Breathing and Impaired Glucose Metabolism in Normal-Weight and Overweight/Obese Individuals: The Sleep Heart Health Study. Diabetes Care, 31, 1001-1006. https://doi.org/10.2337/dc07-2003

  10. 10. Punjabi, N.M. and Beamer, B.A. (2009) Alterations in Glucose Disposal in Sleep-Disordered Breathing. American Journal of Respiratory and Critical Care Medicine, 179, 235-240. https://doi.org/10.1164/rccm.200809-1392OC

  11. 11. Sharafkhaneh, A., Richardson, P. and Hirshkowitz, M. (2004) Sleep Apnea in a High Risk Population: A Study of Veterans Health Administration Beneficiaries. Sleep Medicine, 5, 345-350.

  12. 12. Aronsohn, R.S., Whitmore, H., Van Cauter, E. and Tasali, E. (2010) Impact of Untreated Obstructive Sleep Apnea on Glucose Control in Type 2 Diabetes. American Journal of Respiratory and Critical Care Medicine, 181, 507-513. https://doi.org/10.1164/rccm.200909-1423OC

  13. 13. Botros, N., Concato, J., Mohsenin, V., Selim, B., Doctor, K. and Yaggi, K. (2009) Obstructive Sleep Apnea as a Risk Factor for Type II Diabetes. American Journal of Medicine, 122, 1122-1127.

  14. 14. Celen, Y.T., Hedner, J., Carlson, J. and Peker, Y. (2010) Impact of Gender on Incident Diabetes Mellitus in Obstructive Sleep Apnea: A 16-Year Follow-Up. Journal of Clinical Sleep Medicine: Official Publication of the American Academy of Sleep Medicine, 6, 244-250.

  15. 15. Priou, P., Le Vaillant, M., Meslier, N., et al. (2015) Association between Obstructive Sleep Apnea Severity and Glucose Control in Patients with Untreated versus Treated Diabetes. Journal of Sleep Research, 24, 425-431. https://doi.org/10.1111/jsr.12278

  16. 16. Drager, L.F., Polotsky, V.Y. and Lorenzi-Filho, G. (2011) Obstructive Sleep Apnea: An Emerging Risk Factor for Atherosclerosis. Chest, 140, 534-542. https://doi.org/10.1378/chest.10-2223

  17. 17. Eisele, H., Markart, P. and Schulz, R. (2015) Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 608438.

  18. 18. Rice, T.B., Foster, G.D., Sanders, M.H., et al. (2012) The Relationship between Obstructive Sleep Apnea and Self-Reported Stroke or Coronary Heart Disease in Overweight and Obese Adults with Type 2 Diabetes Mellitus. Sleep, 35, 1293-1298. https://doi.org/10.5665/sleep.2090

  19. 19. Leong, W.B., Nolen, M., Thomas, G.N., Adab, P., Banerjee, D. and Taheri, S. (2014) The Impact of Hypoxemia on Nephropathy in Extremely Obese Patients with Type 2 Diabetes Mellitus. Journal of Clinical Sleep Medicine, 10, 773- 778.

  20. 20. Ozkok, A., Kanbay, A., Odabas, A.R., Covic, A. and Kanbay, M. (2014) Obstructive Sleep Apnea Syndrome and Chronic Kidney Disease: A New Cardiorenal Risk Factor. Clinical and Experimental Hypertension, 36, 211-216. https://doi.org/10.3109/10641963.2013.804546

  21. 21. Leong, W.B., Jadhakhan, F., Taheri, S., Thomas, G.N. and Adab, P. (2016) The Association between Obstructive Sleep Apnea on Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Sleep, 39, 301-308. https://doi.org/10.5665/sleep.5432

  22. 22. Tahrani, A.A., Ali, A., Raymond, N.T., et al. (2012) Obstructive Sleep Apnea and Diabetic Neuropathy: A Novel Association in Patients with Type 2 Diabetes. American Journal of Respira-tory and Critical Care Medicine, 186, 434-441. https://doi.org/10.1164/rccm.201112-2135OC

