Advances in Analytical Chemistry
Vol. 12  No. 04 ( 2022 ), Article ID: 58334 , 12 pages
10.12677/AAC.2022.124041

常见的固态电解质在锂硫电池中的相关应用

高浩琦,原焕敏

浙江师范大学,浙江 金华

收稿日期:2022年10月23日;录用日期:2022年11月13日;发布日期:2022年11月25日

摘要

近年来,随着经济的迅猛发展便携式电子产品在全球范围内逐渐普及,锂硫电池由于其具有价格低廉,环境友好,能量密度高的特点,成为了锂离子电池之后的高性能电源。随着人们对锂硫电池的不断深入研究,人们发现其实现商业化仍然困难重重。影响锂硫电池性能的主要是多硫化物的穿梭效应、绝缘性以及在充放电过程中的体积膨胀,同时目前大部分的锂硫电池使用液体电解液导致充放电过程中产生的多硫化物溶解的问题迟迟未能解决,针对这个问题本文重点综述了新型固态电解质的锂硫电池设计以及相关的研究进展,最后总结了未来锂硫电池固态电解质的发展方向。

关键词

锂硫电池,固态电解质,聚合物电解质

Related Applications of Solid-State Electrolytes in Lithium-Sulfur Batteries

Haoqi Gao, Huanmin Yuan

Zhejiang Normal University, Jinhua Zhejiang

Received: Oct. 23rd, 2022; accepted: Nov. 13th, 2022; published: Nov. 25th, 2022

ABSTRACT

In recent years, with the rapid development of the economy, portable electronic products are gradually popular around the world. Lithium-sulfur batteries have become the high-performance power source after lithium-ion batteries because of their low price, environment friendly and high energy density. With the continuous in-depth research of lithium sulfur batteries, it is found that it is still difficult to achieve commercialization. The main factors affecting the performance of lithium-sulfur batteries are the shuttle effect of polysulfide, insulation and volume expansion in the process of charging and discharging. At the same time, most of the current lithium-sulfur batteries use liquid electrolyte, resulting in the dissolution of polysulfide in the process of charging and discharging, which has not been solved. In order to solve this problem, this paper mainly reviews the design and related research progress of lithium-sulfur battery with new solid electrolyte. Finally, the future development direction of solid electrolytes for lithium-sulfur batteries is summarized.

Keywords:Lithium Sulfur Battery, Solid State Electrolyte, Polymer Electrolyte

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着现代社会的不断发展,化石能源日渐短缺,同时环境污染的情况也越来越严重,能源危机和环境问题成为当今人类急需解决的问题,因此研究和开发太阳能、风能和水能等新型能源显得尤为重要 [1]。目前人们通常选择锂离子电池来提供能量 [2],但经过近三十年的发展,锂离子电池的能量密度已经接近其极限值。未来满足人类日益增长的能量需求,研发下一代高能量密度电池便急不可待。而锂硫电池由于其具有较高的能量密度,约为2600 Wh kg−1 [3],是当前锂离子电池能量密度的10倍 [4],同时硫价格便宜,无毒,在地球上的含量及其的丰富 [5] [6]。而引起了人们的广泛关注。因此锂硫电池可以被视为未来的高效清洁新能源,能够满足较长一段时间内的能源供给需求。

2. 锂硫电池的结构及其面临的挑战

传统的锂硫电池主要分为四个部分 [7],锂金属作为负极,单质硫或者硫化物作为正极的活性材料部分,电解液和隔膜。传统锂硫电池的反应机制是建立在固–液–固的基础上的,通过锂金属与单质硫之间的氧化反应实现能量的转化过程,如图1,相关的反应方程式如下:

正极:

S 8 + 16e 8S 2 (R1)

负极:

16Li 16e 16Li + (R2)

总反应:

S 8 + 16Li 8Li 2 S (R3)

目前传统锂硫电池所面临的限制其发展的问题是其循环性能。对于负极,能够影响其循环性能的主要是锂枝晶问题 [8],金属锂由于其独特的结构特性,从而具有了活泼的化学性质,在充放电过程中锂金属会与电解液成分发生反应,在其表面形成了固态电解质界面层,严重影响了锂离子传导,同时固态电解质界面层的不断破裂与修复会导致负极的坍塌,而锂离子的不均匀沉积会形成锂枝晶,枝晶刺穿隔膜容易引发短路甚至爆炸现象 [9] [10]。正极硫材料本身具有绝缘性 [11],同时其放电产物多硫化物也具有独特的绝缘性 [12],限制了正极材料的氧化还原动力学。在锂化过程中,单质硫也会产生巨大的体积膨胀 [13],使得正极材料开裂,甚至活性物质脱落。同时还原产物多硫化物,容易溶解在醚类电解质中,引起多硫化物的穿梭效应 [14] [15] [16],导致了电池内活性物质不断流失从而降低了锂硫电池的循环寿命和库仑效率。

Figure 1. Schematic diagram of lithium-sulfur battery structure and charge-discharge curve of lithium-sulfur battery

