Advances in Clinical Medicine
Vol. 12  No. 06 ( 2022 ), Article ID: 52596 , 10 pages
10.12677/ACM.2022.126791

2型糖尿病合并骨质疏松症的研究进展

朱玲1,朱恩江2,孙曙光3*

1大理大学临床医学院,云南 大理

2弥勒市中医医院骨伤二科,云南 弥勒

3大理大学第一附属医院内分泌科,云南 大理

收稿日期:2022年5月15日;录用日期:2022年6月3日;发布日期:2022年6月20日

摘要

2型糖尿病(Type 2 diabetes mellitus, T2DM)是一组以慢性高血糖为主要特征的代谢性疾病,其发病原因目前尚未清楚,也无法根治,严重影响人类生命健康。骨质疏松症(osteoporosis, OP)是一种以单位体积内骨量减少、骨组织微结构改变、骨强度减低、脆性增加等为特征的骨病。2型糖尿病患者骨质疏松发病率明显升高,且易发生病理性骨折,致残率高,使患者治疗和康复更为困难,给家庭和社会带来了沉重的经济负担。因此对2型糖尿病并发骨质疏松症的研究越来越受到重视,本文就目前国内外关于2型糖尿病合并骨质疏松症发病机制的研究进行综述,旨在为进一步研究及临床工作提供一定的参考。

关键词

2型糖尿病,骨质疏松症,发病机制

Research Progress of Type 2 Diabetes Mellitus Complicated with Osteoporosis

Ling Zhu1, Enjiang Zhu2, Shuguang Sun3*

1Clinical School of Medicine, Dali University, Dali Yunnan

2Second Department of Orthopaedics, Chinese Medicine Hospital of Mile, Mile Yunnan

3Department of Endocrinology, The First Affiliated Hospital of Dali University, Dali Yunnan

Received: May 15th, 2022; accepted: Jun. 3rd, 2022; published: Jun. 20th, 2022

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a group of metabolic diseases mainly characterized by chronic hyperglycemia. Its pathogenesis is still unclear and cannot be cured, which seriously affects human life and health. Osteoporosis (OP) is a bone disease characterized by decreased bone mass per unit volume, altered bone tissue microstructure, decreased bone strength, and increased fragility. The incidence of osteoporosis in patients with type 2 diabetes mellitus is significantly increased, and they are prone to pathological fractures and have a high disability rate, which makes the treatment and rehabilitation of patients more difficult, and brings a heavy economic burden to the family and society. Therefore, more and more attention has been paid to the research on type 2 diabetes mellitus complicated with osteoporosis. This article summarizes the research on the pathogenesis of type 2 diabetes mellitus complicated with osteoporosis at home and abroad, aiming to provide a certain basis for further research and clinical work’s reference.

Keywords:Type 2 Diabetes Mellitus, Osteoporosis, Pathogenesis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着人们生活水平的提高,糖尿病的发病率逐年上升。据世界卫生组织统计,2015年,全球约有4.15亿糖尿病患者,预计到2040年将增至6.42亿,且中国是世界上2型糖尿病(T2DM)最多的国家 [1]。众所周知,T2DM会影响糖、脂肪和蛋白质的代谢,同时也会导致钙、磷和镁的失调,并随后促进一系列并发症,如神经病变、心血管、外周血管、视网膜和代谢性骨病 [2] [3] [4]。骨质疏松症是一种常见的代谢性疾病,以骨量低和骨组织微结构恶化为特征,从而增加骨脆性和骨折易感性 [5]。随着老年人口的增加,其在世界范围内的发病率和相关的社会经济负担不断增加 [6] [7]。而2型糖尿病患者是骨质疏松症的高发人群,约有1/3合并骨质疏松症。

