Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62336 , 7 pages
10.12677/ACM.2023.133465

支气管肺发育不良早期相关生物标志物的 研究进展

冉海波,舒畅

重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆重点实验室,重庆

收稿日期:2023年2月8日;录用日期:2023年3月6日;发布日期:2023年3月13日

摘要

随着现代医学水平以及新生儿重症监护室的发展,早产儿的存活率得到极大的提升,但同时也伴随着部分早产儿慢性肺部疾病发病率的上升,如支气管肺发育不良(BPD),BPD是发生在新生儿特别是早产儿中的一种慢性损伤性肺疾病,受影响的婴儿通常需要长期和反复住院,甚至可能出现肺功能的终身改变,严重影响这部分患儿的生活质量。目前,临床上对于BPD暂无特异性的治疗手段,仍以预防为主,因此,早期识别、早期干预对这部分早产儿尤为重要。因此,这就需要我们找到精准的生物标志物去帮助我们识别这部分患儿,本文将就目前对BPD早期相关生物标志物进行综述。

关键词

支气管肺发育不良,生物标志物,早产儿

Research Progress of Early-Stage Related Biomarkers in Bronchopulmonary Dysplasia

Haibo Ran, Chang Shu

Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Respiration Children’s Hospital of Chongqing Medical University, Chongqing

Received: Feb. 8th, 2023; accepted: Mar. 6th, 2023; published: Mar. 13th, 2023

ABSTRACT

With the development of modern medicine and neonatal intensive care unit, the survival rate of premature infants has been greatly improved, but it is also accompanied by an increase in the incidence of chronic lung diseases in some premature infants, such as bronchopulmonary dysplasia (BPD). BPD is a chronic traumatic lung disease that occurs in newborns, especially premature infants. Affected infants usually need to be hospitalized for a long time and repeatedly. There may even be lifelong changes in lung function, seriously affecting the quality of life of these children. At present, there is no specific treatment for BPD in clinic, and prevention is still the main treatment. Therefore, early identification and early intervention are particularly important for this part of premature infants. Therefore, it is necessary for us to find accurate biomarkers to help us identify these children. This article will review the early biomarkers of BPD.

Keywords:Bronchopulmonary Dysplasia, Biomarkers, Premature Infant

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着现代医学水平以及新生儿重症监护室的发展,大大提升了早产儿的存活率,同时也伴随着部分早产儿慢性肺部疾病发病率的上升,如支气管肺发育不良(bronchopulmonary dysplasia, BPD) [1] [2] 。BPD是在新生儿时期特别是早产儿的一种慢性损伤性肺疾病 [3] ,受影响的婴儿通常需要长期和反复住院,甚至可能出现肺功能的终身改变,严重影响这部分患儿的生活质量 [4] 。目前,临床上对于BPD暂无特异性的治疗手段,仍以预防为主,早期识别、早期干预对这部分早产儿尤为重要 [5] 。因此,若能找到可准确预测BPD发生的早期相关的生物标志物,尽早地筛查出这部分早产儿,从而对其进行早期干预,则能降低这部分早产儿BPD的发生率。因此,早期预测BPD发生的生物标志物一直是该领域的研究热点 [6] [7] 。本文拟就目前对早产儿BPD早期相关生物标志物的研究进展进行综述。

2. 血清相关生物标志物

2.1. 嗜酸性粒细胞计数

有研究表明,BPD的发生与嗜酸性粒细胞的活化有关,BPD患儿中的嗜酸性粒细胞计数比健康的新生儿以及患有新生儿呼吸窘迫综合征(neonatal respiratory distress syndrome, RDS)的新生儿更高,同时,嗜酸性粒细胞阳离子蛋白(ECP)和细胞表面抗原(CD9)也增加 [8] 。另有研究表明,与没有BPD的婴儿相比,继续发展为BPD的婴儿在出生后第一天的嗜酸性粒细胞计数绝对值更高 [9] ,这与体液生物标志物eotaxin-1 (CCL11)的增加有关,对嗜酸性粒细胞有选择性的一种趋化因子 [8] 。国内有研究也表明嗜酸性粒细胞数目的升高是BPD发生的独立危险因素,且生后第3周嗜酸性粒细胞计数预测BPD发生的敏感度高达78.1% [10] 。以上说明嗜酸性粒细胞计数可作为BPD早期相关生物标志物之一。