图1. 锂硫电池结构示意图及锂硫电池充放电曲线

现在针对锂硫电池的上述问题,人们所采用的策略主要包括以下的几种:使用一系列的硫宿主材料,如碳材料 [17] [18];设计独特的隔膜结构 [19];设计复合电解质结构 [20] [21] 等。但该类策略并不完全解决锂硫电池所面临的问题。目前多数的锂硫电池采用醚类电解液,该类电解液的闪点较低 [22] [23],在电池的生产使用过程中容易引发一系列的安全问题,在充放电过程中液体电解质会与电极发生副反应,使得电池的容量降低,同时液体电解质也可能发生蒸发、干燥、泄露或者起火等问题。目前研究发现使用固态电解质代替液态电解质是解决液态电解质引起的一系列问题的有效策略。基于以上发现,研究人员讨论了固态锂硫电池的发展所面临的问题,如界面问题、穿梭效应和锂枝晶问题。

实际上,固态锂硫电池之所以能够被研究者发现,主要是基于对固态电解质的研究,而固态电解质理应满足以下条件才可以作为锂硫电池固态电解质:1) 高离子电导率;2) 高锂离子迁移率;3) 较好的机械性能;4) 足够的化学和电化学稳定性;5) 良好的电极稳定性 [24] [25] [26]。目前的固态电解质并不能完全满足这些要求,不同的固态电解质有不同的特点,作用以及所面临的挑战,本文主要论述了国内外课题组近年来在锂硫电池固态电解质领域的进展,并结合相关研究,着重阐述了实现锂硫电池固态电解质综合性能协同提升的相关策略,对锂硫电池固态电解质的发展前景进行了展望。

3. 固态电解质离子传导机制

Goodenough [27] 提出固态电解质中离子主要通过周期势垒进行传输,周期势垒指的是锂硫固态电池中结晶固体中的能量势垒。Sing等 [28] 提出在非晶体的聚合物电解质中,锂离子的传输通常可以用跳跃传输模型来描述。Li+会沿着聚合物链移动,从一个配位点跳到另一个配位点或从一个配位点位移到另一配位点。这种传输方式不仅可以促进离子运输,还可以提供一个机械稳定性,来解决传统液体电解质的不稳定性,为电池电解质材料的多功能设计提供了更多的可能。Gadjourova等 [29] 认为在某些情况下,固态电解质中晶体聚合物的离子电导率可能高于非晶体聚合物。这是因为某些聚合物电解质在一定的浓度下会形成结晶化合物,结晶相中的聚合物链可以形成一个圆柱形通道,PEO链对会折叠形成圆柱形隧道,Li+离子在其中实现配位。阴离子位于链间空间中这些隧道的外部,不与阳离子配位。该结构表明锂离子沿隧道传输可能是可能的而无需借助聚合物链的分段运动。

4. 固态电解质的分类

目前的固态电解质通常被分为无机固态电解质 [30]、聚合物固态电解质 [31] [32]。无机固态电解质可以分为氧化物固态电解质 [33] 和硫化物固态电解质 [34],如图2

Figure 2. Classification of solid state electrolytes

图2. 固态电解质的分类

4.1. 无机固态电解质

氧化物固态电解质具有热稳定性好、宽的电化学窗口等优点 [35];可以有效地防止锂枝晶刺穿隔膜和电解液分解以及漏液等问题 [36]。与氧化物固态电解质相比,硫化物固态电解质由于其独特的阴离子结构,从而具有了更高的离子电导率,NASICON型、石榴石型固态电解质的;锂离子电导率在室温接近1 × 10−3 S·cm−1。当使用一些硫化物固态电解质,如Li10GeP2S12(LGPS)和Li9.54Si1.74P1.44S11.7Cl0.3时,该值进一步提高到10−2 S·cm−1,同时由于大多数的主族元素与硫之间能够形成强共价键,具有了更好的电化学稳定性。

4.1.1. 氧化物固态电解质

研究发现,氧化物固态电解质的电导率可以达到10−4 S·cm−1,常见的氧化物固态电解质主要有石榴石型Li7La3Zr2O12(LLZO)、钙钛矿型Li3xLa2V3-xTiO3(LLTO)、NASICON型Li1+xAlxTi2-x(PO4)3等等 [37]。