  23. 23. Tahrani, A.A., Ali, A., Raymond, N.T., et al. (2013) Obstruc-tive Sleep Apnea and Diabetic Nephropathy: A Cohort Study. Diabetes Care, 36, 3718-3725. https://doi.org/10.2337/dc13-0450

  24. 24. Baba, A., Zbiba, W., Bouayed, E., Korbi, M. and Ghrairi, H. (2016) Ob-structive Sleep Apnea Syndrome. Is It a Risk Factor for Diabetic Retinopathy? Journal Francais D Ophtalmologie, 39, 139-142.

  25. 25. Louis, M. and Punjabi, N.M. (2009) Effects of Acute Intermittent Hypoxia on Glucose Metabolism in Awake Healthy Volunteers. Journal of Applied Physiology, 106, 1538-1544.

  26. 26. Polak, J., Shimoda, L.A., Drager, L.F., et al. (2013) Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure. Sleep, 36, 1483-1490. https://doi.org/10.5665/sleep.3040

  27. 27. Lesser, D.J., Bhatia, R., Tran, W.H., et al. (2012) Sleep Fragmentation and Intermittent Hypoxemia Are Associated with Decreased Insulin Sensitivity in Obese Adolescent Latino Males. Pediatric Research, 72, 293-298. https://doi.org/10.1038/pr.2012.73

  28. 28. Cakmak, E., Duksal, F., Altinkaya, E., et al. (2015) Association between the Severity of Nocturnal Hypoxia in Obstructive Sleep Apnea and Non-Alcoholic Fatty Liver Damage. Hepatitis Monthly, 15, e32655. https://doi.org/10.5812/hepatmon.32655

  29. 29. Stamatakis, K.A. and Punjabi, N.M. (2010) Effects of Sleep Frag-mentation on Glucose Metabolism in Normal Subjects. Chest, 137, 95-101. https://doi.org/10.1378/chest.09-0791

  30. 30. Tasali, E., Leproult, R., Ehrmann, D.A. and Van Cauter, E. (2008) Slow-Wave Sleep and the Risk of Type 2 Diabetes in Humans. Proceedings of the National Academy of Sciences, 105, 1044-1049. https://doi.org/10.1073/pnas.0706446105

  31. 31. Pogach, M.S., Punjabi, N.M., Thomas, N. and Thomas, R.J. (2012) Electrocardiogram-Based Sleep Spectrogram Measures of Sleep Stability and Glucose Disposal in Sleep Disordered Breathing. Sleep, 35, 139-148. https://doi.org/10.5665/sleep.1604

  32. 32. Knutson, K.L., Van Cauter, E., Zee, P., Liu, K. and Lauderdale, D.S. (2011) Cross-Sectional Associations between Measures of Sleep and Markers of Glucose Metabolism among Subjects with and without Diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care, 34, 1171-1176. https://doi.org/10.2337/dc10-1962

  33. 33. Fang, Y., Zhang, Q., Tan, J., Li, L., An, X. and Lei, P. (2014) Intermittent Hypoxia-Induced Rat Pancreatic β-Cell Apoptosis and Protective Effects of Antioxidant Intervention. Nutrition & Di-abetes, 4, e131. https://doi.org/10.1038/nutd.2014.28

  34. 34. Xu, J., Long, Y., Gozal, D. and Epstein, P.N. (2009) Beta-Cell Death and Proliferation after Intermittent Hypoxia: Role of Oxidative Stress. Free Radical Biology & Medicine, 46, 783-790.

  35. 35. Ota, H., Itaya-Hironaka, A., Yamauchi, A., et al. (2013) Pancreatic β Cell Proliferation by Intermittent Hypoxia via Up-Regulation of Reg Family Genes and HGF Gene. Life Sciences, 93, 664-672.