2.2. 氨基末端脑钠肽前体

氨基末端脑钠肽前体(N-terminalpro-brainnatriureticpeptide, NT-proBNP)与我们熟知的B型钠尿肽(BNP,由容量或压力超负荷刺激的心室肌分泌的多肽激素)共同来源于脑钠肽前体,但NT-proBNP比BNP更稳定,半衰期更长 [11] ,Harris等人在一项小型研究(n = 51)中研究了NT-proBNP水平与<30周胎龄婴儿BPD发展的关系发现出生后第10天的NT-proBNP对于预测严重BPD有非常重要的价值 [12] ;另有一项研究101名极低出生体重儿生后第1天、第3天以及之后每周血清中NT-proBNP的水平表明,第14天血清NT-proBNP > 2264 pg/ml可作为预测BPD发生的可靠指标 [13] 。因此,以上说明NT-proBNP可能是BPD早期预测的一项重要指标。

2.3. Clara细胞分泌蛋白

Clara细胞为支气管干细胞,Clara细胞分泌蛋白(CC16)是由Clara细胞分泌的一种组织特异性蛋白,具有抗炎免疫、抗氧化、肿瘤调节等多种生物学特性 [14] 。一项研究发现在患BPD的机械通气新生儿中,生后第2小时、72小时和14天的血浆CC16浓度显著高于没有发展成BPD的非机械通气新生儿 [15] 。

2.4. II型肺泡细胞表面抗原

II型肺泡细胞表面抗原(KrebsVondenlungen-6, KL-6),由受损、受激发或增殖的II型肺泡上皮细胞分泌的表面抗原。Wang等人 [16] 、Dilli等人 [17] 的研究均发现早产儿生后第14天的血浆KL-6对BPD有很高的预测价值。而国外一项研究 [18] 发现中度/重度BPD患者的血浆KL-6水平明显高于无/轻度BPD患者,血浆KL-6水平在1周时为199 U/mL或在2周时为232 U/mL是预测中/重度BPD的良好指标(PPV分别为83%和80%;敏感度分别为79%和84%;AUC分别为0.83和0.90)。以上说明KL-6对BPD以及中/重度BPD的预测有重要的价值。

2.5. 中性粒细胞明胶酶相关脂质运载蛋白

中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL)是一种由粒细胞表达的一种与呼吸道和炎症性疾病有关的糖蛋白。在一项对36名早产儿的研究中发现,出生时血清NGAL水平 ≥ 82 ng/mL是GA < 31周患儿BPD的预测因子,敏感性为94.00%,特异性为85.00% [19] 。

2.6. 血管生成相关因子

主要包括胎盘生长因子(placental growth factor, PLGF)以及平内皮抑素(endostatin)。PLGF是参与血管生成的血管生成家族中的一员。有研究检测了BPD患儿与对照组新生儿脐血中胎PLGF水平发现,BPD患儿的脐血中PLGF水平明显比对照组高(>17 mg/dl) [20] 。内皮抑素与PLGF作用机制相反,它有拮抗血管内皮生长因子和其他促血管生成因子的作用 [21] 。一项研究分析了92例早产儿(胎龄 < 32周;体重 < 1500 g)和48例健康足月儿(胎龄 > 37周;体重 > 2500 g)脐血内皮抑素浓度,发现极低出生体重儿脐血浆内皮抑素浓度明显低于正常足月新生儿。然而,在出生后的头两周,如果极低出生体重的早产儿插管并接受高浓度的氧气,他们的内皮抑素水平是高的 [22] 。由此可见,早产儿脐血中PLGF水平与血管内皮素的升高可能对BPD的发生有一定的预测价值(在17 mg/dL时,脐带血PlGF水平预测BPD的特异性为95%,敏感性为53%,阳性预测值为83%,阴性预测值为82% [19] )。除这两种生长因子之外,肺微血管的生成还有其他多种生长因子参与,早期检测可能不仅对BPD的预测有一定值价值,若能对其进行进一步的研究,可能也有助于揭示BPD的发生机制,但目前尚需要进一步探索。

