Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 66649 , 7 pages
10.12677/ACM.2023.1361241

Toll样受体在代谢相关脂肪性肝病中的基础 研究

王晓阳1,叶丹阳1,边家祥2,程丽霞3*

1潍坊医学院,内分泌科,山东 潍坊

2潍坊医学院,神外科,山东 潍坊

3潍坊市人民医院,内分泌科,山东 潍坊

收稿日期:2023年5月3日;录用日期:2023年5月26日;发布日期:2023年6月6日

摘要

代谢相关脂肪性肝病(metabolic associated fatty liver disease, MAFLD)是目前世界上最主要的肝脏疾病,对该病发病机制进行分析,能够看出其之所以会出现肝病,并非是由于酒精引起的肝损伤而是因为肝内过度沉积脂肪产生的一种临床病理综合征。流行病学研究的结果表明超重和胰岛素抵抗是MAFLD发展的关键风险因素,而临床和实验研究结果也表明,肠道微生物群组成和肠道屏障的改变可能有助于疾病的发生和发展。随着社会的逐渐发展,目前社会居民的生活质量得到显著改善,饮食习惯也发生极大变化,该病的发病率每年都在快速增长,构成了全世界肝脏纤维化的主要原因,逐渐对人体健康构成威胁,并已成为世界范围内的一大卫生问题。近年来,许多学者已经确认了固有免疫系统的活化对MAFLD的发展起到了重要的作用,Toll样受体(Toll-like receptor, TLR)途径是其中关键一环。TLR在各种肝病中均表现为异常,其作用机制是通过调节TNF-α、IL-1β的表达,从而加剧肝组织的炎症反应。

关键词

代谢相关脂肪性肝病(MAFLD),非酒精性脂肪性肝炎(NASH),肠道微生物群,高脂肪饮食,Toll样受体(TLR)

Basic Research on Toll-Like Receptors in Metabolism-Related Fatty Liver Disease

Xiaoyang Wang1, Danyang Ye1, Jiaxiang Bian2, Lixia Cheng3*

1Department of Endocrinology, Weifang Medical College, Weifang Shandong

2Department of Neurosurgery, Weifang Medical College, Weifang Shandong

3Department of Endocrinology, Weifang People’s Hospital, Weifang Shandong

Received: May 3rd, 2023; accepted: May 26th, 2023; published: Jun. 6th, 2023

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is currently the world’s leading liver disease. By analysis of the pathogenesis of the disease, it can be seen that the reason for liver disease is not due to liver damage caused by alcohol, but because of a clinicopathological syndrome produced by excessive deposition of fat in the liver. The results of epidemiological studies suggest that overweight and insulin resistance are key risk factors for the development of MAFLD, while clinical and experimental studies have also suggested that alterations in gut microbiota composition and intestinal barrier may contribute to the onset and progression of the disease. With the gradual development of society, the quality of life of social residents has been significantly improved, eating habits have also undergone great changes, the incidence of the disease is growing rapidly every year, constituting the main cause of liver fibrosis in the world, gradually posing a threat to human health, and has become a major health problem worldwide. In recent years, many scholars have confirmed that the activation of the innate immune system plays an important role in the development of MAFLD, and the Toll-like receptor (TLR) pathway is a key part of this. TLR is abnormal in various liver diseases, and its mechanism of action is to increase the inflammatory response of liver tissue by regulating the expression of TNF-α and IL-1β.

Keywords:Metabolism-Related Fatty Liver Disease (MAFLD), Nonalcoholic Steatohepatitis (NASH), Gut Microbiota, High-Fat Diet, Toll-Like Receptor (TLR)