2型糖尿病合并骨质疏松症的患者,患病初始阶段通常无特征性表现或仅有腰背部疼痛等,常不引起患者及医生的重视,往往发展到极严重的骨质疏松甚至发生骨折后才被发现。骨折不仅增加了患者、社会的经济负担及糖尿病的治疗难度,而且可增加糖尿病患者的病死率。因此,尽早认识该病的危险因素,提前对可控因素加以预防及尽早干预,对于降低该病的发病率,改善预后至关重要。为系统阐述该病的发病机制,现就近年来其国内外发病机制研究进展综述如下。

2. 2型糖尿病合并骨质疏松症的发病机制

2.1. 高血糖毒性

2型糖尿病患者葡萄糖代谢异常,进而导致血糖控制不佳,高血糖及其相关的高渗透压会抑制成骨细胞成熟相关基因的表达 [8]。同时高血糖通过抑制骨形成和加速骨吸收导致钙稳态失衡。此外,高血糖可抑制成骨转分化和骨吸收相关基因基质,包括金属蛋白酶9 (MMP9)和碳酸酐酶II (CAII)的表达水平升高,成骨相关基因Runx2和碱性磷酸酶(Alkaline phosphatase, ALP)表达水平下降 [9]。当骨髓间充质干细胞暴露于高糖环境中时,通过激活Notch2信号通路可抑制成骨,且高血糖能抑制成骨细胞和破骨细胞对1,25(OH)2D3的反应。同时,机体长期处于高血糖状态,可引起渗透性利尿,大量Ca2+、Mg2+从尿液排出体外后,甲状旁腺因受到低血钙、低血镁的刺激导致甲状旁腺激素分泌增多,诱发甲状旁腺功能亢进,进而破骨细胞活性增强,骨量丢失严重,导致骨质疏松。慢性高血糖增加胶原糖化,导致糖尿病患者骨脆性增加,且高尿糖阻滞肾小管对钙的重吸收,也可导致T2DM患者发生骨质疏松。

2.2. 胰岛素及胰岛素样生长因子

2.2.1. 胰岛素

胰岛素是一种具有多种生物学效应的激素,是促进合成代谢、降低血糖、调节骨形成的重要全身性因子,对于维持骨量、防止骨量丢失有重要作用 [10] [11]。研究 [12] 认为:胰岛素水平降低或胰岛素抵抗是糖尿病合并骨质疏松发生及进展的重要原因。在成骨细胞膜表面存在胰岛素受体,胰岛素缺乏可导致骨转换下降、骨基质分解、钙盐丢失、引起骨质疏松。研究表明高血糖对成骨细胞分化和增殖有毒性作用,但胰岛素可以抑制其毒性。所以当胰岛素分泌较少而血糖又很高时,高血糖的毒性作用由于缺乏了胰岛素的抑制而尤为明显,进一步加重骨质疏松。另外,当胰岛素缺乏时1,25(OH)2D3合成减少,骨钙素(BGP)下降,骨吸收大于骨形成,从而触发或加重糖尿病患者骨质疏松的发生。

2.2.2. 胰岛素样生长因子

胰岛素样生长因子(insulin-like growth factor, IGF)有两种,一种是IGF-1,另一种是IGF-2。研究结果显示,IGF-1对细胞增殖分化具有一定的刺激效果,随后会对骨骼分解代谢产生一定程度的抑制效果,进而促进骨骼基质合成,降低骨骼中钙流失的发生。对于2型糖尿病患者来说,由于其后期胰岛功能变差,血清IGF-1水平降低。所以,在血清IGF-1水平下降后骨骼分解代谢速度会随之加快,进而导致骨骼中钙流失增多、骨骼基质合成速度减慢,骨密度、骨质量均出现下降趋势。同时有报道:骨密度与血清IGF-1水平具有正向相关关系,血清IGF-1水平下降后,骨密度也随之下降 [13]。因此,IGF-1下降是2型糖尿病并发骨质疏松症的一项重要影响因素。