3. 尿液相关生物标志物

3.1. 氨基末端脑钠肽前体

前文已经提到,NT-proBNP是BPD血清中的一项重要预测指标,而研究表明,尿NT-proBNP对BPD的预测仍然有重要的价值。一项研究监测了BPD与尿NTproBNP浓度之间的相关性,结果表明,在第7天二者的相关性极为显著。ROC曲线分析显示,尿NT-proBNP/肌酐比值预测BPD的准确率在第7天为83%,第14天为80% [23] 。可见,早产儿尿液中NT-proBNP的水平与BPD的发生也有一定相关性。

3.2. β-2-微球蛋白

β-2-微球蛋白(B2M)与炎症性疾病中的人类组织相容性抗原(HLA110, 111)有关。一项对96名早产儿进行的研究发现,BPD患者在出生后48小时内尿中B2M水平较高,表明B2M也是BPD早期潜在的生物标志物 [24] 。

4. 气管抽吸物或肺泡灌洗液相关生物标志物

4.1. 神经酰胺鞘脂

神经酰胺鞘脂是细胞膜的重要结构承载成分,也是细胞增殖和细胞死亡、内皮屏障功能、血管生成和免疫反应的调节分子。鞘脂水平的异常已被证明在多种肺部疾病中起作用,这说明了鞘脂代谢在肺部疾病的发生发展中有重要的意义 [25] 。两种重要的鞘脂是神经酰胺和鞘氨醇-1-磷酸(S1P)。神经酰胺作为所有其他鞘脂的前体;S1P由神经酰胺通过鞘氨醇产生 [26] 。神经酰胺和S1P在细胞凋亡中起重要作用,神经酰胺刺激细胞凋亡和细胞周期停滞,S1P刺激细胞存活和增殖 [27] 。一项有关BPD小鼠的模型中发现,神经酰胺水平的变化可能是高氧诱导的肺损伤的一个因素,并影响正常的肺发育和功能 [28] 。因其可通过增加肺泡通透性和促炎细胞因子的产生来介导急性肺损伤 [29] 。一项有关神经酰胺和BPD相关性的前瞻性研究中发现,早产儿在机械通气和补充氧气1天后,气管抽吸物中长链和超长链神经酰胺早期增加 [25] 。以上说明神经酰胺对BDP的发生有重要的预测价值。

4.2. 血管内皮生长因子

国外一项研究表明,在出生第一天,气管抽吸液中低水平的血管内皮生长因子,以及升高的可溶性血管内皮生长因子受体水平,是BPD发生的生物学标志 [30] 。另一研究表示结合血管内皮生长因子和转化生长因子-α水平在第0天预测BPD的发展较好(AUC = 0.92) [31] 。可见BPD的发生于血管内皮生长因子的水平密切相关。

4.3. 呼气末一氧化碳

已经有许多研究认为呼气末一氧化碳(ETCO)是BPD重要的生物标志物 [32] [33] 。一项对胎龄 < 32周的早产儿(n = 50)进行的ETCO连续测量的研究结果显示,患有BPD的婴儿(n = 14)的ETCO水平较高。出生后第14天ETCO水平 > 2.15 ppm是BPD的潜在预测因子 [32] 。同一小组的第二项研究评估了78名胎龄 < 33周的早产儿,分为轻度BPD (n = 12)、中度BPD (n = 15)、重度BPD (n = 12)和无BPD (n = 39)。也证明第14天的ETCO是BPD的一个很好的预测指标,具有很高的敏感性和特异性 [34] 。

5. 组学相关生物标志物

5.1. 基因组学、转录组学、代谢组学

近年来,高通量测序技术的发展迅速,分子遗传学及表观遗传学在慢性肺部疾病中的作用机制也受到许多学者的关注,BPD相关的“组学”近年来也是领域内的研究热点,但其作用机制极其复杂,感兴趣的读者,可前往Lal [35] 、Förster [36] 等人的研究成果或自行搜寻相关文献学习,本文将主要对其中的微小RNA (microRNA, miRNA)做阐述。miRNA是近年来发现的一类参与基因表达调控的非编码RNA,Wu等人 [37] 的一项研究评估了从50名早产儿获得的外周血中的miRNA表达,确定了4种miRNA与BPD相关联,即miR-133b;miR-7;miR-152;和miR-30a-3p。另一项研究 [38] 发现,与对照组相比,实验性BPD模型小鼠肺组织中miR-206下调。这项研究还发现,与对照组相比,BPD患者的血液miR-206水平较低。此外,在Yang等人 [39] 的一项研究中,4个上调的miRNA (miRNA-21、miRNA-34a、miRNA-431和let-7f)和1个下调的miRNA (miRNA-335)在BPD肺组织中的表达与正常肺组织相比存在差异。此外,还发现了8个在正常肺发育和BPD进展过程中差异表达的miRNA。可见miRNA的水平对BPD的预测具有非常重要的价值,在将来可能是重要的潜在生物标志物。

