Advances in Applied Mathematics
Vol.07 No.01(2018), Article ID:23518,8 pages
10.12677/AAM.2018.71006

Solving the Fractional Bagley-Torvik Equations with Uncertainty

Xueling Liu, Shanli Liao, Yuanbo Wu, Xianci Zhong

School of Mathematics and Information Science, Guangxi University, Nanning Guangxi

Received: Dec. 19th, 2017; accepted: Jan. 17th, 2018; published: Jan. 24th, 2018

ABSTRACT

This paper investigates the problem of the fractional Bagley-Torvik equation with uncertainty boundary-value conditions. Under the Caputo’s H-differentiability, the fuzzy Laplace transform is introduced. The uncertainty boundary-value conditions are assumed to be fuzzy numbers. The series solution of fractional Bagley-Torvik equation is given. Numerical results are shown to illustrate the obtained solution.

Keywords:Fractional Bagley-Torvik Equation, Uncertainty, Fuzzy Laplace Transform, Fuzzy Number, Caputo’s H-Differentiability

不确定分数阶Bagley-Torvik方程的解

刘雪铃,廖珊莉,吴远波,钟献词

广西大学数学与信息科学学院,广西 南宁

收稿日期:2017年12月19日;录用日期:2018年1月17日;发布日期:2018年1月24日

摘 要

本文研究分数阶Bagley-Torvik方程不确定边值条件下的解。基于Caputo分数阶导数定义和广义的Hukuhara可微性,引进模糊Laplace变换,不确定边界条件为模糊数,给出了问题的级数解。数值结果分析了解的性态。

关键词 :分数阶Bagley-Torvik方程,不确定性,模糊Laplace变换,模糊数,Caputo分数阶微积分

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

模糊微分方程的理论近年来引起了人们广泛的关注,这一理论为模拟实际物理、力学、工程中的不确定性问题提供了新的方法,吸引了众多学者研究和探索 [1] [2] [3] [4] 。如模糊Laplace变换 [5] [6] ,改进Euler方法 [7] ,模糊Fourier变换 [8] [9] 。此外,许多学者也给了丰富的理论基础,如文献 [10] 中给出了模糊数和三角模糊数下的方程的基本定理,文献 [11] 中介绍了模糊情形下的Laplace变换,为解决模糊分数阶微分方程奠定了坚实的基础。文献 [8] 中介绍了一些关于某些类型微分之间关系的新结果,文献 [12] 中给出了在模糊的Laplace变换下方程解的存在性定理。

其次,分数阶微积分是整数阶微积分理论的一般化,其理论与应用研究也吸引了众多学者的兴趣,比如著名的分数阶Bagley-Torvik方程 [13] 。近年来,分数阶微分方程的不确定性边值问题成为了新的研究热点 [4] [5] [7] [9] 。在本文中,我们考虑Caputo分数阶定义下Bagley-Torvik方程的模糊边值问题:

A φ ( x ) + B D β φ ( x ) + C φ ( x ) = f ( x ) , 0 < β < 1 , x [ 0 , b ] (1)

φ ( 0 ) = α 0 , φ ( b ) = γ 0

这里 A , B , C 是常数, φ ( x ) 是未知的, α 0 γ 0 是模糊数,分数阶导数定义如下:

D C x β φ ( x ) = 1 Γ ( n β ) a x φ n ( s ) ( x s ) β n + 1 d s , n 1 < β < n

Γ ( v ) = 0 e x x v 1 d x , v > 0

其中 Γ ( v ) Γ 函数。将采用模糊Laplace变换方法给出问题的级数解,并通过数值实例分析解的性态。

2. 预备知识

下面介绍一些模糊数学和分数阶模糊微积分的一些概念。

定义1: [14] [15] 记 E n = { u | u : R n [ 0 , 1 ] } 满足以下性质:

1) u 是正规的模糊集,既存在 x 0 R n 使得 u ( x 0 ) = 1

2) u 是凸函数集,即

u ( λ x 1 + ( 1 λ ) x 2 ) > min { u ( x 1 ) , u ( x 2 ) } , x 1 , x 2 R , λ [ 0 , 1 ] ;

3) u 是上半连续函数;

4) [ u ] 0 = c l { x R n | u ( x ) > 0 } 是紧集;