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

2020年30位来自全球的专家共同发表了一项重要的共识 [1] ,表示当前非酒精性脂肪性肝病被代谢性脂肪性肝病(MAFLD)所取代。MAFLD是一种与新陈代谢有关的应急性肝损害,与胰岛素抵抗(IR)和基因遗传易感性息息相关,如果MAFLD的病理过程不能及时缓解,可能会演变为肝纤维化或肝细胞癌 [2] 。MAFLD的发病机制复杂,基于近几年研究成果能够发现二次打击学说被得到进一步丰富与补充,此外随着相关研究的逐渐深入,当前也提出了多重打击学说,并且逐渐受到相关研究者的认可。另外,越来越多的研究表明MAFLD的发病机制还与胰岛素抵抗(IR)、脂肪酸和脂肪因子、炎症反应、表观遗传学、肠道菌群以及遗传多态性均具有一定联系。在欧美等发达国家,成人MAFLD的患病率在20%~33%之间,是引起肝酶异常和慢性肝病的主要病因 [3] 。美国联合器官共享网络(UNOS)的最新数据表明,目前MAFLD是所有肝脏移植(LT)的第二大适应症,并迅速成为因肝细胞癌而被列入LT的首要适应症 [4] [5] 。近年来,许多研究已经确认了固有免疫系统激活对MAFLD的影响,而TLR通路是MAFLD发展的重要环节。目前关于外周血细胞中TLR表达及其与肠道微生物群和MAFLD发展的关系的知识有限。尽管TLR参与一系列炎症反应,但其在非酒精性脂肪性肝病及其并发症中的作用还没有被完全解释清楚。

2. TLR简介

1997年Medzhitov等 [6] 首先对人类Toll蛋白进行了氨基酸序列分析,发现该蛋白结构和果蝇Toll蛋白具有极高相似度,因此将其命名为Toll样受体。TLR主要是借助识别PAMP,从而诱导机体对必需的炎症反应进行防御,然后经由机体中的多个信号传导过程刺激机体激活适应性免疫 [7] 。通过对代谢性脂肪性肝病患者进行分析,能够看出其机体中存在较多炎症细胞因子会诱发机体处于慢性低度炎症反应状态,此外随着特异性免疫系统被激活,其免疫状态会得到一定上调 [8] 。

在哺乳动物体内,其固有免疫系统主要发挥检测病原微生物以及诱导保护性炎性反应的过程,而上述过程实际上大部分是借助对PAMP进行识别达成的 [9] 。PAMP之所以能够促使机体发出炎症信号,主要是借助识别受体达成的,在这一过程中TLR发挥重要作用。TLRs家族中存在损伤模式识别受体以及病原模式识别受体,不仅能识别细菌脂多糖(LPS)、病毒RNA等具有高度保守性的微生物结构,同时还能够促使机体抗微生物感染,信号通路被激活,使免疫系统发挥相应作用 [10] 。在人体中,有10种TLR表达,所有的TLR均已在肝组织中检测到 [11] 。TLR3,7,8,9,10则大部分在核内体中存在,能够对与内化微生物有关的核酸进行识别与分析,而位于哺乳动物细胞表面的TLR1,2,4,5,6能够检测到细菌、真菌和原生动物微生物的外膜成分 [9] [12] [13] [14] [15] 。TLRs所具有的细胞定位功能往往和其感知病原体的能力具有高度相关性 [16] 。

3. TLR与非酒精性脂肪性肝病

据报道,肠道微生物组及其衍生的代谢物在非酒精性脂肪肝的发展、进展和恢复中起着至关重要的作用 [17] 。肠道菌群在维持机体内环境稳态方面发挥重要作用,一旦其平衡失调,将会影响肠道通透性,从而促进PAMP、损伤相关分子模式(DAMP)和LPS共同运转到门静脉循环,通过TLR4信号传导导致NLRP3的激活和肝脏炎症。TLR4活化过程可以激活髓样分化因子88 (MyD88)及下游的MyD88依赖性信号通路激活核转录因子κB (NF-κB),从而导致促炎症细胞因子如肿瘤坏死因子α (TNF-α)、IL-6、IL-8和IL-12及单核细胞趋化蛋白1 (MCP-1)的表达,加剧炎症发展 [18] 。

目前研究较多的与MAFLD发病相关的Toll样受体为TLR2、TLR4与TLR9 [19] [20] [21] [22] [23] 。值得一提的是,Anja Baumann等人 [24] 通过检测37例MAFLD患者和15名年龄匹配的健康对照者血液中肠通透性标志物和外周血单个核细胞中TLRmRNA表达,发现在NAFLD患者中只有TLR1 mRNA的表达增加,与霍尔德曼菌属的患病率显著正相关,提出了TLR1可能成为非酒精性脂肪性肝病的靶点这一观点,但仍需要进一步的研究来确定是否有临床意义。