5.2. 微生物组学

来自流行病学数据、临床数据和动物模型的证据表明,微生物群在肺部疾病中起着关键作用,在多种呼吸系统疾病中,呼吸道微生物群发生了变化 [40] 。Lohmann等人 [41] 的一项研究发现微生物组多样性减少可能是BPD发展的一个重要因素。Xu等人 [40] 的一项前瞻性研究中,将胎龄 < 34周、出生后24小时内接受气管插管和机械通气治疗的婴儿按BPD的严重程度分为四组(重度BPD、中度BPD、轻度BPD和非BPD),收集了机械通气期间的气管吸液(TA),调查他们出生时(第1天)和出生后第7天的呼吸道微生物区系,结果显示,在门水平上,变形菌在所有婴儿出生时(第1天)和出生后第7天的气道微生物组中占优势,四组之间的气道微生物组组成没有显著差异;在属的水平上,出生时(第1天)的四个组之间的气道微生物组的组成显著不同。与非BPD相比,BPD的寡养单胞菌更为丰富,其丰富程度与疾病的严重程度呈正相关(P < 0.05)。得出结论:气道微生物群落多样性降低、寡养单胞菌丰度增加可能是BPD的潜在生物标志物,BPD的发生和严重程度与寡养单胞菌密切相关。

BPD是一种多因素、多病因引起的肺部慢性损伤性疾病,目前,BPD的诊断仍然以临床症状及影像学为主,且治疗难度较大,相关的生物标志物尚缺乏多中心、大样本的临床证据,相信在未来随着临床及科研的发展,更多精准的生物标志物会被发现,帮助我们早期识别、早期干预这部分BPD患儿,提升他们的生活质量,但就目前来说,BPD相关的早期生物标志物仍需要我们进行进一步探索及验证。

文章引用

冉海波,舒 畅. 支气管肺发育不良早期相关生物标志物的研究进展
Research Progress of Early-Stage Related Biomarkers in Bronchopulmonary Dysplasia[J]. 临床医学进展, 2023, 13(03): 3263-3269. https://doi.org/10.12677/ACM.2023.133465

参考文献

  1. 1. Islam, J.Y., Keller, R.L., Aschner, J.L., Hartert, T.V. and Moore, P.E. (2015) Understanding the Short- and Long-Term Respiratory Outcomes of Prematurity and Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 192, 134-156. https://doi.org/10.1164/rccm.201412-2142PP

  2. 2. Stocks, J., Hislop, A. and Son-nappa, S. (2013) Early Lung Development: Lifelong Effect on Respiratory Health and Disease. The Lancet. Respiratory Medicine, 1, 728-742. https://doi.org/10.1016/S2213-2600(13)70118-8

  3. 3. Jensen, E.A., Dysart, K., Gantz, M.G., McDonald, S., Bamat, N.A., Keszler, M., Kirpalani, H., Laughon, M.M., Poindexter, B.B., Duncan, A.F., Yoder, B.A., Eichenwald, E.C. and DeMauro, S.B. (2019) The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-Based Approach. American Journal of Respiratory and Critical Care Medicine, 200, 751-759. https://doi.org/10.1164/rccm.201812-2348OC

  4. 4. McEvoy, C.T., Jain, L., Schmidt, B., Abman, S., Bancalari, E. and Aschner, J.L. (2014) Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Annals of the American Thoracic Society, 11, S146-S153. https://doi.org/10.1513/AnnalsATS.201312-424LD

  5. 5. 鲁元元, 方欣, 赵小林, 张莉, 李占魁. 新生儿支气管肺发育不良高危因素的研究进展[J]. 中国妇幼健康研究, 2020, 31(12): 1739-1743.