LLZO具有较宽电位窗,并且具有立方相和四方相2种晶体结构。其中立方相属于高温稳定相且具有较高的离子电导率,可达到10−4 S·cm。Xu等 [38] 研发了新型多孔致密的三层石榴石型电解质,使得锂金属负极和硫正极都渗透于多孔的石榴石框架结构中,但又会被密集的石榴石层隔开,形成新型的一体化固态电池如图3(a),相互连接的石榴石电解质会在整个电池结构中提供离子通道,碳纳米管的涂层和渗透的锂金属则负责实现电子的连续通道。该类结构具有较低的界面阻抗,能够确保锂离子连续传递的同时抑制多硫化物的穿梭和锂枝晶的生长,在经过50次的循环后,其能量密度达272 Wh·kg−1。Abdel Hamid等 [39] 通过“cupcake”的方法合成了薄片状的LLZO,如图3(b),该项工作第一次使用蔗糖作为络合剂结构导向剂通过溶胶凝胶法合成片状LLZO,将其与PTFE混合后形成了非刚性固体框架结构,同时使用DME/DOL中的LITFSI作为液体成分,极好的提高了电解液的吸收率,也表现出了快速的锂离子扩散率。该结构可与电极良好接触,同时在组装电池过程中能够保持自身结构完好。Liu等 [40] 通过固相反应法制备了Ba、Y和Al共掺杂的LLZO结构,如图3(c),同时研究了烧结条件对制备的固态电解质的晶体结构、形貌、电导率等的影响,研究发现其电导率可以达到2.96 × 10−4 S·cm−1。Huang等 [41] 利用离子选择策略,在含有LLZO和Li-Nafion的PE隔膜表面形成了一层2 μm厚的致密涂层,煅烧除去杂质后的主要成分是LLZO,而Nafion被完全锂化后形成的Li-Nafion作为粘结剂成分。LLZO提供了锂离子导电性,Li-Nafion填充了LLZO颗粒之间的间隙,以牢固地结合LLZO并制造致密层,同时阻止多硫化物离子的迁移。两种组份的协同作用下,表现出来更好的离子电导率。

Figure 3. (a) Schematic demonstrating the working principle of all-in-one solid-state Li-S battery based on trilayer garnet electrolyte; (b) Schematic depicting LLZO HQSE preparation; (c) Schematic Nafion (Li-Nafion) and the calcined ceramic Li7La3Zr2O12 (LLZO)

图3. 氧化物固态电解质。(a) 多孔三层石榴石型一体化电极结构示意图;(b) “cupcake”法制得的LLZO与PTFE混合所得框架结构示意图;(c) 锂离子导体LLZO和粘结剂Li-Nafion结构示意图

4.1.2. 硫化物固态电解质

硫化物固态电解质是指电解质中的阴离子框架的主要组成成分为S2−的固态电解质材料,最早在20世纪80年代,研究者就已经发现Li2S-P2S5,Li2S-GeS2等硫化物的离子电导率可以在室温条件下达到10−4 S·cm−1,可以被当做锂离子导体用ss于电池当中。Kanno教授课题组 [42] 在2011年利用高能球磨和高温烧结相结合的方法制备超离子导体Li10GeP2S12 (LGPS),便属于硫化物固态电解质,其具体组分为Li2S-P2S5-GeS2,该电解质的室温离子电导率突破1.2 × 10−2 S·cm−1,与电解液相当,是第一个电导率达到液态电解液水平的固态电解质,因此引发巨大关注。之后Li等 [43] 通过将S和TTA直接共聚制备得到了PST,再将PTS作为添加剂添加到电解液中并进行充分混合,从而形成了稳定且具有柔性的固态电解质界面层,如图4。PST用作电解液添加剂足够坚固,能够适应锂金属层的体积变化,抑制锂枝晶的产生。PST作为高性能添加剂的锂硫电池,在2 mA·cm−2的电流密度下,经过400次循环后库伦效率可以达到99%。大部分硫化物固态电解质主要用于解决锂硫电池中的锂金属负极的枝晶问题,只有少部分能解决硫正极存在的问题。而Guo等 [44] 将BBT作为双功能电解质添加剂,利用有机硫醇反应特性,使用1,3,5-苯三硫醇(BTT)小分子作为电解液添加剂用于锂硫电池中。Li和S的高反应性S-H基团原位反应产生了由S-Li和S-S键组成的界面层。BBT通过原位的有机硫醇转化在正负极两个界面构建了固态电解质界面层,首先BTT在负极表面与锂金属反应形成的1,3,5-苯三硫醇实现可逆的锂沉积/剥离,与此同时BTT 还会与硫反应形成覆盖正极表面的低聚物/聚合物SEI,从而减少多硫化锂的溶解和穿梭。含有BTT的锂硫电池充放电行为不同与空白对照的锂硫电池,具有较好的电化学性能。在高硫单质载量以及低电解液用量的情况下仍具有较好的循环性能。含有BTT的锂锂对称电池具有更低的沉积电位,且在大电流密度的条件下仍保持低沉积电位,循环后的锂金属具有平整、致密的表面,且SEI层为含有苯三硫锂的有机–无机杂化SEI层,证明了BTT对锂金属枝晶问题的抑制作用。BTT能在循环过程中与硫单质结合,在充电后生成苯基多硫的低聚产物,形成硫碳正极侧的SEI层,能有效减少多硫化物的生成和抑制多硫化物的穿梭(图4)。采用BTT的Li-S电池的放电比容量为1239 mA·h·g−1 (基于硫),在1倍率下可以达到300 次循环的高循环稳定性。