  36. 36. Wang, N., Khan, S.A., Prabhakar, N.R. and Nanduri, J. (2013) Impaired Pancreatic Beta Cell Function by Chronic Intermittent Hypoxia. Experimental Physiology, 98, 1376-1385. https://doi.org/10.1113/expphysiol.2013.072454

  37. 37. Sherwani, S.I., Aldana, C., Usmani, S., et al. (2013) Intermittent Hypoxia Exacerbates Pancreatic β-Cell Dysfunction in a Mouse Model of Diabetes Mellitus. Sleep, 36, 1849-1858.

  38. 38. Gu, C., Li, M., Li, Q. and Li, N. (2013) Chronic Intermittent Hypoxia Increases β Cell Mass and Activates the Mammalian Target of Rapamycin/Hypoxia Inducible Factor 1/Vascular Endothelial Growth Factor a Pathway in Mice Pancreatic Islet. Chinese Medical Journal, 126, 2368-2373.

  39. 39. Wang, B., Yan, B., Song, D., Ye, X. and Liu, S.F. (2013) Chronic Intermittent Hypoxia Down-Regulates Endothelial Nitric Oxide Synthase Expression by an NF-κB-Dependent Mechanism. Sleep Medicine, 14, 165-171.

  40. 40. Hirotsu, C., Albuquerque, R.G., Nogueira, H., et al. (2017) The Relationship between Sleep Apnea, Metabolic Dysfunction and Inflammation: The Gender Influence. Brain, Behavior, and Immunity, 59, 211-218.

  41. 41. Archontogeorgis, K., Nena, E., Papanas, N. and Steiropoulos, P. (2014) Biomarkers to Improve Diagnosis and Monitoring of Obstructive Sleep Apnea Syndrome: Current Status and Future Perspectives. Pulmonary Medicine, 2014, Article ID: 930535.

  42. 42. He, Q., Yang, Q.C., Zhou, Q., et al. (2014) Effects of Varying Degrees of Intermittent Hypoxia on Proinflammatory Cytokines and Adipokines in Rats and 3T3-L1 Adipocytes. PLoS ONE, 9, e86326. https://doi.org/10.1371/journal.pone.0086326

  43. 43. Vgontzas, A.N., Papanicolaou, D.A., Bixler, E.O., et al. (2000) Sleep Apnea and Daytime Sleepiness and Fatigue: Relation to Visceral Obesity, Insulin Resistance, and Hypercyto-kinemia. The Journal of Clinical Endocrinology & Metabolism, 85, 1151-1158. https://doi.org/10.1210/jcem.85.3.6484

  44. 44. Cheung, A.T., Ree, D., Kolls, J.K., Fuselier, J., Coy, D.H. and Bry-er-Ash, M. (1998) An in Vivo Model for Elucidation of the Mechanism of Tumor Necrosis Factor-Alpha (TNF-Alpha)-Induced Insulin Resistance: Evidence for Differential Regulation of Insulin Signaling by TNF-Alpha. Endocrinology, 139, 4928-4935.

  45. 45. Svedberg, J., Björntorp, P., Smith, U. and Lönnroth, P. (1992) Effect of Free Fatty Acids on Insulin Receptor Binding and Tyrosine Kinase Activity in Hepatocytes Isolated from Lean and Obese Rats. Diabetes, 41, 294-298. https://doi.org/10.2337/diab.41.3.294

  46. 46. Hennes, M.M., Shrago, E. and Kissebah, A.H. (1990) Receptor and Postreceptor Effects of Free Fatty Acids (FFA) on Hepatocyte Insulin Dynamics. International Journal of Obesity, 14, 831-841.

  47. 47. Agarwal, A., Hegde, A., Yadav, C., Ahmad, A., Manjrekar, P.A. and Srikantiah, R.M. (2017) Associa-tion of Interleukin-6 and Myeloperoxidase with Insulin Resistance in Impaired Fasting Glucose Subjects. Indian Journal of Clinical Biochemistry, 32, 33-38. https://doi.org/10.1007/s12291-016-0567-8

  48. 48. Kim, J.H., Bachmann, R.A. and Chen, J. (2009) Interleukin-6 and Insuanlin Resistence. Vitamins & Hormones, 80, 613-633.

