Advances in Marine Sciences
Vol.05 No.02(2018), Article ID:25285,5 pages
10.12677/AMS.2018.52008

Application Progress and Prospect of New Energy on Ships

Zhiwen Tan

Jiangnan Shipyard (Group) Co, Ltd, Jiangnan Institute of Technology, Shanghai

Received: May 9th, 2018; accepted: May 30th, 2018; published: Jun. 6th, 2018

ABSTRACT

Under the background of energy crisis and new energy development, the application of new energy sources has become a focus of academic attention. New energy has its advantages in development and utilization. It can meet the demand of ship power supply, realize energy saving, reduce pollution and realize the sustainable development of society and economy.

Keywords:New Energy, Ship, Application, Progress

新能源在船舶上的应用进展及前景

谭志文

江南造船(集团)有限责任公司江南研究院,上海

收稿日期:2018年5月9日;录用日期:2018年5月30日;发布日期:2018年6月6日

摘 要

在能源危机和新能源开发的背景下,船舶新能源的应用问题成为学界关注的一个重点。新能源有其开发利用上的优点,与船舶特点相结合,可满足船舶供电等需求,实现能源的节约利用,同时可有效降低污染,实现社会经济的可持续发展。

关键词 :新能源,船舶,应用,进展

Copyright © 2018 by author and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 能源在船舶上的应用形式

今天的世界人口已经突破60亿,比上个世纪末期增加了2倍多,而能源消费据统计却增加了16倍多。随着全球范围内能源危机的冲击和环境保护及经济持续发展的要求,开发利用新能源(可再生)成为发达国家和部分发展中国家21世纪能源发展战略的基本选择。2009年7月13日召开的国际海事组织(IMO)59次环保会(MEPC59)上,通过了关于新船能效设计指数(EEDI),要求各国政府采取相应的行动。EEDI是衡量船舶能效水平的一个指标,简单地说,EEDI公式是根据CO2排放量和货运能力的比值来表示船舶的能效。其分母表示船舶在规定的船速下与载货量之乘积,而分子可概括为两部分,第一部分为主辅机的功率与所消耗燃油之乘积,第二部分为采用新的节能技术减少燃油消耗所带来的船舶能效的提高部分 [1] 。由此可见,采用新节能技术是优化EEDI指数的一种措施。然而作为一个全球性的研究课题,航运业的节能减排技术已经引起了国际社会的高度重视。针对节能减排技术领域的研究、开发和利用,各国在给予政策扶持的同时,更投入了大量的人力、物力和财力以期能着实有效地实现节能减排这一根本性的目标 [2] 。随着科学技术的不断进步,以风能、太阳能、核能、生物质能和潮汐能等为典型代表的新能源在节能减排方面所具有的独特优势和所能产生的效益已经越来越显著, 其在船舶交通运输行业的应用和推广已呈潮涌之势。

1.1. 风能的应用

源于地球表面大量空气流动所产生的动能——风能,是一种无污染且无限可再生资源。人类对风能的利用历史可以追述到公元前,随着科学技术水平的不断进步,工业社会对于风能的利用有着丰富的经验,配套产业和基础设施也较为成熟。但是,风能利用存在着间歇性、噪音大、受地形影响和干扰雷达信号等难以彻底消除的缺点。当前,风能利用主要以风能作动力(风帆助航)和风力发电两种形式为主,在船舶上的应用形式偏重于作为航行的主动力或辅助动力,只在少数船舶上应用风力发电技术 [3] 。

1.2. 太阳能的应用

太阳能的利用主要有两个方面的技术,即光热技术和光伏技术。光热技术是利用太阳光的热辐射,其应用最为成功的领域是太阳能热水器。该项技术的进一步延伸是太阳能热发电,即利用集热器把太阳辐射热能集中起来给水加热产生蒸汽,再通过汽轮机、发电机来发电。考虑到船舶运行过程中对于热水的需求量不高,进行热电转换在有限的船。空间内难以实施,故而光热利用的可行性不是很高。但是应用光热技术代替常用的蒸汽盘管和电加热盘管对船舶所使用的重油进行预加热,是一个值得关注的方向。光伏技术是对太阳光中的短波辐射能照射于硅质半导体上所产生的电能进行调制后加以利用,亦称为光生伏打效应 [4] 。随着太阳能光伏技术的不断深入发展,其效率、可靠性和稳定性均有了很大的提升,因而从最初的单纯技术研究逐渐转向实际应用领域。太阳能光伏发电应用于船舶是目前绿色船舶发展的一个重要方向。

1.3. 生物质能的应用

生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等三种途径。船舶属于一个相对独立且空间区域较为有限的结构体。机舱内电、气、热设备和系统高度集成,考虑在船舶内附加安装生物质能转换装置有着不可避免的局限性,故而可行性不高 [5] [6] [7] 。就船舶现有设备条件出发,直接或间接使用由生物质能转换而成的替代燃料(例如生物柴油等)是主要的应用模式。