此外,如果 u E 0 α 1 ,则 u α 阶截集被定义为:

[ u ] α = { r R | u ( r ) α , 0 < α 1 c l ( s u p p u ) , α = 0

很容易发现 u α 截集是闭集和有界的,为此我们用区间 [ u _ ( α ) , u ¯ ( α ) ] 来表示, u _ ( α ) [ u ] α 的左端点, u ¯ ( α ) [ α ] α 右端点。

定义2: [15] [16] [17] 对 u E 1 , u = ( u _ ( α ) , u ¯ ( α ) ) ,则 u _ ( α ) , u ¯ ( α ) 均为 [ 0 , 1 ] 上的函数且满足:

u _ ( α ) 单调非降左连续;

u ¯ ( α ) 单调非增连续;

u _ ( α ) u ¯ ( α ) ;

u _ ( α ) , u ¯ ( α ) r = 0 处连续;

[ u ] α = c l { x R | u ( x ) α } ( 0 < α 1 )

u _ ( α ) = min [ u ] α , u ¯ ( α ) = max [ u ] α , α [ 0 , 1 ] ,

u _ ( α ) u ¯ ( α ) [ 0 , 1 ] 上连续。

基于Zadeh扩张原理的和、差及乘运算将分别记为 。则有:

u v = ( u _ + v _ , u ¯ + v ¯ )

u v = ( u _ v ¯ , u ¯ v _ )

k u = { ( k u _ , k u ¯ ) , k 0 ( k u ¯ , k u _ ) , k < 0

定义3: [2] 若 f : ( a , b ) E ,存在 x 0 ( a , b ) ,且 f ( x 0 ) E ,那么可以称 f x 0 是广义的强可微,且对 h 0 , h > 0 , f ( x 0 + h ) f ( x 0 ) f ( x 0 ) f ( x 0 h ) ,满足:

lim h 0 f ( x 0 + h ) f ( x 0 ) h = lim h 0 f ( x 0 ) f ( x 0 h ) h = f ( x 0 ) (2)

lim h 0 f ( x 0 + h ) f ( x 0 ) h = lim h 0 f ( x 0 ) f ( x 0 h ) h = f ( x 0 ) (3)

lim h 0 f ( x 0 ) f ( x 0 + h ) h = lim h 0 f ( x 0 h ) f ( x 0 ) h = f ( x 0 ) (4)

lim h 0 f ( x 0 ) f ( x 0 + h ) h = lim h 0 f ( x 0 ) f ( x 0 h ) h = f ( x 0 ) (5)

定理1: [18] 若 f ( x ) = ( f _ ( x , α ) , f ¯ ( x , α ) ) 是定义在 [ a , ) 上的模糊函数,对 α [ 0 , 1 ] , b a , f _ ( x , α ) , f ¯ ( x , a ) 都是在 [ a , b ] 是可积的。如果 M _ ( α ) , M ¯ ( α ) 是正函数, a b | f _ ( x , α ) | d x M _ ( α ) a b | f ¯ ( x , α ) | d x M ¯ ( α ) ,那么称 f ( x ) [ a , ) 上是模糊可积的,此外:

a f ( x ) d x = ( a f _ ( x , α ) d x , a f ¯ ( x , α ) d x ) (6)

注释:如果 f ( t ) = ( f _ ( t , α ) , f ¯ ( t , α ) ) f _ ( t , α ) f ¯ ( t , α ) 都可微,则有:

f ( t ) = ( f _ ( t , α ) , f ¯ ( t , α ) ) ,

f ( t ) = ( f ¯ ( t , α ) , f _ ( t , α ) ) ,

分别称为情况(i)和情况(ii)。

定理2:(模糊卷积定理)假设函数 f ( t ) g ( t ) 是定义在 [ 0 , ) 上的分段连续函数,并且带有模糊边值,则

L { f ( t ) g ( t ) } = L { g ( t ) f ( t ) } = L { f ( t ) } L { g ( t ) } (7)

注意到函数的经典模糊Laplace变换表示为:

F ^ ( P ; α ) = L { f ( t ; α ) } = [ L ( f _ ( t ; α ) ) , L ( f ¯ ( t ; α ) ) ] (8)

L { f _ ( t ; α ) } = 0 e p t f _ ( t ; α ) d t = 0 e p t f _ ( t ; α ) d t ; (9)