大多数饮食(高脂饮食 [25] 、果糖饮食、蛋氨酸/胆碱缺乏(MCD)饮食 [26] 和胆碱缺乏氨基酸 [27] 饮食)诱导的MAFLD动物模型,皆出现严重变性或脂肪性肝炎,循环LPS水平皆有所升高。Sawada等人高脂诱导小鼠NASH模型,并对肝组织Toll样受体进行检测,研究发现相较于对照组而言,NASH小鼠肝组织中TLR2、TLR4、TLR9表达水平明显升高 [28] 。相比于野生型小鼠,TLR4基因敲除小鼠在相同饲养环境血清LPS水平无明显差异,而发生脂肪变性、脂肪性肝炎的程度较低。同样,对MCD饮食诱导肝损伤小鼠进行腹腔LPS注射,其损伤程度明显加重 [14] 。由此可见,LPS-TLR4是MAFLD进展的关键途径。

TLR9是一个与新陈代谢和炎症事件密切相关的受体,是NASH的一个关键驱动因素 [29] 。Miura等人采用CDAA饲喂WT、TLR9-/-、IL-1R-/-和MyD88-/-小鼠,处理22周之后评估小鼠脂肪性肝炎、纤维化和胰岛素抵抗 [30] 。研究结果显示:与WT小鼠比较,TLR9-/-、IL-IR-/-和MyD88-/-的脂肪性肝炎、肝纤维化程度较低。其作用机制可能为,细菌DNA与Kupffer细胞上的TLR9结合,活化Kupffer细胞,使其产生大量的IL-1β,引起肝脏细胞内脂质的积累和细胞的死亡 [31] 。

TLR2在MAFLD中的作用尚未得到深入研究。但有研究证明阻断TLR2信号传导可以预防高脂喂养导致的小鼠胰岛素抵抗 [32] 。另外,已有研究表明高脂饮食组WT小鼠的血糖值、IL-6、TNF-α炎性因子水平均显著增高,IL-10抗炎因子水平明显下降,TLR2基因缺失增强了高脂喂养小鼠的葡萄糖耐量和胰岛素敏感性 [33] 。

4. TLR信号通路启动因素

血清中游离脂肪酸(FFA)水平升高是脂肪代谢异常的典型表现,也是肥胖引起的IR的主要因素之一。目前的研究表明FFA致IR的机制包括了氧化应激、炎症作用、调亡、线粒体功能障碍、内质网应激等,涉及的分子主要包括JNK (Jurn N-尾激酶)、ROS (活性氧)、PKC8 (蛋白激酶C-8)、NLRP3 (核昔酸结合寡聚化结构域样受体蛋白3)等 [34] 。已有研究报道,游离脂肪酸的表达水平在非酒精性脂肪性肝病患者中异常升高,游离FA一般借助TLR4作用调节MAFLD [35] 。进一步研究发现,游离脂肪酸的组成成分棕榈酸与硬脂酸是TLR4的潜在受体,能够促使Kupffer细胞中的TLR4活化,从而分泌更多炎症因子 [36] 。Yamamoto等人研究显示,棕榈酸有可能会使得TLR2和配体结合之后产生的生理效应被增强,激活Kupffer细胞诱发炎症反应 [37] 。亦有相关研究采用RNA干扰术抑制机体表达C2CL2肌细胞TLR2与MyD88,从而缓解棕榈酸诱导的IR程度与IL-6表达水平 [38] 。Sawada团队探究了棕榈酸在引发MAFLD促炎状态发展中的作用,结果显示高脂饮食的NASH小鼠肝组织中TLR2、TLR4、TLR5、TLR9的表达量明显高于正常饮食组,同样用棕榈酸处理的原代肝细胞、Kupffer细胞的TLR表达量也有所增加 [39] 。由此可见,棕榈酸有可能刺激MAFLD形成前期TLR2。LPS被认为是TLR4配体,进一步研究发现,LPS中的脂质组分中所含的链脂肪酸、月桂酸有可能激活巨噬细胞中TLR4 [40] 。Schaeffler等人研究了脂肪酸对脂肪细胞3T3-L1脂肪细胞分泌脂肪因子的影响及TLR4/核因子kappaB [12] 途径的参与,结果显示,TLR4在脂肪细胞分化过程中被诱导,脂肪酸刺激后其表达增强;硬脂酸和棕榈酸对MCP-1分泌的刺激作用通过TLR4、NF-kB介导的;脂肪酸不能直接与TLR-4/MD-2结合,因此其介导的效应是由内源性配体引起的 [13] 。对活化态TLR4而言,其会受到机体调节作用而被动被募集到脂质筏中,基于此可以确定细胞膜中局部区域含有的胆固醇或者鞘脂等可能会激活TLR4。内皮细胞主要依靠TLR4与CD14识别MM-LDL,并导致趋化因子IL-8的分泌 [14] 。