1.4. 核能的应用

核能作为一种能源,特别是一种动力能源,其优越性相当明显。核动力反应堆可以用来发电、供热和推动船舰。在作为船舶动力源方面,核动力装置首先是被应用于潜艇和航空母舰等军用舰艇,而后建造核动力舰艇的一些国家也将船用核动力堆用于推动民用水面船舶,如核动力客船、散货船和破冰船等 [3] 。

1.5. 海洋能的应用

海洋能是一种蕴藏丰富、分布广、清洁无污染,但能量密度低、地域性强的能源形式, 通常指目前,利用海洋能的主要发展方向是将海浪、海流等短周期波所具有的动能和势能转换为电能。在船舶上进行海洋能的利用受到多方面条件的制约:其一,海水能量密度不高造成机械能转换为电能的设备过于庞大;其二,船舶在运营中是一个移动平台,在其自身运动过程中同时利用海洋能,将蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能,等。对其自身造成不可避免的负面影响,如船舶流阻增大和动力性降低等问题。故而直接在航运船舶上应用海洋能不是首推的研究方向 [3] 。但是根据波浪能和水流能的特点,波浪能发电可应用于航标或者小型灯船。水流能可在趸船和航标船上得到应用。

2. 能源在船舶上的应用进展

2.1. 风能在船舶上的应用进展

人类社会对于风帆助航的理解和认识有着悠久的历史,工业科技水平的不断提升对于风帆技术的应用起到了巨大的推动作用,根据风帆的形式及其对风力利用性质的不同,衍生出了普通翼帆、特种翼帆(包括单转子–翼帆组合体帆、转柱帆、转带帆、Walker型风帆)、三角帆、天帆、Magnus效应帆(涡轮帆、转筒帆)和仿生帆等众多船舶风帆结构。其中以三角帆和普通翼帆技术应用水平较高,其他帆型形式在船舶上的应用多是带有试验性质的技术探索 [8] 。

2.2. 太阳能在船舶上的应用进展

将太阳能光伏发电应用于船舶是目前绿色船舶发展的一个重要方向。1997年,瑞士在日内瓦湖上从洛桑到圣叙尔皮斯区投入使用了两艘太阳能驱动客运船。另一艘为长27.5 m的、沙锥号由一个1.8 kW的光伏阵列驱动,能量存储用的是一个180 V、72 Ah的蓄电池,可有效承载60名乘客。2007年11月由我国沈阳泰克太阳能应用有限公司研制了“001”号太阳能旅游船,船体长6.2 m、宽1.9 m、可载9人,时速约10 km左右。船体的设计可分为单浮筒、双浮筒和三浮筒三种型号。这种太阳能旅游船在大于4级风的条件下可持续航行6 h。这是国内建造的第一艘太阳能旅游船 [9] 。2008年8月26日,日本邮船株式会社与新日本石油公司合作耗资1.5亿日元在旗下一艘船长200 m,排水量达60213 t的滚装船御夫座领袖(Aurig a Leader)号上安装了太阳能光伏系统。电池阵列328块太阳光板组成,电能输出功率可达40 kW,能满足6.9%的照明需求或0.2%~0.3%的动力需求 [10] 。2010年2月10日,亚洲最大的全太阳能船在台湾高雄下水并投入正式营运,船长13 m,采用双体船型,并搭配目前台湾厂商所能提供之最大电池54 kW/h 锂蓄电池组,两台20 kW电动机,航速最高可达9 kn,以3 kn航速至少可行驶9 h。

2.3. 生物质能在船舶上的应用进展

2008年6月27日,使用生物质能的新西兰、环球竞赛号(Earthrace)高速环保机动船完成环球航程。该船装备两台康明斯∃水星QSC型8.3L、397 kW全电控船用发动机,虽然此型号柴油机可以使用B20混合生物柴油(由20%生物柴油和80%普通柴油混合而成),但是在整个航程中燃用B100混合生物柴油(100%生物柴油)。2010年AVIVA与香港大学合作推出香港第一艘环保船,该船采用B5混合生物柴油(5%生物柴油、95%超低硫柴油)作为燃料,燃烧后的污染物较一般超低硫柴油可减少10%黑烟、5%一氧化碳及10%的碳氢化物。2010年3月马士基与英国劳氏船级社开展为期两年的船用发动机生物柴油燃料试验。试验船舶为马士基旗下Maersk Kalmar号集装箱船。在试验初期,燃料中将使用5%~7%的生物柴油混合,然后比例逐步增加,测试第一代生物燃料在船舶上应用的可行性。2010年4月美国海军与美国农业部签署一项备忘录,合作开发生物燃料和其他可再生能源,将大规模使用生物燃料作为石油的替代能源 [11] 。