  6. 6. Brener Dik, P.H., Niño Gualdron, Y.M., Galletti, M.F., Cribioli, C.M. and Mariani, G.L. (2017) Bronchopulmonary Dysplasia: Incidence and Risk Factors. Displasia Broncopulmonar: Incidencia y factores de riesgo. Archivos Argentinos de Pediatria, 115, 476-482. https://doi.org/10.5546/aap.2017.476

  7. 7. Kiciński, P., Kesiak, M., Nowiczewski, M. and Gulczyńska, E. (2017) Bronchopulmonary Dysplasia in Very and Extremely Low Birth Weight Infants—Analysis of Selected Risk Fac-tors. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 42, 71-75.

  8. 8. Broström, E.B., Katz-Salamon, M., Lundahl, J., Halldén, G. and Winbladh, B. (2007) Eosinophil Activation in Preterm Infants with Lung Disease. Acta Paediatrica (Oslo, Norway: 1992), 96, 23-28. https://doi.org/10.1111/j.1651-2227.2006.00002.x

  9. 9. Kandasamy, J., Roane, C., Szalai, A. and Ambalavanan, N. (2015) Serum Eotaxin-1 Is Increased in Extremely-Low-Birth-Weight Infants with Bronchopulmonary Dysplasia or Death. Pediatric Research, 78, 498-504. https://doi.org/10.1038/pr.2015.152

  10. 10. 陈瑛, 彭晓艳, 韩同英, 等. 早产儿嗜酸性粒细胞增多症与支气管肺发育不良的相关性[J]. 中华新生儿科杂志, 2021, 36(1): 14-19.

  11. 11. Lenz, A.M. (2011) Natriuretic Peptides in Chil-dren: Physiology and Clinical Utility. Current Opinion in Pediatrics, 23, 452-459. https://doi.org/10.1097/MOP.0b013e32834810e5

  12. 12. Harris, S.L., More, K., Dixon, B., Troughton, R., Pember-ton, C., Horwood, J., Ellis, N. and Austin, N. (2018) Factors Affecting N-Terminal Pro-B-Type Natriuretic Peptide Lev-els in Preterm Infants and Use in Determination of Haemodynamic Significance of Patent Ductus Arteriosus. European Journal of Pediatrics, 177, 521-532. https://doi.org/10.1007/s00431-018-3089-y

  13. 13. Méndez-Abad, P., Zafra-Rodríguez, P., Lubián-López, S. and Benavente-Fernández, I. (2019) NTproBNP Is a Useful Early Biomarker of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. European Journal of Pediatrics, 178, 755-761. https://doi.org/10.1007/s00431-019-03347-2

  14. 14. 吴峰, 丁伯应, 杨小龙. CC16与肺部疾病关系的研究进展[J]. 临床肺科杂志, 2014, 19(9): 1689-1691.

  15. 15. Sarafidis, K., Stathopoulou, T., Diamanti, E., Soubasi, V., Agakidis, C., Balaska, A. and Drossou, V. (2008) Clara Cell Secretory Protein (CC16) as a Peripheral Blood Biomarker of Lung Inju-ry in Ventilated Preterm Neonates. European Journal of Pediatrics, 167, 1297-1303. https://doi.org/10.1007/s00431-008-0712-3

  16. 16. Wang, K., Huang, X., Lu, H. and Zhang, Z. (2014) A Comparison of KL-6 and Clara Cell Protein as Markers for Predicting Bronchopulmonary Dysplasia in Preterm Infants. Disease Markers, 2014, Article ID: 736536. https://doi.org/10.1155/2014/736536

  17. 17. Dilli, D., Özyazici, A., Dursun, A. and Beken, S. (2017) Predictive Val-ues of Plasma KL-6 in Bronchopulmonary Dysplasia in Preterm Infants. Turkish Journal of Medical Sciences, 47, 621-626. https://doi.org/10.3906/sag-1512-78

  18. 18. Ogihara, T., Hirano, K., Morinobu, T., Kim, H. S., Ogawa, S., Hiroi, M., Oue, S., Ban, R., Hira, S., Hasegawa, M., Yamaoka, S. and Yasui, M. (2006) Plasma KL-6 Predicts the De-velopment and Outcome of Bronchopulmonary Dysplasia. Pediatric Research, 60, 613-618. https://doi.org/10.1203/01.pdr.0000242361.47408.51