2.3. 晚期糖基化终末产物

晚期糖基化终末产物(advanced glycation end products, AGEs)是在高糖环境下生成的复杂大分子物质,由AGEs受体识别。研究发现,AGEs可以抑制成骨细胞的增殖和分化,导致破骨细胞的活性增强,在以上原因的推动下,骨吸收的进程会加快,进而导致骨代谢出现失衡状况,骨再造受到抑制后,随着疾病的发展,最后进展为骨质疏松症 [14]。因此,AGEs升高是2型糖尿病合并骨质疏松症的一项危险因素。

2.4. 激素

2.4.1. 雌激素

雌激素对骨代谢的作用主要是抑制骨吸收。雌激素缺乏时骨吸收增强,可导致快速骨量丢失。雌激素对于男性同样重要。Asano等 [15] 的研究表明,生物利用性睾酮是骨量的一个独立因素,2型糖尿病男性患者的生物利用性睾酮明显下降,因此易患骨质疏松。

2.4.2. 雄激素

雄激素可直接作用于成骨细胞的雄激素受体刺激成骨活性,影响成骨细胞的功能 [16],包括成骨细胞的增殖、合成与分泌各种生长因子和细胞因子、产生骨基质蛋白(胶原、骨钙素和成骨蛋白),还可以作用于破骨细胞,抑制破骨细胞的活性,也可经过芳香化酶作用转变为雌激素,再作用于雌激素受体起间接作用。雄激素除通过芳构化转化为雌激素发挥骨代谢调节效应外,可抑制甲状旁腺激素诱导的破骨细胞生成。此外,Chen等还发现睾酮可以促进成骨细胞OPG mRNA的表达,发挥骨保护效应。

2.4.3. 瘦素(Leptin, LP)

LP是肥胖基因编码的一种分泌性蛋白质,主要由脂肪细胞分泌。研究发现 [17],LP受体表达于中枢神经系统和多种外周组织,是一种参与协调性腺、体质量与骨量三者间关系的因子。肥胖的2型糖尿病患者24 h血清瘦素水平明显高于对照组,其分泌高峰时间与骨量调节的昼夜节律一致,据此推测其骨量的改变可能与瘦素抵抗有关 [18]。同时,肖新怀等 [19] 研究表明,2型糖尿病血清瘦素水平与骨密度呈正相关,女性瘦素与骨面积变化亦呈正相关。除此之外,2型糖尿病患者常合并性腺功能减退,瘦素–性激素–骨密度之间的负反馈调节机制也是导致糖尿病相关性骨质疏松的重要因素之一。

2.4.4. 脂联素

脂联素(adiponectin, APN)是脂肪细胞分泌的一种内源性生物活性多肽或蛋白质,是一种胰岛素增敏激素,具有抗动脉粥样硬化作用。糖尿病患者APN降低,可增加动脉粥样硬化的风险,而糖尿病合并动脉粥样硬化的患者骨密度较低,发生骨折的风险增高 [20]。另一方面,APN对破骨细胞的分化与活性起到抑制作用,同时促进成骨细胞的增殖与活性,促进骨生成,增加骨密度(bone mineral density, BMD),APN降低时易至骨质疏松。此外,血清APN水平降低导致机体对胰岛素敏感性下降,进而导致2型糖尿病患者BMD降低。

2.5. 氧化应激

氧化应激多伴有炎症因子及其他应激分子水平的升高,从而激活多种信号分子,参与糖尿病骨质疏松的发生与发展。研究 [21] 表明:Wnt信号通路是糖尿病合并骨质疏松发生和发展的重要信号通路,通过对成骨细胞增殖、分化和对破骨细胞增殖、自噬作用等的影响,破坏成骨与破骨的平衡,最终导致骨质疏松的发生。Almeida等 [22] 研究还发现,活性氧自由基(ROS)能提升RANKL的表达水平,激活ERK/NF-κB/TNF/IL-6通路,促进破骨细胞生成,导致骨流失。而Romagnoli等 [23] 发现降低成骨细胞氧化应激水平,可促进骨保护素(osteoprotegerin, OPG) Runx2等成骨基因表达,降低RANKL/OPG比例,提高ALP活性,促进钙沉积,利于成骨细胞分化、增殖、矿化。在人群研究方面,孔婧等 [24] 对老年2型糖尿病并发骨质疏松症患者进行研究发现,在常规降血糖、补钙的治疗基础上,给予抗氧化治疗能显著改善患者骨密。