5. 炎症因素通过TLR参与MAFLD发生

大部分患有慢性肝脏疾病的病人都有细菌过度生长或者菌群失调导致的肠道通透性增高,MAFLD患者也不例外。迄今为止,各种研究已经证明了肠道–肝脏轴 [41] 的重要性。来自葡聚糖硫酸钠(dextran sulfate sodium, DSS) + 高脂饮食模型的肝脏显示出toll样受体TLR4和TLR9的表达显著增加,它们特异性识别细菌/细菌成分,包括脂多糖(LPS),也称内毒素 [42] ,并激活炎症相关基因的活性,促使肝脏慢性炎症的产生,从而导致MAFLD的发生发展。Tripathi等发现增加的病原体相关分子模式(PAMPs)如LPS、细菌RNA和病毒RNA从肠道转运通过肠道屏障进入肝脏,它们通过与KCs膜上的TLR4结合刺激免疫细胞,导致诱发肝脏炎症,并发展为肝损伤和疾病 [43] 。

通过动物实验,能够看出在NASH发病过程中,TLR4以及肠源性内毒素在其中发挥关键性作用 [44] 。Ye等通过高脂饲养方案对小鼠进行为期12周的饲养后,其肝脏表现出典型的NASH病理特点;但是ApoE(-/-)/TLR4(mut)小鼠因为预先敲除对应基因,导致机体无法合成TLR4,因此不会出现肝脏炎性损伤。ApoE(-/-)/TLR4/WT小鼠的x盒结合蛋白(XBP)1能够受到HF-HC的刺激作用而活化,但是ApoE(-/-)/TLR4(mut)小鼠不会受到这一影响 [45] 。

6. 总结

在临床上,TLR2为血管疾病治疗靶点的相关研究处于领先地位,阻断TLR2信号可降低炎症水平来缓解动脉粥样硬化的进展。但关于TLRs信号的治疗性仍存在一定的挑战,例如TLRs在宿主对病原体的防御中发挥重要作用,阻断TLRs信号是否会增加患者的感染风险?TLRs信号参与机体脂质堆积过程,而在其他关键方面(细胞凋亡、氧化应激)发挥什么作用?因此,进行TLRs信号阻断治疗需要适当的风险评估。另外,一项关于MyD88及其邻近信号蛋白白细胞介素-1受体相关激酶-4 (IRAK-4)遗传缺陷 [46] 的患者感染性疾病易感性的研究发现,MyD88缺陷儿童明显缺乏体外MyD88依赖的功能反应,这与MyD88缺陷小鼠的表现一致。MyD88缺陷小鼠易被病原体侵袭,但MyD88、IRAK-4遗传缺陷儿童并没有出现严重的真菌、寄生虫、病毒感染,这表明MyD88依赖性反应在宿主防御中的作用可能更为精确,这一现象给TLRs及其信号选择性阻断治疗脂质代谢紊乱提供了一定的可行性。因此,关于TLRs在脂代谢紊乱中的作用值得进一步探究。

致谢

感谢老师在论文写作过程中给予很多建设性的意见,感谢同学们在论文写作过程中的帮助和鼓励。

基金项目

2020年山东省潍坊科技发展规划,项目编号:2020YX01111。

文章引用

王晓阳,叶丹阳,边家祥,程丽霞. Toll样受体在代谢相关脂肪性肝病中的基础研究
Basic Research on Toll-Like Receptors in Metabolism-Related Fatty Liver Disease[J]. 临床医学进展, 2023, 13(06): 8877-8883. https://doi.org/10.12677/ACM.2023.1361241

参考文献

  1. 1. Eslam, M., Newsome, P.N., Sarin, S.K., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.07.045

  2. 2. Kuchay, M.S., Choudhary, N.S., Gagneja, S., et al. (2021) Low Skeletal Muscle Mass Is Associated with Liver Fibrosis in Individuals with Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Journal of Gastroenterology and Hepatology, 36, 3204-3211. https://doi.org/10.1111/jgh.15595

  3. 3. Dhanasekaran, R. and Felsher, D.W. (2019) A Tale of Two Complications of Obesity: NASH and Hepatocellular Carcinoma. Hepatology, 70, 1056-1058. https://doi.org/10.1002/hep.30649