Figure 4. Schematic of SCP provides organic units (organosulfide/organopolysulfide) and inorganic units (Li2S/Li2S2) in the electrolyte

图4. S和TTA共聚示意图

4.2. 聚合物固态电解质

聚合物固态电解质,根据基底材料的不同,主要可以划分为聚氧化乙烯(PEO)基 [45]、聚丙烯腈(PAN)基 [46] 和聚甲基丙烯酸甲酯(PMMA)基 [47] 以及偏聚氟乙烯(PVDF)基 [48] 固态电解质等,如图5。聚合物电解质成膜性好、有一定的延展性,易于大规模制造。

Figure 5. Common solid-state polymer electrolytes

图5. 常见的聚合物固态电解质

研究表明,在这些电解质中,PAN基电解质电化学窗口窄,无法应用于高压、高比容电池体系;PMMA基电解液机械强度差,难以成型应用;PVDF基电解质虽有较高的介电常数,这有利于锂盐的分解,但PVDF聚合物结构对称、规则,容易形成晶体结构,不利于离子导电;相较之下,PEO的骨架结构最简单,化学稳定性和电化学稳定性较好,因此PEO基被认为是最理想的聚合物基体。

1973年,Rawsky等 [49] 发现聚乙烯氧化物(PEO)与碱金属盐之间的离子导电配合物,开创了一个新的研究领域SSE研究的新方向。在锂硫电池中,PEO具有较高的机械柔性和较低的界面电荷转移电阻。

锂离子在PEO中主要通过链间或者链内发生,当盐的浓度过高时,锂离子的传递也会受到阻碍。除此之外,PEO在室温下的高结晶度也会限制锂离子的运动 [50] [51]。此外,由于PEO和含醚的液体电解质之间类似的醚结构在中高温条件下表现出一定的多硫化物的溶解,这是因为PEO与多硫化物之间的吸引力。因此研究者们试图抑制多硫化物的溶解,降低PEO的玻璃化转变温度,提高其离子电导率。最早适用在锂硫电池当中的固态聚合物电解质是PEO/LITFSI,但其在初始循环中无法达到硫正极的理论比容量同时会出现容量快速衰减的现象,同时也无法抑制多硫化物的穿梭,与LITFSI相比,PEO/LIFSI有着更好的循环性能,形成了SEI层也更加稳定。Khurana等 [52] 在2014年使用聚乙烯(PE)和PEO进行交联和聚合,并添加锂盐LiTFSI,如图6(a),得到的复合材料室温下锂离子导电率高达10−4 S·cm−1,这是因为PE材料提供的骨架结构可以降低PEO的结晶度,提高其锂离子导电率,也可以有效抑制多硫化物的穿梭。Eshetu等 [53] 通过将LITFSI换成了包含−SO2CF3和−SO2F官能团的LIFTFSI,如图6(b),该结构能够很好的融合TFSI-和FSI-的优势,表现出了极好的的界面稳定性,在第一次循环时库仑效率高达100%,也有人通过添加无机填料来降低PEO的结晶度,增加PEO聚合物电解质的离子电导率。增加无机填料在一定程度上可以吸附多硫化物,同时也可以提供额外的例子传导路径,有助于改善锂离子的电导率。Judez等 [54] 人将氧化铝作为PEO基固态电解质的无机填料,如图6(c),研究发现含有Al2O3作为无机填料显著改善了锂金属的SEI层,使得库伦效率高达99%,因此这些含无机填料的固态聚合物电解质可能是提高全固态锂的安全性和电化学性能的理想候选材料。

Figure 6. (a) Schematic of Polyethylene/poly (ethylene oxide) solid polymer electrolyte (SPE) synthesis and nomenclature; (b) Schematic of (fluorosulfonyl) (trifluoromethanesulfonyl) imide anions inherited from the design of lithium salts in SPEs; (c) Schematic of lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) (LiFSI/PEO) containing either Li-ion conducting glass ceramic (LICGC) or inorganic Al2O3 fillers in all-solid-state Li-S cells

图6. (a) 聚乙烯(PE)和PEO进行交联和聚合示意图;(b) LIFTFSI作为锂盐的界面示意图;(c) Al2O3作为无机填料的聚合物电解质示意图

4.3. 复合电解质

目前来讲,无机固态电解质和有机聚合物电解质都不是锂硫电池的理想电解质。无机固态电解质虽然具有较高的离子电导率,但是锂金属的不稳定以及高的界面阻抗会导致锂硫电池的循环效率极大地降低;而聚合物固态电解质虽然具有较高的柔韧性,但是离子电导率却较低。因此目前有研究者选择将二者结合起来来解决锂硫电池所面临的问题。