2.4. 核能在船舶上的应用进展

发展民用核动力对我国船舶行业而言是一个崭新的课题。纵观世界船舶发展历史,已经有若干国家在此方面迈出了第一步,美国的“萨娃娜”号于1962年建成,在其商务部海运局的支持下进行商业运营。该船于1964年5月开始进行国际航海,停靠了欧洲14个国家的16个港口。到1965年8月,在达到对核动力民用商船的建造目的后, 改为货船投入航行,并得到政府的运营补贴,在欧洲航线航行,最后于1970年宣布退役。德国矿石运输船“奥托汉”号于1968年月12月建成。1969年3月到11月在围绕英国一周以及在南太平洋(赤道附近)、北极海、西太平洋(西印度群岛)进行了实验航海。从1970年2月开始投入商业航海,总共航行了约105万n mile。日本“陆奥”号在1974年8月28日开始的功率提升试验过程中发生了放射性泄漏事故。其后对反应堆屏蔽进行改造及安全总检查,并改变了用途,作为核动力实验船重新进行了功率提升试验。1991年在北太平洋海面上进行了4次航海试验,1995年完成退役工程。俄罗斯共建成了9艘核动力破冰船,目前正在服役的有8艘,计划建造的破冰船有2艘,即超级号破冰船(Super Icebreaker,破冰能力在3. 5 m以上)和佩贝克(Pevek)号破冰船 [3] 。

2.5. 海洋能在船舶上的应用进展

地球表面的71%都是海洋,孕育着巨大的可再生能源,如何有效地对其开发利用,已成为当前的研究热点。2004年,英国MCT有限公司制造了第一台利用海洋中的海流能进行发电的水下风车。从此,水下风车逐步成为大规模利用海流能的有效途径之一。水下风车适合于在海洋中建立小型电场,如何跟船舶结合还需大量应用基础研究。浙江大学提出了便携式船用发电机的设计思想,从船用便携式发电机的发电效率、海流能的利用率、叶片的受力分析及便携性等方面进行了详细的分析和设计,该研究为海流能利用装置的小型化及民用化提供了理论依据。随着这些成果的研究和进一步开发,有望在灯船、航标船、趸船及某些渔船和小型船舶上得到推广应用 [12] [13] 。

3. 结论与展望

从优化EEDI 指数的要求考虑,必须加大可再生能源和清洁能源在船舶动力中的比重。新能源在船舶上的应用趋势将主要体现在如下几个方面。

1) 从船舶设计阶段,就要充分考虑新能源的利用。这样一是有利于船舶新能源的充分利用,优化EEDI指数;二是有利于降低船舶的制造或改装成本,同时提高船舶的可靠性。

2) 太阳能、风能、海洋能等清洁能源都是低密度能源,单一的清洁能源作用有限。因此,必须实现各种新能源的混合利用。

文章引用

谭志文. 新能源在船舶上的应用进展及前景
Application Progress and Prospect of New Energy on Ships[J]. 海洋科学前沿, 2018, 05(02): 67-71. https://doi.org/10.12677/AMS.2018.52008

参考文献

  1. 1. 王分良. EEDI时代的船舶减排[J]. 中国船检, 2009(8): 62-65.

  2. 2. 梁志鹏. 可再生能源发展的必经过程和我国的额政策取向[J]. 中国能源, 2002(5): 28-32.

  3. 3. 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111-115.

  4. 4. 卢晓平, 魏光普, 张文毓. 太阳能动力船舶发展综述[J]. 海军工程大学学报, 2008, 20(4): 63-94.

  5. 5. 秦大东, 曹军. 浅论我国生物质能发展现状及对策[J]. 安徽通报, 2007, 13(1): 133-135.

  6. 6. 闫廷满. 生物质能(秸秆)发电的思考[J]. 东方电气评论, 2007, 21(1): 1-4.

  7. 7. 田永淑. 新型秸秆气化炉及净化工艺[J]. 可再生能源, 2003(4): 29-30

  8. 8. 魏伟, 许胜辉. 风力发电及相关技术综述[J]. 微电机, 2009, 42(4): 65-68.

  9. 9. 赵争鸣. 太阳能光伏发电及其应用[M]. 北京: 科学出版社, 2005.

  10. 10. 赵争鸣, 周德佳. 太阳能光伏发电技术现状及其发展[J]. 电气应用, 2007, 26(10): 6-10.

  11. 11. 娄喜艳, 丁锦平. 生物质能源发展现状及应用前景[J]. 中国农业文摘–农业工程, 2017, 29(2): 12-14.

  12. 12. 杨宽宽. 专家讨论2020年中国的科学和技术发展研究[J]. 科技和产业, 2003, 3(9).

  13. 13. 朱俊生. 中国新能源和可再生能源发展状况[J]. 可再生能源, 2003(2): 3-8.

期刊菜单