  19. 19. Inoue, H., Ohga, S., Kusuda, T., Kitajima, J., Kinjo, T., Ochiai, M., Takahata, Y., Honjo, S. and Hara, T. (2013) Serum Neutrophil Gelatinase-Associated Lipocalin as a Predic-tor of the Development of Bronchopulmonary Dysplasia in Preterm Infants. Early Human Development, 89, 425-429. https://doi.org/10.1016/j.earlhumdev.2012.12.011

  20. 20. Tsao, P.N., Wei, S.C., Su, Y.N., Lee, C.N., Chou, H.C., Hsieh, W.S. and Hsieh, F.J. (2004) Placenta Growth Factor Elevation in the Cord Blood of Premature Neonates Predicts Poor Pulmonary Outcome. Pediatrics, 113, 1348-1351. https://doi.org/10.1542/peds.113.5.1348

  21. 21. Abdollahi, A., Hahnfeldt, P., Maercker, C., Gröne, H.J., Debus, J., Ansorge, W., Folkman, J., Hlatky, L. and Huber, P.E. (2004) Endostatin’s Antiangiogenic Signaling Network. Molecu-lar Cell, 13, 649-663. https://doi.org/10.1016/S1097-2765(04)00102-9

  22. 22. Janér, J., Andersson, S., Kajantie, E. and Lassus, P. (2009) Endostatin Concentration in Cord Plasma Predicts the Development of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. Pediatrics, 123, 1142-1146. https://doi.org/10.1542/peds.2008-1339

  23. 23. Czernik, C., Metze, B., Müller, C., Müller, B. and Bührer, C. (2011) Urinary N-Terminal B-Type Natriuretic Peptide Predicts Severe Retinopathy of Prematurity. Pediatrics, 128, e545-e549. https://doi.org/10.1542/peds.2011-0603

  24. 24. Shima, Y., Nishimaki, S., Nakajima, M., Kumasaka, S. and Migita, M. (2011) Urinary β-2-Microglobulin as an Alternative Marker for Fetal Inflammatory Response and Development of Bronchopulmonary Dysplasia in Premature Infants. Journal of Perinatology: Official Journal of the California Perinatal Association, 31, 330-334. https://doi.org/10.1038/jp.2010.129

  25. 25. van Mastrigt, E., Zweekhorst, S., Bol, B., Tibboel, J., van Rosmalen, J., Samsom, J.N., Kroon, A.A., de Jongste, J.C., Reiss, I.K.M., Post, M. and Pijnenburg, M.W. (2018) Ceramides in Tra-cheal Aspirates of Preterm Infants: Marker for Bronchopulmonary Dysplasia. PLOS ONE, 13, e0185969. https://doi.org/10.1371/journal.pone.0185969

  26. 26. Hannun, Y.A. and Obeid, L.M. (2002) The Ceramide-Centric Universe of Lipid-Mediated Cell Regulation: Stress Encounters of the Lipid Kind. The Journal of Biological Chemistry, 277, 25847-25850. https://doi.org/10.1074/jbc.R200008200

  27. 27. Payne, S.G., Milstien, S. and Spiegel, S. (2002) Sphingo-sine-1-phosphate: Dual Messenger Functions. FEBS Letters, 531, 54-57. https://doi.org/10.1016/S0014-5793(02)03480-4

  28. 28. Tibboel, J., Joza, S., Reiss, I., de Jongste, J.C. and Post, M. (2013) Amelioration of Hyperoxia-Induced Lung Injury Using a Sphingolipid-Based Intervention. The European Res-piratory Journal, 42, 776-784. https://doi.org/10.1183/09031936.00092212

  29. 29. Mathias, S., Peña, L.A. and Kolesnick, R.N. (1998) Signal Transduction of Stress via Ceramide. The Biochemical Journal, 335, 465-480. https://doi.org/10.1042/bj3350465

  30. 30. Hasan, J., Beharry, K.D., Valencia, A.M., Strauss, A. and Modanlou, H.D. (2009) Soluble Vascular Endothelial Growth Factor Receptor 1 in Tracheal Aspirate Fluid of Preterm Neonates at Birth May Be Predictive of Bronchopulmonary Dysplasia/Chronic Lung Disease. Pediatrics, 123, 1541-1547. https://doi.org/10.1542/peds.2008-1670