  49. 49. Pallayova, M., Steele, K.E., Magnuson, T.H., et al. (2010) Sleep Apnea Predicts Distinct Alterations in Glucose Homeostasis and Biomarkers in Obese Adults with Normal and Impaired Glucose Metabolism. Cardiovascular Diabetology, 9, 83. https://doi.org/10.1186/1475-2840-9-83

  50. 50. Pallayova, M., Lazurova, I. and Donic, V. (2011) Hypoxic Damage to Pancreatic Beta Cells—The Hidden Link between Sleep Apnea and Diabetes. Medical Hypotheses, 77, 930-934.

  51. 51. Yang, J., Park, Y., Zhang, H., et al. (2009) Feed-Forward Signaling of TNF-Alpha and NF-Kappa B via IKK-Beta Pathway Contributes to Insulin Resistance and Coronary Arteriolar Dysfunction in Type 2 Diabetic Mice. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1850-H1858. https://doi.org/10.1152/ajpheart.01199.2008

  52. 52. Gao, Z., Hwang, D., Bataille, F., et al. (2002) Serine Phosphor-ylation of Insulin Receptor Substrate 1 by Inhibitor Kappa B Kinase Complex. The Journal of Biological Chemistry, 277, 48115-48121. https://doi.org/10.1074/jbc.M209459200

  53. 53. Wu, X., Gu, W., Lu, H., et al. (2016) Soluble Receptor for Ad-vanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 1015390.

  54. 54. Wang, Y., Hai, B., Niu, X., et al. (2016) Chronic Intermittent Hypoxia Disturbs Insulin Secretion and Causes Pancreatic Injury via MAPK Signaling Pathway. Biochemistry and Cell Biology.

  55. 55. Rosen, E.D. and Spie-gelman, B.M. (2006) Adipocytes as Regulators of Energy Balance and Glucose Homeostasis. Nature, 444, 847-853. https://doi.org/10.1038/nature05483

  56. 56. Bonsignore, M.R. and Eckel, J. (2009) ERS Meeting Report. Metabolic Aspects of Obstructive Sleep Apnoea Syndrome. European Respiratory Review, 18, 113-124. https://doi.org/10.1183/09059180.00000109

  57. 57. Kanbay, A., Kokturk, O., Ciftci, T.U., Tavil, Y. and Bukan, N. (2008) Comparison of Serum Adiponectin and Tumor Necrosis Factor-Alpha Levels between Patients with and without Obstructive Sleep Apnea Syndrome. Respiration, 76, 324-330. https://doi.org/10.1159/000134010

  58. 58. Ryan, S. (2016) Adipose Tissue Inflammation by Intermittent Hypoxia: Mechanistic Link between Obstructive Sleep Apnoea and Metabolic Dysfunction. The Journal of Physiology.

  59. 59. Fouillioux, C., Contreras, F., Lares, M., et al. (2008) Metabolic and Hemodynamic Markers of Endothelial Dysfunction in Patients with Hypertension and Patients with Type 2 Diabetes during the Cold Pressor Test. American Journal of Therapeutics, 15, 389-396. https://doi.org/10.1097/MJT.0b013e318169bca8

  60. 60. Hargens, T.A., Guill, S.G., Kaleth, A.S., et al. (2013) Insulin Resistance and Adipose-Derived Hormones in Young Men with Untreated Obstructive Sleep Apnea. Sleep Breath, 17, 403-409. https://doi.org/10.1007/s11325-012-0708-0

  61. 61. Arnardottir, E.S., Mackiewicz, M., Gislason, T., Teff, K.L. and Pack, A.I. (2009) Molecular Signatures of Obstructive Sleep Apnea in Adults: A Review and Perspective. Sleep, 32, 447-470.