2.6. 慢性炎症与细胞因子

2.6.1. 慢性炎症

慢性炎症是T2DM和OP的共同发病机制。随着骨骼免疫学的提出映证了慢性炎症是骨质疏松的发病机制之一,其引起的增龄性氧化应激和免疫系统低度活化 [25] 使炎症因子(核因子κB受体活化因子RANKL、TNF-α等)及保护性免疫因子(OPG、IL-4等)对骨代谢的调节平衡被打破,炎性细胞因子增多及氧化应激反应使机体长期处于炎性反应状态,骨吸收增强,骨形成相应减少 [26]。已有研究证实初诊的T2DM患者和糖尿病前期患者的中性粒细胞数与淋巴细胞数比率(neutrophil-lymphocyte ratio, NLR)水平较糖代谢正常人群显著升高,且与血糖控制水平存在一定的相关性 [27]。NLR作为新的潜在慢性炎症指标,整合了多种白细胞亚型的信息,是两种免疫路径的比值,相对稳定性好,能更好地反映机体内的炎症反应状态。因此,对于2型糖尿病患者,可结合年龄、绝经时间等高危因素,利用NLR等新型炎症指标进行骨质疏松高危人群筛查。

2.6.2. 细胞因子

近年研究 [28] 认为,细胞因子在骨重塑中起重要作用,其诱导NO浓度升高,增加OC (破骨细胞)活性,抑制OB (成骨细胞)生成及其功能,NO还可通过环氧酶C旁路抑制OB碱性磷酸酶活性,并阻断前列腺素对OB作用,从而抑制BGP生成,使骨矿化受阻。IL-6刺激OC前体细胞分裂增殖,形成骨吸收陷窝,增加胶原酶释放而加强骨基质降解 [29]。同时,Narimiya等 [30] 用脂多糖培养MC3T3-E1成骨样细胞发现IL-6水平升高,并导致RANKL表达水平增加、破骨细胞增殖。表皮生长因子EGF能激活OC,促进骨吸收,并能抑制OB功能。TNF-α可增加OC形成,增强OC活性,并刺激IL-6、金属基质蛋白酶-1、2的产生,抑制骨形成 [31]。因此血清IL-6、EGF、TNF-α水平升高至2型糖尿病患者发生骨质疏松。

2.7. 2型糖尿病慢性并发症与骨质疏松

2.7.1. 2型糖尿病肾病和2型糖尿病合并非酒精性脂肪性肝病(Non-Alcoholic Fatty Liver Disease, NAFLD)

2型糖尿病肾病:糖代谢异常导致的AGEs增多、氧化应激、微循环障碍等多因素共同作用可引发糖尿病肾病。T2DM患者并发肾病时可继发甲状旁腺功能亢进,使骨钙动员增多而导致骨量减少;在晚期,会造成肾1-α羟化酶活性降低1,25(OH)2D3合成减少,钙的吸收减少,从而影响骨矿化过程,引起骨质疏松。高明等 [32] 研究发现,在T2DM患者中,肾功能不全者腰椎和股骨颈BMD较肾功能正常患者显著降低,血清甲状旁腺激素和β-CTX等骨吸收标志物水平显著升高,提示T2DM患者并发肾功能不全可加快骨质疏松进展。

2型糖尿病合并NAFLD:NAFLD时由于肝功能异常,维生素D的25-羟化代谢障碍,血清TNF-α、IL-1等炎症因子水平较正常人群升高;IGF-1、骨桥蛋白、骨钙素、骨保护素等骨特异性蛋白表达水平降低,维生素K、D吸收、代谢障碍,易发生肝性骨营养不良,诱发骨质疏松 [33]。