Li等 [55] 使用硫代物快离子导体/聚合物复合电解质和硫化聚丙烯(S/PAN)组装了一种拥有优异性能的固态电解质锂硫电池,如图7(a),取代了传统的刚性无机固态电解质颗粒,其离子电导率可以达到0.42 × 10−3 S·cm−1,锂离子迁移数则达到了0.87。组装的SSLSB全电池在0.2 C和0.5 C下分别表现出1183 mA·h·g−1和719 mA·h·g−1的优异性能,并能在0.1 C下循环50圈后,仍然保持588 mA·h·g−1的容量。Bai等 [56] 通过在Li9.54Si1.74P1.44S11.7Cl0.3中掺杂15 wt%的氧原子得到了稳定的硫化物固态电解质,后又构建了由离子液体,

Figure 7. (a) Schematic of the fabrication process of LGPS/PEO composite electrolyte (LCE); (b) Schematic of SSLSB using organic-inorganic multi scale composite electrolyte; (c) Schematic of the synthesis of PEO-LSPSCl-LiTFSI

图7. 不同种类复合电解质示意图。(a) 硫代物快离子导体/聚合物复合电解质示意图;(b) 氧原子掺杂Li9.54Si1.74P1.44S11.7Cl0.3的硫化物固态电解质示意图;(c) 以PEO-LSPSCl-LiTFSI为结构的新型柔性固态电解质示意图

LITFSI和聚合物PVDF-HFP组成的凝胶聚合物电解质,并将其夹在阴极结构和无机电解质之间构筑了有机–无机复合电解质,如图7(b)。氧元素的掺杂抑制了硫化物固体电解质的H2S的释放,而凝胶聚合物电解质的存在抑制了阴极和硫化物电解质之间的界面反应,控制了多硫化物的生成。在多次循环后热可以保持稳定。Su等 [57] 设计了新型柔性固态电解质,结构是PEO-LSPSCl-LiTFSI,如图7(c)在搅拌条件下将PEO和LiTFSI混合到ACN溶剂中,然后在持续搅拌下将LSPSCl添加到溶液中,之后在将混合物浇铸到模具上,干燥后获得最终的电解质膜结构。与传统PEO-LiTFSI电解质相比,LSPSCl的加入促进了TFSI的解离,因此促进了富LiF、Li2S和Li2O界面层的形成,这有效抑制了锂枝晶生长并稳定了锂金属与电解质的界面,同时过PEO中醚骨架的移动实现了可逆的多硫化物穿梭,减少了S元素的损失,提高了循环稳定性。测试发现电池的初始容量为414 mA·h·g−1,在电流密度为0.1 A·g−1的情况下,100次循环后容量保持率为97.8%。

5. 展望与结论

在过去的十多年内,锂硫电池由于其高能量密度吸引了众多的关注。锂硫电池的反应原理是实现自身可逆反应的基础,但是其在实际应用中存在的各类问题又使得其面临着巨大挑战,如多硫化物的穿梭、锂枝晶的形成等,为了解决这些问题,研究者们主要围绕着电解质的设计以及正负极改性进行系列工作。随着更深入了解,研究者们发现了固态电解质的室温电导率可以达到10−3 S·cm−1,但固态电解质仍然存在有较大的提升空间。本文主要讨论了固态电解质的分类以及相关研究,无机固态电解质离子电导率高,化学性质稳定性,安全性较高,但是柔韧性不足。而固态聚合物电解质安全性好,柔韧性高,但电导率还不能达到传统液态电解质的水平。结合各类电解质的优点组建复合固态电解质可能会综合解决锂硫电池所面临的系列问题。尽管当前对固态电解质的研究相对比较透彻,但是锂硫电池的工作体系比较复杂,因此新型的固态电解质应该考虑在极端条件下的使用,这是新一代固态电解质所面临的新的挑战,我们需要去不断克服各类复杂以及未知的问题,创造更好的固态电解质从而提高锂硫电池性能。

文章引用

高浩琦,原焕敏. 常见的固态电解质在锂硫电池中的相关应用
Related Applications of Solid-State Electrolytes in Lithium-Sulfur Batteries[J]. 分析化学进展, 2022, 12(04): 341-352. https://doi.org/10.12677/AAC.2022.124041

参考文献

  1. 1. Dunn, B., Kamath, H. and Tarascon, J.M. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935.
    https://doi.org/10.1126/science.1212741

  2. 2. Garay-Marín, J.D., Quiroga-González, E. and Garza-Tovar, L.L. (2020) Two Cathodes in One for Lithium-Ion Batteries: Voltammetric Study of a Composite Cathode of Sulfur and LiFePO4. ChemistrySelect, 5, 6172-6177.
    https://doi.org/10.1002/slct.202001292

  3. 3. Ning, J., Yu, H., Mei, S., et al. (2022) Constructing Binder- and Carbon Additive-Free Organosulfur Cathodes Based on Conducting Thiol-Polymers through Electropolymerization for Lithium-Sulfur Batteries. ChemSusChem, 15, e202200434.
    https://doi.org/10.1002/cssc.202200434

  4. 4. Lei, D., Shi, K., Ye, H., et al. (2018) Progress and Perspective of Solid-State Lithium-Sulfur Batteries. Advanced Functional Materials, 28, Article No. 1707570.
    https://doi.org/10.1002/adfm.201707570