  62. 62. De Santis, S., Cambi, J., Tatti, P., Bellussi, L. and Passali, D. (2015) Changes in Ghrelin, Leptin and Pro-Inflammatory Cytokines after Therapy in Obstructive Sleep Apnea Syndrome (OSAS) Patients. Polish Journal of Otolaryngology, 69, 1-8. https://doi.org/10.5604/00306657.1147029

  63. 63. Lam, J.C.M., Mak, J.C.W. and Ip, M.S.M. (2012) Obesity, Obstructive Sleep Apnoea and Metabolic Syndrome. Respirology, 17, 223-236. https://doi.org/10.1111/j.1440-1843.2011.02081.x

  64. 64. Reinke, C., Bevans-Fonti, S., Drager, L.F., Shin, M. and Polotsky, V.Y. (2011) Effects of Different Acute Hypoxic Regimens on Tissue Oxygen Profiles and Metabolic Out-comes. Journal of Applied Physiology, 111, 881-890.

  65. 65. Yang, R., Sikka, G., Larson, J., et al. (2011) Restoring Leptin Signaling Reduces Hyperlipidemia and Improves Vascular Stiffness Induced by Chronic Intermittent Hypoxia. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1467-H1476. https://doi.org/10.1152/ajpheart.00604.2009

  66. 66. Li, J., Bosch-Marce, M., Nanayakkara, A., et al. (2006) Altered Metabolic Responses to Intermittent Hypoxia in Mice with Partial Deficiency of Hypoxia-Inducible Factor-Lalpha. Physiological Genomics, 25, 450-457. https://doi.org/10.1152/physiolgenomics.00293.2005

  67. 67. Zhang, X., Wang, Y., Li, Q., et al. (2010) Changes in Genioglossus and Their Association with Serum Adiponectin Levels in Rats Subjected to Chronic Intermittent Hypoxia. Chinese Medical Journal, 123, 2249-2253.

  68. 68. Lam, D.C.L., Lam, K.S.L. and Ip, M.S.M. (2015) Obstructive Sleep Apnoea, Insulin Resistance and Adipocytokines. Clinical Endocrinology, 82, 165-177. https://doi.org/10.1111/cen.12597

  69. 69. Lam, J.C.M., Xu, A., Tam, S., et al. (2008) Hypoadiponectinemia Is Re-lated to Sympathetic Activation and Severity of Obstructive Sleep Apnea. Sleep, 31, 1721-1727. https://doi.org/10.1093/sleep/31.12.1721

  70. 70. De Lima, A.M.J., Franco, C.M.R., de Castro, C.M.M.B., et al. (2010) Effects of Nasal Continuous Positive Airway Pressure Treatment on Oxidative Stress and Adiponectin Levels in Obese Patients with Obstructive Sleep Apnea. Respiration, 79, 370-376. https://doi.org/10.1159/000227800

  71. 71. Wolk, R., Svatikova, A., Nelson, C.A., et al. (2005) Plasma Levels of Adiponectin, a Novel Adipocyte-Derived Hormone, in Sleep Apnea. Obesity Research, 13, 186-190. https://doi.org/10.1038/oby.2005.24

  72. 72. Gao, Z., He, Q., Peng, B., Chiao, P.J. and Ye, J. (2006) Regulation of Nuclear Translocation of HDAC3 by Ikappabalpha Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-Activated Receptor Gamma Function. The Journal of Biological Chemistry, 281, 4540-4547. https://doi.org/10.1074/jbc.M507784200

  73. 73. Yokoe, T., Alonso, L.C., Romano, L.C., et al. (2008) Intermittent Hypoxia Reverses the Diurnal Glucose Rhythm and Causes Pancreatic β-Cell Replication in Mice. The Journal of Physiology, 586, 899-911.

  74. 74. Morton, N.M. (2010) Obesity and Corticosteroids: 11 Beta-Hydroxysteroid Type 1 as a Cause and Therapeutic Target in Metabolic Disease. Molecular and Cellular Endocrinology, 316, 154-164.