2.7.2. 2型糖尿病相关血管及神经病变

2型糖尿病性血管病变:T2DM常伴有血管疾病,其存在颈动脉狭窄、下肢外周动脉病变 [34] 等外周血管病变的高风险。有研究显示 [35] [36],糖尿病血管疾病(微血管病变和大血管病变)与骨质疏松症的存在相关,其对骨质疏松症有不同的影响机制。新近研究表明 [37],动脉钙化与骨基质的矿化非常相似,Ca2+作为动脉硬化形成的关键因素,沉积于动脉膜中成为动脉硬化的组成成分之一,而这些Ca2+主要来源于骨,因此,T2DM骨量丢失和动脉粥样硬化斑块钙沉积可能属于同一内分泌过程。多因素分析显示,蛋白质糖基化被认为是导致糖尿病视网膜病变的主要原因 [38]。而高血糖水平可能会导致包括胶原蛋白糖基化 [39],胶原蛋白结构损伤改变成骨细胞的分化,导致骨重建和骨的脆性增加 [40]。有微量蛋白尿者由于骨组织内糖蛋白减少和I型胶原合成障碍、分解增加,使成骨细胞分化,导致骨的重建和骨脆性增加 [41] [42],同时神经血管机制可影响局部血流,从而影响骨的营养。

2型糖尿病性神经病变:T2DM神经病变是通过影响局部组织的神经营养,导致骨的神经感觉功能减弱,使骨转换加快,加重骨量丢失,导致骨质疏松的发生。T2DM可并发自主神经功能紊乱,肠道功能下降,引起长期腹泻或腹泻与便秘交替,甚至引起肠道菌群失调,营养物质大量丢失或吸收降低,体内营养物质缺乏,骨形成原材料不足,导致骨质疏松 [43]。

2.8. 降糖药与骨质疏松

2.8.1. 二甲双胍和磺酰脲类药物

目前研究认为,二甲双胍具有骨保护效应。Jang等 [44] 发现,二甲双胍通过激活AMPK/USF1/SHP通路,诱导骨钙素、Runx2等基因表达,刺激成骨细胞分化。研究证实 [45] 二甲双胍可将糖尿病性骨质疏松并股骨颈骨折不愈合风险降低,且低剂量二甲双胍相较于高剂量二甲双胍治疗T2DM性骨质疏松症患者更有利于提升骨密度值,促进骨折愈合 [46]。有临床研究报道,磺脲类药物并未明显增加糖尿病患者骨质疏松的风险 [47] [48]。而Pan等 [49] 研究发现,第二代磺酰脲类药物(格列美脲)可通过激活PI3K/Akt/eNOS途径促进高糖环境下大鼠成骨细胞分化,发挥骨保护效应。

2.8.2. 胰岛素

胰岛素治疗会影响糖尿病患者的骨代谢,近期的一项研究发现,在校正了一些混杂因素后,使用胰岛素治疗的绝经期糖尿病妇女椎骨骨折发生的风险增加 [50]。意大利的一项研究显示胰岛素治疗与糖尿病患者骨折的发生显著相关,该相关性在男性患者中更为明显,即使校正了同时使用的口服降糖药物,相关性依然存在,其原因有待进一步探讨 [51]。

2.8.3. 噻唑烷二酮类药物(TZDs)

TZDs可改善胰岛素敏感性,但其使用与骨量减少 [52] [53] 和骨折风险增加有关。TZDs对骨影响的一个重要机制是其诱导脂肪形成,抑制骨分化调节因子 [54]。一项对22个随机对照试验的meta分析显示,吡格列酮治疗与女性骨折风险增加相关(优势比为1.73) [55]。Schwartz等 [56] 报道TZDs即吡格列酮治疗可能导致老年T2DM女性全身骨质流失。此外,在一项大型的随机对照试验中,吡格列酮与骨折风险增加相关 [57],TZDs单药治疗对骨代谢的有害影响也在含TZDs的联合治疗组中重现,联合治疗TZDs的患者表现出明显的皮质骨丢失。