  5. 5. Yuan, H., Nan, H.X., Zhao, C.Z., et al. (2020) Slurry-Coated Sulfur/Sulfide Cathode with Li Metal Anode for All-Solid-State Lithium-Sulfur Pouch Cells. Batteries & Supercaps, 3, 596-603.
    https://doi.org/10.1002/batt.202000051

  6. 6. Hao, H., Hutter, T., Boyce, B.L., et al. (2022) Review of Multi-functional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Chemical Reviews, 122, 8053-8125.
    https://doi.org/10.1021/acs.chemrev.1c00838

  7. 7. Deng, R., Wang, M., Yu, H., et al. (2022) Recent Advances and Applications toward Emerging Lithium-Sulfur Batteries: Working Principles and Opportunities. Energy & En-vironmental Materials, 5, 777-799.
    https://doi.org/10.1002/eem2.12257

  8. 8. Xiao, Y., Han, B., Zeng, Y., et al. (2020) New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. Advanced Energy Materials, 10, Article No. 1903937.
    https://doi.org/10.1002/aenm.201903937

  9. 9. He, Y., Chang, Z., Wu, S., et al. (2018) Simultane-ously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF-Based Membrane in Li-S Batteries. Advanced Energy Materials, 8, Article No. 1802130.
    https://doi.org/10.1002/aenm.201802130

  10. 10. Jiang, S., Lu, Y., Lu, Y., et al. (2018) Nafion/Titanium Diox-ide-Coated Lithium Anode for Stable Lithium-Sulfur Batteries. Chemistry—An Asian Journal, 13, 1379-1385.
    https://doi.org/10.1002/asia.201800326

  11. 11. Wang, W., Wang, D., Wang, G., et al. (2020) Elastic, Conductive Coating Layer for Self-Standing Sulfur Cathode Achieving Long Lifespan Li-S Batteries. Advanced Energy Mate-rials, 10, Article No. 1904026.
    https://doi.org/10.1002/aenm.201904026

  12. 12. Liu, J., Zhu, M., Shen, Z., et al. (2021) A Polysulfides-Confined All-in-One Porous Microcapsule Lithium-Sulfur Battery Cathode. Small, 17, Article No. 2103051.
    https://doi.org/10.1002/smll.202103051

  13. 13. Tong, Z., Huang, L., Lei, W., Zhang, H. and Zhan, S. (2021) Carbon-Containing Electrospun Nanofibers for Lithium-Sulfur Battery: Current Status and Future Directions. Journal of Energy Chemistry, 54, 254-273.
    https://doi.org/10.1016/j.jechem.2020.05.059

  14. 14. Bhargav, A., He, J., Gupta, A. and Manthiram, A. (2020) Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule, 4, 285-291.
    https://doi.org/10.1016/j.joule.2020.01.001

  15. 15. Wahyudi, W., Cao, Z., Kumar, P., et al. (2018) Phase Inver-sion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li-S Battery. Advanced Functional Materials, 28, Article No. 1802244.
    https://doi.org/10.1002/adfm.201802244

  16. 16. Ng, S.F., Lau, M.Y.L. and Ong, W.J. (2021) Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. Advanced Materials, 33, Article No. 2008654.
    https://doi.org/10.1002/adma.202008654

  17. 17. Chen, F., Zhang, Y., Hu, Q., et al. (2021) S/MWCNt/LLZO Composite Electrode With e−/S/Li+ Conductive Network for All-Solid-State Lithium-Sulfur Batteries. Journal of Solid State Chemistry, 301, Article ID: 122341.
    https://doi.org/10.1016/j.jssc.2021.122341

  18. 18. Han, L., Li, Y., Yang, Y., et al. (2022) Zwitterionic Covalent Organic Framework as a Multifunctional Sulfur Host toward Durable Lithium-Sulfur Batteries. Journal of Colloid and Interface Science, 628, 144-153.
    https://doi.org/10.1016/j.jcis.2022.07.123

  19. 19. Deng, N., Ticha, E.B., Wang, L., et al. (2019) Physical Inhibi-tion and Chemical Confinement of Lithium Polysulfides by Designing a Double-Layer Composite Separator for Lithium-Sulfur Battery. ChemElectroChem, 6, 4817-4830.
    https://doi.org/10.1002/celc.201901131

  20. 20. Liu, L., Zhang, D., et al. (2022) Synergistic Effect of Lithium Salts with Fillers and Solvents in Composite Electrolytes for Superior Room-Temperature Solid-State Lithium Batteries. ACS Applied Energy Materials, 5, 2484-2494.
    https://doi.org/10.1021/acsaem.1c04001

  21. 21. Ghosh, A., Shukla, S., Khosla, G.S., Lochab, B. and Mitra, S. (2016) Sustainable Sulfur-Rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance. Scientific Reports, 6, Article No. 25207.
    https://doi.org/10.1038/srep25207