L { f ¯ ( t ; α ) } = 0 e p t f ¯ ( t ; α ) d t = 0 e p t f ¯ ( t ; α ) d t ; (10)

定理3: [19] 如果 0 < β < 1 J = ( a , b ] f ( x , α ) = ( f _ ( x ; α ) , f ¯ ( x ; α ) ) C ( J , E ) ,则对任意 0 α 1 ,Caputo分数阶导数有:

f 是第(i)种的情况时有:

( D c a + β f ) ( x ; α ) = [ D c a + β f _ ( x ; α ) , D c a + β f ¯ ( x ; α ) ] ;

f 是第(ii)种的情况时有:

( D c a + β f ) ( x ; α ) = [ D c a + β f ¯ ( x ; α ) , D c a + β f _ ( x ; α ) ] ;

这里有:

D c a + β f _ ( t ; α ) = 1 Γ ( m β ) 0 x f _ m ( τ ) ( x τ ) β + 1 m d τ , m 1 < α < m , m N ,

D c a + β f ¯ ( t ; α ) = 1 Γ ( m β ) 0 x f ¯ m ( τ ) ( x τ ) β + 1 m d τ , m 1 < α < m , m N ,

定理4: [20] 如果 f f [ 0 , ) 上连续并且带有模糊的初值, f 是在 [ 0 , ) 上的分段连续函数并带有模糊的初值,则有:

f f 都是第(i)种情况:

L [ f ( x ) ] = s 2 L [ f ( x ) ] s f ( 0 ) f ( 0 ) , (11)

f 是第(i)种情况, f 是第(ii)种情况:

L [ f ( x ) ] = f ( 0 ) ( s 2 ) L [ f ( x ) ] s f ( 0 ) , (12)

f f 都是第(ii)种情况:

L [ f ( x ) ] = s 2 L [ f ( x ) ] s f ( 0 ) f ( 0 ) , (13)

f 是第(ii)种情况, f 是第(i)种情况:

L [ f ( x ) ] = s f ( 0 ) ( s 2 ) L [ f ( x ) ] f ( 0 ) (14)

3. 问题的求解

这里我们假设 φ ( x ) C [ 0 , b ] f ( x ) C [ 0 , b ] A , B , C 均为常数, α 0 , γ 0 均为模糊数。

由Laplace变换作用(1)式等价为

A { s 2 L [ φ ( x ) ] s φ ( 0 ) φ ( 0 ) } + B { s β L [ φ ( x ) ] s β 1 φ ( 0 ) } + C L [ φ ( x ) ] = L [ f ( x ) ] (15)

根据(15)式可以得到

φ _ ( x ) = L 1 [ L [ f ( x ) ] + A s φ _ ( 0 ) + A φ _ ( 0 ) + B s β 1 φ _ ( 0 ) A s 2 + B s β + C ]

φ ¯ ( x ) = L 1 [ L [ f ( x ) ] + A s φ ¯ ( 0 ) + A φ ¯ ( 0 ) + B s β 1 φ ¯ ( 0 ) A s 2 + B s β + C ]

根据模糊的Laplace变换的卷积定理,上式可以得到

φ _ ( x ) = ( f ( x ) + A φ _ ( 0 ) ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) } + φ _ ( 0 ) { k = 0 ( 1 ) k k ! ( C A ) k t 2 k E 2 β , 1 + β k k ( B A t 2 β ) } + B φ _ ( 0 ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t ( 2 2 β k ) + 2 + β E 2 β , 3 β ( k 1 ) k ( B A t 2 β ) } (16)

φ ¯ ( x ) = ( f ( x ) + A φ ¯ ( 0 ) ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) } + φ ¯ ( 0 ) { k = 0 ( 1 ) k k ! ( C A ) k t 2 k E 2 β , 1 + β k k ( B A t 2 β ) } + B φ ¯ ( 0 ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t ( 2 2 β k ) + 2 + β E 2 β , 3 β ( k 1 ) k ( B A t 2 β ) } (17)

根据(1)式中的边值条件和方程(16),(17)我们可以得到未知的 φ _ ( 0 ) , φ ¯ ( 0 ) 表示为:

φ _ ( 0 ) = γ 0 _ f ( b ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) } k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) α _ 0 k = 0 ( 1 ) k k ! ( C A ) k { t 2 k E 2 β , 1 + β k k ( B A t 2 β ) + B t ( 2 2 β k ) + 2 + β E 2 β , 3 β ( k 1 ) k ( B A t 2 β ) } k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) E 2 β , 2 + β k k ( B A t 2 β )

φ ¯ ( 0 ) = γ 0 ¯ f ( b ) { 1 A k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) } k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) 1 E 2 β , 2 + β k k ( B A t 2 β ) α ¯ 0 k = 0 ( 1 ) k k ! ( C A ) k { t 2 k E 2 β , 1 + β k k ( B A t 2 β ) + B t ( 2 2 β k ) + 2 + β E 2 β , 3 β ( k 1 ) k ( B A t 2 β ) } k = 0 ( 1 ) k k ! ( C A ) k t 2 ( k + 1 ) E 2 β , 2 + β k k ( B A t 2 β )

这里有

E λ , μ k ( y ) = d k d y k E λ , μ ( y ) = j = 0 ( j + k ) ! y j j ! Γ ( λ j + λ k + μ ) , ( k = 0 , 1 , 2 , )

( m k ) = m ( m 1 ) ( m k + 1 ) k !

从而得到了Bagley-Torvik方程模糊边值问题的级数解。

4. 数值实例

例1:考虑以下Bagley-Torvik方程的两点模糊边值问题:

{ φ ( x ) + 3 D 1 2 φ ( x ) + 2 φ ( x ) = 0 , x [ 0 , 1 ] φ ( 0 ) = ( α 1 , 1 α ) , φ ( 1 ) = ( α 0.5 , 1 α )

根据公式(16),(17)我们可以得到以下数值解。选择部分参数值进行计算,如当 k = j = m = 8 ,并 φ , φ 均为第(i)种情况,我们得到表1。当 k = j = m = 8 ,并且 φ 为第(i)种情况, φ 为第(ii)种情况我们得到表2

通过表1表2的数值结果进行分析,可以发现表1中的数值结果稳定,符合实际情形。而当 φ 为第(i)种情况, φ 为第(ii)种情况时,所得表2中的数值结果不收敛,故此种情况不成立。同样的,当 φ φ 都是第(ii)种情况时,所得结果和表1中的数值结果的区间左右端点刚好互换;当 φ 为第(ii)种情况, φ

Table 1. Numerical solution of the fuzzy boundary value problem of Bagley-Torvik equation

表1. Bagley-Torvik模糊边值问题的数值解

Table 2. Numerical solution of the fuzzy boundary value problem of Bagley-Torvik equation

表2. Bagley-Torvik模糊边值问题的数值解

为第(i)种情况时,所得结果和表2的数值结果的区间左右端点刚好互换。故其他另外两种情况也得出结果不符合逻辑。因此,只有第一种情形是问题的解。

5. 结论

本文采用模糊Laplace变换求解了分数阶Bagley-Torvik方程模糊边值条件下的解。结果表明,相同的问题可能给出不同的结果,而这些结果需要根据实际情形从理论上进行研究和分析。

基金项目

广西自然科学基金(2016GXNSFAA380261),广西研究生教育创新计划项目(No. YCSW2017048)。

文章引用

刘雪铃,廖珊莉,吴远波,钟献词. 不确定分数阶Bagley-Torvik方程的解
Solving the Fractional Bagley-Torvik Equations with Uncertainty[J]. 应用数学进展, 2018, 07(01): 39-46. http://dx.doi.org/10.12677/AAM.2018.71006

参考文献 (References)

  1. 1. Salahshour, S., Allahviranloo, T., Abbasbandy, S. and Baleanu, D. (2012) Existence and Uniqueness Results for Fractional Differential Equations with Uncertainty. Advances in Difference Equations, 2012, 1-12.
    https://doi.org/10.1186/1687-1847-2012-112

  2. 2. Chalco-Cano, Y. and Román-Flores, H. (2008) On New Solutions of Fuzzy Differential Equations. Chaos Solitons & Fractals, 38, 112-119.
    https://doi.org/10.1016/j.chaos.2006.10.043

  3. 3. Wu, H.C. (1998) The Fuzzy Riemann Integral and Its Numerical Integration. Information Sciences, 111, 109-137.
    https://doi.org/10.1016/S0020-0255(98)00016-4