2.8.4. GLP-1类似物

GLP-1是在进食后肠道摄取营养后释放的一类胃肠激素,功能类似于胰岛素,具有促进代谢的作用。近年研究 [58] [59] 发现,GLP-1具有促进骨形成和抑制骨吸收的双重作用,并在大量临床和动物实验中获得证实。GLP-1对2型糖尿病骨代谢可能是通过直接或间接作用于骨细胞,增加OPG/RANKL比率,激活Wnt/13-catenin途径和降低骨硬化蛋白的水平发挥作用。GLP-1还能通过促进胰岛素分泌、降低血糖、促进降钙素分泌,间接发挥骨代谢调节作用。

2.8.5. 钠–葡萄糖共转运体2 (Sodium-Glucose Cotransporter 2, SGLT2)抑制剂

SGLT2抑制剂属于新型降糖药物,通过阻断钠–葡萄糖共转运体来减少近端肾小管中的葡萄糖再吸收而降低血糖。达格列净、恩格列净和卡格列净都属于这一类药物,具有共同的降糖和预防心血管疾病的特点,但对骨代谢的作用似乎各不相同。卡格列净被证明与髋关节总骨密度的下降和为期104周研究 [60] 中CTx和OPG的增加有关。Blau等人 [61] 认为,卡格列净对骨有不良影响,它诱导血清磷的增加,导致成纤维细胞生长因子-23、1,25-二羟基维生素D和甲状旁腺素的下游变化。然而,关于达格列净和恩格列净的研究(主要是恩格列净)报道了对骨密度和骨折风险的中性作用 [62] [63] [64]。虽然这些药物同属于SGLT2类,但导致不同骨安全性的生理机制尚未阐明。因此,关于SGLT2抑制剂对骨代谢的影响仍需进一步研究。

2.9. 其他相关因素

2型糖尿病合并骨质疏松症也可因体重、BMI等的不同而异。Iwaniec等 [65] 研究表明,体重是除瘦素外的一个独立因素,体重的增加对于股骨皮质骨骨量起到正性作用,但对于椎骨等松质骨的影响很少。除此之外,研究发现BMI也是T2DM中BMD的重要预测因子。低BMI是骨质疏松及其相关骨折的一个指标,BMI的增加可增加机械负荷,脂肪因子及增强芳香化酶活性,被认为与骨密度呈正相关,是防止骨质疏松的保护性因素 [66]。

3. 展望

综上所述,2型糖尿病合并骨质疏松症机制非常复杂,深入开展研究,进一步明确2型糖尿病与骨质疏松的关系,对其防治至关重要。目前人们对2型糖尿病合并骨质疏松的认识尚有限,关于其发病机制的研究方兴未艾。近年来国内外学者通过大量的体外实验、体内研究及临床研究,从多个方面对2型糖尿病合并骨质疏松症的发病机制进行了研究并取得显著进展。但现有关发病机制的研究仍不够透彻,部分发病机制研究不够全面且存在争议,多数研究仍停留在细胞及动物研究方面。因此,深入探讨2型糖尿病合并骨质疏松症的发病机制可为未来积极探索和防治该病提供理论基础。

基金项目

云南省教育厅科学研究基金项目资助,项目编号:2022Y866。

文章引用

朱 玲,朱恩江,孙曙光. 2型糖尿病合并骨质疏松症的研究进展
Research Progress of Type 2 Diabetes Mellitus Complicated with Osteoporosis[J]. 临床医学进展, 2022, 12(06): 5467-5476. https://doi.org/10.12677/ACM.2022.126791

参考文献

  1. 1. Aleti, S., Pal, R., Dutta, P., et al. (2020) Prevalence and Predictors of Osteopenia and Osteoporosis in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study from a Tertiary Care Institute in North India. International Journal of Dia-betes in Developing Countries, 40, 262-268. https://doi.org/10.1007/s13410-019-00786-3