  22. 22. Li, X., Banis, M., Lushington, A., et al. (2018) A High-Energy Sulfur Cathode in Carbonate Electrolyte by Eliminating Polysulfides via Solid-Phase Lithium-Sulfur Transformation. Nature Communications, 9, Article No. 4509.
    https://doi.org/10.1038/s41467-018-06877-9

  23. 23. Eshetu, G.G., Judez, X., Li, C., et al. (2017) Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 56, 15368-15372.
    https://doi.org/10.1002/anie.201709305

  24. 24. Sun, S., Xia, Q., Liu, J, et al. (2019) Self-Standing Oxy-gen-Deficient α-MoO3-x Nanoflake Arrays as 3D Cathode for Advanced All-Solid-State Thin Film Lithium Batteries. Journal of Materiomics, 5, 229-236.
    https://doi.org/10.1016/j.jmat.2019.01.001

  25. 25. Weiss, M., Simon, F.J., Busche, M.R., et al. (2020) From Liquid-to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. Electrochemical Energy Reviews, 3, 221-238.
    https://doi.org/10.1007/s41918-020-00062-7

  26. 26. Xu, H., Yu, Y., Wang, Z. and Shao, G. (2019) First Principle Material Genome Approach for All Solid-State Batteries. Energy & Environmental Materials, 2, 234-250.
    https://doi.org/10.1002/eem2.12053

  27. 27. Goodenough, J.B. (2003) Oxide-Ion Electrolytes. Annual Review of Materials Research, 33, 91-128.
    https://doi.org/10.1146/annurev.matsci.33.022802.091651

  28. 28. Sing, C.E., Zwanikken, J.W. and Olvera de La Cruz, M. (2014) Electrostatic Control of Block Copolymer Morphology. Nature Materials, 13, 694-698.
    https://doi.org/10.1038/nmat4001

  29. 29. Gadjourova, Z., Andreev, Y.G., Tunstall, D.P. and Bruce, P.G. (2001) Ionic Conductivity in Crystalline Polymer Electrolytes. Nature, 412, 520-523.
    https://doi.org/10.1038/35087538

  30. 30. Lv, R., Kou, W., Guo, S., et al. (2022) Preparing Two-Dimensional Ordered Li0.33La0.557TiO3 Crystal in Interlayer Channel of Thin Laminar Inorganic Solid-State Electrolyte towards Ultrafast Li+ Transfer. Angewandte Chemie International Edition, 61, e202114220.
    https://doi.org/10.1002/anie.202114220

  31. 31. Zhao, Q., Liu, X., Stalin, S., Khan, K. and Archer, L.A. (2019) Solid-State Polymer Electrolytes with In-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nature Energy, 4, 365-373.
    https://doi.org/10.1038/s41560-019-0349-7

  32. 32. Zhou, W., Wang, S., Li, Y., et al. (2016) Plating a Den-drite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 138, 9385-9388.
    https://doi.org/10.1021/jacs.6b05341

  33. 33. Chen, X., Cao, T., Xue, M., et al. (2018) Improved Room Temper-ature Ionic Conductivity of Ta and Ca Doped Li7La3Zr2O12 via a Modified Solution Method. Solid State Ionics, 314, 92-97.
    https://doi.org/10.1016/j.ssi.2017.11.027

  34. 34. Kaiser, N., Spannenberger, S., Schmitt, M., et al. (2018) Ion Transport Limitations in All-Solid-State Lithium Battery Electrodes Containing a Sulfide-Based Electrolyte. Journal of Power Sources, 396, 175-181.
    https://doi.org/10.1016/j.jpowsour.2018.05.095

  35. 35. Gür, T.M. (2018) Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large-Scale Grid Storage. Energy & Environ-mental Science, 11, 2696-2767.
    https://doi.org/10.1039/C8EE01419A

  36. 36. Yan, X., Li, Z., Wen, Z. and Han, W. (2017) Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. The Journal of Physical Chemistry C, 121, 1431-1435.
    https://doi.org/10.1021/acs.jpcc.6b10268

  37. 37. Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103.
    https://doi.org/10.1038/natrevmats.2016.103

  38. 38. Xu, S., McOwen, D.W., Zhang, L., et al. (2018) All-in-One Lithium-Sulfur Battery Enabled by a Porous-Dense-Porous Garnet Architecture. Energy Storage Materials, 15, 458-464.
    https://doi.org/10.1016/j.ensm.2018.08.009

  39. 39. AbdelHamid, A.A., Cheong, J.L. and Ying, J.Y. (2020) Li7La3Zr2O12 Sheet-Based Framework for High-Performance Lithium-Sulfur Hybrid Quasi-Solid Battery. Nano Energy, 71, Article ID: 104633.
    https://doi.org/10.1016/j.nanoen.2020.104633

  40. 40. Liu, X.Z., Ding, L., et al. (2021) Room-Temperature Ionic Conductivity of Ba, Y, Al Co-Doped Li7La3Zr2O12 Solid Electrolyte after Sintering. Rare Metals, 40, 2301-2306.
    https://doi.org/10.1007/s12598-020-01526-x