  4. 4. Doycheva, I., Issa, D., Watt, K.D., Lopez, R., Rifai, G. and Alkhouri, N. (2018) Nonalcoholic Steatohepatitis Is the Most Rapidly Increasing Indication for Liver Transplantation in Young Adults in the United States. Journal of Clinical Gastroenterology, 52, 339-346. https://doi.org/10.1097/MCG.0000000000000925

  5. 5. Younossi, Z.M., Stepanova, M., Ong, J., et al. (2021) Nonalcoholic Steatohepatitis Is the Most Rapidly Increasing Indication for Liver Transplantation in the United States. Clinical Gastroenterology and Hepatology, 19, 580-589.e5. https://doi.org/10.1016/j.cgh.2020.05.064

  6. 6. Tsan, M.F. and Gao, B. (2004) Endogenous Ligands of Toll-Like Receptors. Journal of Leukocyte Biology, 76, 514-519. https://doi.org/10.1189/jlb.0304127

  7. 7. Walton, K.A., Cole, A.L., Yeh, M., et al. (2003) Specific Phospholipid Oxidation Products Inhibit Ligand Activation of Toll-Like Receptors 4 and 2. Arteriosclerosis, Thrombosis, and Vascu-lar Biology, 23, 1197-1203. https://doi.org/10.1161/01.ATV.0000079340.80744.B8

  8. 8. Walton, K.A., Hsieh, X., Gharavi, N., et al. (2003) Receptors Involved in the Oxidized 1-Palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine-Mediated Synthesis of Interleukin-8. A Role for Toll-Like Receptor 4 and a Glycosylphosphatidylinositol-Anchored Protein. Journal of Biolog-ical Chemistry, 278, 29661-29666. https://doi.org/10.1074/jbc.M300738200

  9. 9. Bäckhed, F., Ding, H., Wang, T., et al. (2004) The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723. https://doi.org/10.1073/pnas.0407076101

  10. 10. Betanzos-Cabrera, G., Estrada-Luna, D., Belefant-Miller, H. and Cancino-Díaz, J.C. (2012) Mice Fed with a High Fat Diet Show a Decrease in the Expression of Toll Like Receptor (TLR)2 and TLR6 mRNAs in Adipose and Hepatic Tissues. Nutrición Hospitalaria, 27, 1196-1203.

  11. 11. Kanuri, G., Ladurner, R., Skibovskaya, J., et al. (2015) Expression of Toll-Like Receptors 1-5 but Not TLR 6-10 Is Elevated in Liv-ers of Patients with Non-Alcoholic Fatty Liver Disease. Liver International, 35, 562-568. https://doi.org/10.1111/liv.12442

  12. 12. Castrillo, A., Joseph, S.B., Vaidya, S.A., et al. (2003) Crosstalk between LXR and Toll-Like Receptor Signaling Mediates Bacterial and Viral Antagonism of Cholesterol Metabolism. Molecular Cell, 12, 805-816. https://doi.org/10.1016/S1097-2765(03)00384-8

  13. 13. Ratziu, V., Harrison, S.A., Francque, S., et al. (2016) Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis without Fibrosis Worsening. Gastroenterology, 150, 1147-1159.e5. https://doi.org/10.1053/j.gastro.2016.01.038

  14. 14. Mouries, J., Brescia, P., Silvestri, A., et al. (2019) Microbio-ta-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. https://doi.org/10.1016/j.jhep.2019.08.005

  15. 15. Shi, W., Wang, X., Tangchitpiyanond, K., Wong, J., Shi, Y. and Lusis, A.J. (2002) Atherosclerosis in C3H/HeJ Mice Reconstituted with Apolipoprotein E-Null Bone Marrow. Arterio-sclerosis, Thrombosis, and Vascular Biology, 22, 650- 655. https://doi.org/10.1161/01.ATV.0000013388.03553.31

  16. 16. Singh, A., Boden, G. and Rao, A.K. (2015) Tissue Factor and Toll-Like Receptor (TLR)4 in Hyperglycaemia-Hyper- insulinaemia. Effects in Healthy Subjects, and Type 1 and Type 2 Diabetes Mellitus. Thrombosis and Haemostasis, 113, 750-758. https://doi.org/10.1160/TH14-10-0884