  4. 4. Agarwal, R.P., Lakshmikantham, V. and Nieto, J.J. (2010) On the Con-cept of Solution for Fractional Differential Equations with Uncertainty. Nonlinear Analysis Theory Methods & Applications, 72, 2859-2862.
    https://doi.org/10.1016/j.na.2009.11.029

  5. 5. Salahshour, S., Allahviranloo, T. and Abbasbandy, S. (2012) Solving Fuzzy Fractional Differential Equations by Fuzzy Laplace Transforms. Communications in Nonlinear Science & Numerical Simulation, 17, 1372-1381.
    https://doi.org/10.1016/j.cnsns.2011.07.005

  6. 6. Salahshour, S. and Haghi, E. (2010) Solving Fuzzy Heat Equation by Fuzzy Laplace Transforms. Communications in Computer Information Science, 81, 512-521.
    https://doi.org/10.1007/978-3-642-14058-7_53

  7. 7. Mazandarani, M. and Kamyad, A.V. (2013) Modified Fractional Euler Method for Solving Fuzzy Fractional Initial Value Problem. Communications in Nonlinear Science Numerical Simulation, 18, 12-21.
    https://doi.org/10.1016/j.cnsns.2012.06.008

  8. 8. Allahviranloo, T. and Ahmadi, M.B. (2010) Fuzzy Laplace Transforms. Soft Computing, 14, 235-243.
    https://doi.org/10.1007/s00500-008-0397-6

  9. 9. Khodadadi, E. and Karabacak, M. (2015) Solving Fuzzy Fractional Partial Differential Equations by Fuzzy Laplace-Fourier Transforms. Journal of Computational Analysis & Applications, 19, 260-271.

  10. 10. Buckley, J.J., Eslami, E. and Feuring, T. (2002) Solving Fuzzy Equations. Fuzzy Sets & Systems, 50, 1-14.
    https://doi.org/10.1016/0165-0114(92)90199-E

  11. 11. Bede, B., Rudas, I.J. and Bencsik, A.L. (2007) First Order Linear Fuzzy Differential Equations under Generalized Differentiability. Information Sciences, 177, 1648-1662.
    https://doi.org/10.1016/j.ins.2006.08.021

  12. 12. Allahviranloo, T. and Ahmadi, M.B. (2010) Fuzzy Laplace Transforms. Soft Computing, 14, 235-243.
    https://doi.org/10.1007/s00500-008-0397-6

  13. 13. Torvik, P.J. and Bagley, R.L. (1984) On the Appearance of the Fractional Derivative in the Behavior of Real Materials. Journal of Applied Mechanics, 51, 294-298.
    https://doi.org/10.1115/1.3167615

  14. 14. Salahshour, S., Ahmadian, A. and Chan, C.S. (2016) A Novel Technique for Solving Fuzzy Differential Equations of Fractional Order Using Laplace and Integral Transforms. IEEE International Conference on Fuzzy Systems, 2016, 1473-1477.

  15. 15. Goetschel, R. and Voxman, W. (1986) Elementary Fuzzy Calculus. Fuzzy Sets and Systems, 18, 31-43.

  16. 16. Goetschel, R. and Voxman, W. (1985) Eigen Fuzzy Number Sets. Fuzzy Sets and Systems, 16, 75-85.
    https://doi.org/10.1016/S0165-0114(85)80007-5

  17. 17. Chang, S.S.L. and Zadeh, L.A. (1972) On Fuzzy Mapping and Control. IEEE Transactions on Systems Man & Cybernetics, 2, 30-34.
    https://doi.org/10.1109/TSMC.1972.5408553

  18. 18. Kaleva, O. (1987) Fuzzy Differential Equations. Fuzzy Sets & Systems, 24, 301-317.
    https://doi.org/10.1016/0165-0114(87)90029-7

  19. 19. Seikkala, S. (1987) On the Fuzzy Initial Value Problem. Fuzzy Sets & Systems, 24, 319-330.
    https://doi.org/10.1016/0165-0114(87)90030-3

  20. 20. Salahshour, S. and Allahviranloo, T. (2013) Applications of Fuzzy Laplace Transforms. Soft Computing, 17, 145-158.
    https://doi.org/10.1007/s00500-012-0907-4

期刊菜单