  41. 41. Huang, B., Hua, H., Lai, P., et al. (2022) Constructing Ion-Selective Coating Layer with Lithium Ion Conductor LLZO and Binder Li-Nafion for Separator Used in Lith-ium-Sulfur Batteries. ChemElectroChem, 9, e202200416.
    https://doi.org/10.1002/celc.202200416

  42. 42. Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011) A Lithium Superionic Conductor. Nature Materials, 10, 682-686.
    https://doi.org/10.1038/nmat3066

  43. 43. Li, G., Gao, Y., He, X., et al. (2017) Organosulfide-Plasticized Solid-Electrolyte Interphase Layer Enables Stable Lithium Metal Anodes for Long-Cycle Lithium-Sulfur Batteries. Nature Communications, 8, Article No. 850.
    https://doi.org/10.1038/s41467-017-00974-x

  44. 44. Guo, W., Zhang, W., Si, Y., et al. (2021) Artificial Dual Solid-Electrolyte Interfaces Based on in Situ Organothiol Transformation in Lithium Sulfur Battery. Nature Com-munications, 12, Article No. 3031.
    https://doi.org/10.1038/s41467-021-23155-3

  45. 45. Tao, X., Liu, Y., Liu, W., et al. (2017) Solid-State Lithi-um-Sulfur Batteries Operated at 37˚C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Letters, 17, 2967-2972.
    https://doi.org/10.1021/acs.nanolett.7b00221

  46. 46. Chen, Y.T., Chuang, Y.C., Su, J.H., Yu, H.C. and Chen-Yang, Y.W. (2011) High Discharge Capacity Solid Composite Polymer Electrolyte Lithium Battery. Journal of Power Sources, 196, 2802-2809.
    https://doi.org/10.1016/j.jpowsour.2010.11.058

  47. 47. Ahmad, S., Saxena, T.K., Ahmad, S. and Agnihotry, S.A. (2006) The Effect of Nanosized TiO2 Addition on Poly (Methylmethacrylate) Based Polymer Electrolytes. Journal of Power Sources, 159, 205-209.
    https://doi.org/10.1016/j.jpowsour.2006.04.044

  48. 48. Miao, R., Liu, B., Zhu, Z., et al. (2008) PVDF-HFP-Based Porous Polymer Electrolyte Membranes for Lithium-Ion Batteries. Journal of Power Sources, 184, 420-426.
    https://doi.org/10.1016/j.jpowsour.2008.03.045

  49. 49. Rawsky, G.C. and Shriver, D.F. (1996) Rational Design of Novel Polyelectrolytes: Aluminosilicate/Poly (Ethylene Glycol) Copolymers. In: Pittman, C.U., Carraher, C.E., Zeldin, M., Sheats, J.E. and Culbertson, B.M., Eds., Metal-Containing Polymeric Materials, Springer, Boston, 383-393.
    https://doi.org/10.1007/978-1-4613-0365-7_31

  50. 50. Ma, Q., Zhang, H., Zhou, C., et al. (2016) Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie In-ternational Edition, 55, 2521-2525.
    https://doi.org/10.1002/anie.201509299

  51. 51. Nair, J.R., Imholt, L., Brunklaus, G. and Winter, M. (2019) Lithium Metal Polymer Electrolyte Batteries: Opportunities and Challenges. The Electrochemical Society Interface, 28, Article No. 55.
    https://doi.org/10.1149/2.F05192if

  52. 52. Khurana, R., Schaefer, J.L., Archer, L.A. and Coates, G.W. (2014) Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly (Ethylene Oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society, 136, 7395-7402.
    https://doi.org/10.1021/ja502133j

  53. 53. Eshetu, G.G., Judez, X., Li, C., et al. (2018) Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society, 140, 9921- 9933.
    https://doi.org/10.1021/jacs.8b04612

  54. 54. Judez, X., Zhang, H., Li, C., et al. (2017) Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells. The Journal of Physical Chemistry Letters, 8, 3473-3477.
    https://doi.org/10.1021/acs.jpclett.7b01321

  55. 55. Li, M., Frerichs, J.E., Kolek, M., et al. (2020) Solid-State Lithium-Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Advanced Functional Materials, 30, Article No. 1910123.
    https://doi.org/10.1002/adfm.201910123

  56. 56. Bai, Y., Zhao, Y., Li, W., et al. (2020) Organic-Inorganic Mul-ti-Scale Enhanced Interfacial Engineering of Sulfide Solid Electrolyte in Li-S Battery. Chemical Engineering Journal, 396, Article ID: 125334.
    https://doi.org/10.1016/j.cej.2020.125334

  57. 57. Su, Y., Zhang, X., Du, C., et al. (2022) An All-Solid-State Battery Based on Sulfide and PEO Composite Electrolyte. Small, 18, Article ID: 2202069.
    https://doi.org/10.1002/smll.202202069

期刊菜单