  17. 17. Martínez-Montoro, J.I., Kuchay, M.S., Balaguer-Román, A., et al. (2022) Gut Microbiota and Related Metabolites in the Pathogenesis of Nonalcoholic Steatohepatitis and Its Resolution after Bariatric Surgery. Obesity Reviews, 23, e13367. https://doi.org/10.1111/obr.13367

  18. 18. Del Chierico, F., Nobili, V., Vernocchi, P., et al. (2017) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach. Hepatology, 65, 451-464. https://doi.org/10.1002/hep.28572

  19. 19. Yamamoto, M. and Takeda, K. (2010) Current Views of Toll-Like Receptor Signaling Pathways. Gastroenterology Research and Practice, 2010, Article ID: 240365. https://doi.org/10.1155/2010/240365

  20. 20. Ye, D., Li, F.Y., Lam, K.S., et al. (2012) Toll-Like Receptor-4 Mediates Obesity-Induced Non-Alcoholic Steatohepatitis through Activation of X-Box Binding Protein-1 in Mice. Gut, 61, 1058-1067. https://doi.org/10.1136/gutjnl-2011-300269

  21. 21. Zhang, R.N., Pan, Q., Zhang, Z., Cao, H.X., Shen, F. and Fan, J.G. (2015) Saturated Fatty Acid Inhibits Viral Replication in Chronic Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease by Toll-Like Receptor 4-Mediated Innate Immune Response. Hepatitis Monthly, 15, e27909. https://doi.org/10.5812/hepatmon.15(5)2015.27909

  22. 22. Zhou, Z., Zeng, C., Nie, L., et al. (2017) The Effects of TLR3, TRIF and TRAF3 SNPs and Interactions with Environmental Factors on Type 2 Diabetes Mellitus and Vascular Complications in a Han Chinese Population. Gene, 626, 41-47. https://doi.org/10.1016/j.gene.2017.05.011

  23. 23. Aragonès, G., Colom-Pellicer, M., Aguilar, C., et al. (2020) Cir-culating Microbiota-Derived Metabolites: A Liquid Biopsy. International Journal of Obesity (London), 44, 875-885. https://doi.org/10.1038/s41366-019-0430-0

  24. 24. Baumann, A., Nier, A., Hernández-Arriaga, A., et al. (2021) Toll-Like Receptor 1 as a Possible Target in Non-Alcoholic Fatty Liver Disease. Scientific Reports, 11, Article No. 17815. https://doi.org/10.1038/s41598-021-97346-9

  25. 25. Zu, L., He, J., Jiang, H., Xu, C., Pu, S. and Xu, G. (2009) Bac-terial Endotoxin Stimulates Adipose Lipolysis via Toll- Like Receptor 4 and Extracellular Signal-Regulated Kinase Path-way. Journal of Biological Chemistry, 284, 5915-5926. https://doi.org/10.1074/jbc.M807852200

  26. 26. Pan, X., Chiwanda Kaminga, A., Liu, A., Wen, S.W., Chen, J. and Luo, J. (2020) Chemokines in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Network Meta-Analysis. Frontiers in Immunology, 11, Article No. 1802. https://doi.org/10.3389/fimmu.2020.01802

  27. 27. Carpino, G., Del Ben, M., Pastori, D., et al. (2020) Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology, 72, 470-485. https://doi.org/10.1002/hep.31056

  28. 28. Zhang, Z., Xu, X., Tian, W., et al. (2020) ARRB1 Inhibits Non-Alcoholic Steatohepatitis Progression by Promoting GDF15 Maturation. Journal of Hepatology, 72, 976-989. https://doi.org/10.1016/j.jhep.2019.12.004

  29. 29. Bertran, L., Jorba-Martin, R., Barrientos-Riosalido, A., et al. (2022) New Insights of OLFM2 and OLFM4 in Gut-Liver Axis and Their Potential Involvement in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 23, Article No. 7442. https://doi.org/10.3390/ijms23137442

  30. 30. Tsai, H.C., Chang, F.P., Li, T.H., et al. (2019) Elafibranor Inhibits Chronic Kidney Disease Progression in NASH Mice. BioMed Research International, 2019, Article ID: 6740616. https://doi.org/10.1155/2019/6740616

  31. 31. Zhang, X., Fan, L., Wu, J., et al. (2019) Macrophage p38α Promotes Nutritional Steatohepatitis through M1 Polarization. Journal of Hepatology, 71, 163-174. https://doi.org/10.1016/j.jhep.2019.03.014