  31. 31. Been, J.V., Debeer, A., van Iwaarden, J.F., Kloosterboer, N., Passos, V.L., Naulaers, G. and Zimmermann, L.J. (2010) Early Alterations of Growth Factor Patterns in Bronchoalveolar Lavage Fluid from Preterm Infants Developing Bronchopulmonary Dysplasia. Pediatric Research, 67, 83-89. https://doi.org/10.1203/PDR.0b013e3181c13276

  32. 32. May, C., Patel, S., Peacock, J., Milner, A., Rafferty, G.F. and Greenough, A. (2007) End-Tidal Carbon Monoxide Levels in Prematurely Born Infants Developing Bronchopulmo-nary Dysplasia. Pediatric Research, 61, 474-478. https://doi.org/10.1203/pdr.0b013e3180332bfe

  33. 33. Zhang, Z.Q., Huang, X.M. and Lu, H. (2014) Early Bi-omarkers as Predictors for Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. European Journal of Pediatrics, 173, 15-23. https://doi.org/10.1007/s00431-013-2148-7

  34. 34. May, C., Patel, S., Kennedy, C., Pollina, E., Rafferty, G.F., Pea-cock, J.L. and Greenough, A. (2011) Prediction of Bronchopulmonary Dysplasia. Archives of Disease in Childhood. Fe-tal and Neonatal Edition, 96, F410-F416. https://doi.org/10.1136/adc.2010.189597

  35. 35. Lal, C.V., Bhandari, V. and Ambalavanan, N. (2018) Genomics, Microbiomics, Proteomics, and Metabolomics in Bronchopulmonary Dysplasia. Seminars in Perinatology, 42, 425-431. https://doi.org/10.1053/j.semperi.2018.09.004

  36. 36. Förster, K., Sass, S., Ehrhardt, H., Mous, D.S., Rottier, R.J., Oak, P., Schulze, A., Flemmer, A.W., Gronbach, J., Hübener, C., Desai, T., Eickelberg, O., Theis, F.J. and Hilgendorff, A. (2018) Early Identification of Bronchopulmonary Dysplasia Using Novel Biomarkers by Proteomic Screening. Amer-ican Journal of Respiratory and Critical Care Medicine, 197, 1076-1080. https://doi.org/10.1164/rccm.201706-1218LE

  37. 37. Wu, Y.T., Chen, W.J., Hsieh, W.S., Tsao, P.N., Yu, S.L., Lai, C.Y., Lee, W.C. and Jeng, S.F. (2013) MicroRNA Expression Aberration Associated with Bronchopulmonary Dysplasia in Preterm Infants: A Preliminary Study. Respiratory Care, 58, 1527-1535. https://doi.org/10.4187/respcare.02166

  38. 38. Zhang, X., Xu, J., Wang, J., Gortner, L., Zhang, S., Wei, X., Song, J., Zhang, Y., Li, Q. and Feng, Z. (2013) Reduction of microRNA-206 Contributes to the Development of Bronchopulmo-nary Dysplasia through Up-Regulation of Fibronectin 1. PLOS ONE, 8, e74750. https://doi.org/10.1371/journal.pone.0074750

  39. 39. Yang, Y., Qiu, J., Kan, Q., Zhou, X.G. and Zhou, X.Y. (2013) MicroRNA Expression Profiling Studies on Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Genetics and Molecular Research: GMR, 12, 5195-5206. https://doi.org/10.4238/2013.October.30.4

  40. 40. Xu, Q., Yu, J., Liu, D., Tan, Q. and He, Y. (2022) The Airway Microbiome and Metabolome in Preterm Infants: Potential Biomarkers of Bronchopulmonary Dysplasia. Frontiers in Pe-diatrics, 10, Article ID: 862157. https://doi.org/10.3389/fped.2022.862157

  41. 41. Lohmann, P., Luna, R.A., Hollister, E.B., Devaraj, S., Mistretta, T.A., Welty, S.E. and Versalovic, J. (2014) The Airway Microbiome of Intubated Premature Infants: Characteristics and Changes That Predict the Development of Bronchopulmonary Dysplasia. Pediatric Research, 76, 294-301. https://doi.org/10.1038/pr.2014.85

期刊菜单