  75. 75. Tamisier, R., Pépin, J.L., Rémy, J., et al. (2011) 14 Nights of Intermittent Hypoxia Elevate Daytime Blood Pressure and Sympathetic Activity in Healthy Humans. European Respiratory Journal, 37, 119-128. https://doi.org/10.1183/09031936.00204209

  76. 76. Prabhakar, N.R., Kumar, G.K. and Peng, Y. (2012) Sympa-tho-Adrenal Activation by Chronic Intermittent Hypoxia. Journal of Applied Physiology, 113, 1304-1310.

  77. 77. Kline, C.E., Reboussin, D.M., Foster, G.D., et al. (2016) The Effect of Changes in Cardiorespiratory Fitness and Weight on Obstructive Sleep Apnea Severity in Overweight Adults with Type 2 Diabetes. Sleep, 39, 317-325. https://doi.org/10.5665/sleep.5436

  78. 78. Kuna, S.T., Reboussin, D.M., Borradaile, K.E., et al. (2013) Long-Term Effect of Weight Loss on Obstructive Sleep Apnea Severity in Obese Patients with Type 2 Diabetes. Sleep, 36, 641-649. https://doi.org/10.5665/sleep.2618

  79. 79. Pamidi, S., Wroblewski, K., Stepien, M., et al. (2015) Eight Hours of Nightly Continuous Positive Airway Pressure Treatment of Obstructive Sleep Apnea Improves Glucose Metabolism in Patients with Prediabetes. A Randomized Controlled Trial. American Journal of Respiratory and Critical Care Medicine, 192, 96-105. https://doi.org/10.1164/rccm.201408-1564OC

  80. 80. Weinstock, T.G., Wang, X., Rueschman, M., et al. (2012) A Controlled Trial of CPAP Therapy on Metabolic Control in Individuals with Impaired Glucose Tolerance and Sleep Apnea. Sleep, 35, 617-625. https://doi.org/10.5665/sleep.1816

  81. 81. Guo, L., Zhao, X., Pan, Q., et al. (2015) Effect of Continuous Positive Airway Pressure Therapy on Glycemic Excursions and Insulin Sensitivity in Patients with Obstructive Sleep Ap-nea-Hypopnea Syndrome and Type 2 Diabetes. Chinese Medical Journal, 128, 2301-2306. https://doi.org/10.4103/0366-6999.163382

  82. 82. Salord, N., Fortuna, A.M., Monasterio, C., et al. (2016) A Ran-domized Controlled Trial of Continuous Positive Airway Pressure on Glucose Tolerance in Obese Patients with Ob-structive Sleep Apnea. Sleep, 39, 35-41. https://doi.org/10.5665/sleep.5312

  83. 83. Iftikhar, I.H., Khan,M.F., Das, A. and Magalang, U.J. (2013) Me-ta-Analysis: Continuous Positive Airway Pressure Improves Insulin Resistance in Patients with Sleep Apnea without Diabetes. Annals of the American Thoracic Society, 10, 115-120. https://doi.org/10.1513/AnnalsATS.201209-081OC

  84. 84. Guest, J.F., Panca, M., Sladkevicius, E., Taheri, S. and Stradling, J. (2014) Clinical Outcomes and Cost-Effectiveness of Continuous Positive Airway Pressure to Manage Ob-structive Sleep Apnea in Patients with Type 2 Diabetes in the U.K. Diabetes Care, 37, 1263-1271. https://doi.org/10.2337/dc13-2539

  85. 85. Prasad, B., Carley, D.W., Krishnan, J.A., Weaver, T.E. and Weaver, F.M. (2012) Effects of Positive Airway Pressure Treatment on Clinical Measures of Hypertension and Type 2 Diabetes. Journal of Clinical Sleep Medicine, 8, 481-487. https://doi.org/10.5664/jcsm.2136

  86. 86. Plíhalová, A., Westlake, K. and Polák, J. (2016) Obstructive Sleep Apnoea and Type 2 Diabetes Mellitus. Vnitrní Lékarství, 62, 79-84.

期刊菜单