  32. 32. Brenner, C., Galluzzi, L., Kepp, O. and Kroemer, G. (2013) De-coding Cell Death Signals in Liver Inflammation. Journal of Hepatology, 59, 583-594. https://doi.org/10.1016/j.jhep.2013.03.033

  33. 33. 刘新月, 周璐瑾, 马玉, 王文栋, 郝敏, 常晓彤. Toll样受体2和肠道菌群在高脂饮食诱导的胰岛素抵抗中的作用[J]. 现代预防医学, 2022, 49(10): 1881-1886+1891.

  34. 34. 曹荟哲. 游离脂肪酸致胰岛素抵抗的机制研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2017.

  35. 35. DiBaise, J.K., Zhang, H., Crowell, M.D., Krajmalnik-Brown, R., Decker, G.A. and Rittmann, B.E. (2008) Gut Microbiota and Its Pos-sible Relationship with Obesity. Mayo Clinic Proceedings, 83, 460-469. https://doi.org/10.4065/83.4.460

  36. 36. Dong, X., Liu, H., Chen, F., Li, D. and Zhao, Y. (2014) MiR-214 Promotes the Alcohol-Induced Oxidative Stress via Down-Regulation of Glutathione Reductase and Cytochrome P450 Oxidore-ductase in Liver Cells. Alcohol: Clinical and Experimental Research, 38, 68-77. https://doi.org/10.1111/acer.12209

  37. 37. Edfeldt, K., Swedenborg, J., Hansson, G.K. and Yan, Z.Q. (2002) Expres-sion of Toll-Like Receptors in Human Atherosclerotic Lesions: A Possible Pathway for Plaque Activation. Circulation, 105, 1158-1161. https://doi.org/10.1161/circ.105.10.1158

  38. 38. Hritz, I., Mandrekar, P., Velayudham, A., et al. (2008) The Critical Role of Toll-Like Receptor (TLR) 4 in Alcoholic Liver Disease Is Independent of the Common TLR Adapter MyD88. Hepatology, 48, 1224-1231. https://doi.org/10.1002/hep.22470

  39. 39. Ishibashi, M., Sayers, S., D’Armiento, J.M., Tall, A.R. and Welch, C.L. (2013) TLR3 Deficiency Protects against Collagen Degradation and Medial Destruction in Murine Atherosclerotic Plaques. Atherosclerosis, 229, 52-61. https://doi.org/10.1016/j.atherosclerosis.2013.03.035

  40. 40. Sun, Y., Ishibashi, M., Seimon, T., et al. (2009) Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 104, 455-465. https://doi.org/10.1161/CIRCRESAHA.108.182568

  41. 41. Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577. https://doi.org/10.1016/j.jhep.2019.10.003

  42. 42. Bauer, K.C., Littlejohn, P.T., Ayala, V., Creus-Cuadros, A. and Finlay, B.B. (2022) Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology, 162, 1858-1875.e2. https://doi.org/10.1053/j.gastro.2022.01.058

  43. 43. Tripathi, A., Debelius, J., Brenner, D.A., et al. (2018) The Gut-Liver Axis and the Intersection with the Microbiome. Nature Reviews Gastroenterology & Hepatology, 15, 397-411. https://doi.org/10.1038/s41575-018-0011-z

  44. 44. Hwang, S., He, Y., Xiang, X., et al. (2020) Interleukin-22 Ame-liorates Neutrophil-Driven Nonalcoholic Steatohepatitis through Multiple Targets. Hepatology, 72, 412-429. https://doi.org/10.1002/hep.31031

  45. 45. Qiao, Y., Li, X., Zhang, X., et al. (2019) Hepatocellular iNOS Protects Liver from NASH through Nrf2-Dependent Activation of HO-1. Biochemical and Biophysical Research Communica-tions, 514, 372-378. https://doi.org/10.1016/j.bbrc.2019.04.144

  46. 46. Song, K., Kwon, H., Han, C., et al. (2020) Yes-Associated Protein in Kupffer Cells Enhances the Production of Proinflammatory Cytokines and Promotes the Development of Nonalcoholic Steatohepatitis. Hepatology, 72, 72-87. https://doi.org/10.1002/hep.30990

  47. NOTES

    *通讯作者。

期刊菜单