  2. 2. Murray, C.E. and Coleman, C.M. (2019) Impact of Diabetes Mellitus on Bone Health. International Journal of Molecular Sciences, 20, 4873. https://doi.org/10.3390/ijms20194873

  3. 3. Rangel, E.B., Rodrigues, C.O. and de Sa, J.R. (2019) Micro and Macrovascular Complications in Ciabetes Mellitus: Pre-Clinical and Clinical Studies. Journal of Diabetes Research, 2019, Article ID: 2161085. https://doi.org/10.1155/2019/2161085

  4. 4. Zheng, Y., Ley, S.H. and Hu, F.B. (2018) Global Aetiology and Epi-demiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. https://doi.org/10.1038/nrendo.2017.151

  5. 5. Burge, R., Dawson-Hughes, B., Solomon, D.H., Wong, J.B., King, A. and Tosteson, A. (2007) Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005-2025. Journal of Bone and Mineral Research, 22, 465-475. https://doi.org/10.1359/jbmr.061113

  6. 6. Aziziyeh, R., Amin, M., Habib, M., Garcia Perlaza, J., Szafranski, K., McTavish, R.K., et al. (2019) The Burden of Osteoporosis in Four Latin American Countries: Brazil, Mexico, Colombia, and Argentina. Journal of Medical Economics, 22, 638-644. https://doi.org/10.1080/13696998.2019.1590843

  7. 7. Mohd-Tahir, N.A. and Li, S.C. (2017) Economic Burden of Osteoporosis-Related Hip Fracture in Asia: A Systematic Review. Osteoporosis International, 28, 2035-2044. https://doi.org/10.1007/s00198-017-3985-4

  8. 8. Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeo-logica della Pineta di San Vitale (Ravenna). Ph.D. Thesis, Bologna University, Bologna.

  9. 9. Botolin, S., Faugere, M.C., Malluche, H., Orth, M., Meyer, R. and McCabe, L.R. (2005) Increased Bone Adiposity and Peroxisomal Prolifera-tor-Activated Receptor-Gamma2 Expression in Type I Diabetic Mice. Endocrinology, 146, 3622-3631. https://doi.org/10.1210/en.2004-1677

  10. 10. 吴海清. 2型糖尿病与骨质疏松症的关系[J]. 天津医科大学学报, 2011, 17(2): 286-289.

  11. 11. 时进义. 糖尿病胰岛功能与骨密度相关分析[J]. 慢性病学杂志, 2010, 12(7): 599-600.

  12. 12. 张洁, 沈默宇, 成金罗. 2型糖尿病患者骨密度的相关因素[J]. 中国老年学杂志, 2012, 32(15): 3186-3188.

  13. 13. 赵豫梅, 刘婷, 李洁, 等. 绝经后2型糖尿病并发骨质疏松患者骨转换标志物的变化及相关因素[J]. 中华骨质疏松和骨矿盐疾病杂志, 2016, 9(1): 27-31.

  14. 14. 温玉波. 2型糖尿病并发骨质疏松症的多因素分析[J]. 临床合理用药杂志, 2016, 9(22): 143-144.

  15. 15. Asano, M., Fukui, M., Hosoda, H., Shiraishi, E., Harusato, I., Kadono, M., Tanaka, M., Hasegawa, G., Yoshikawa, T. and Nakamura, N. (2008) Bone Stiffness in Men with Type 2 Diabetes Mellitus. Metabolism, 57, 1691-1695. https://doi.org/10.1016/j.metabol.2008.07.025

  16. 16. 付绍婷, 王晓慧. 雄激素和雄激素受体对骨代谢的调控及机制研究进展[J]. 中国细胞生物学学报, 2018, 40(6): 1041-1048.

  17. 17. La Cava, A., Alviggi, C. and Matarese, G. (2004) Unraveling the Multiple Roles of Leptin in Inflammation and Autoimmunity. Journal of Molecular Medicine, 82, 4-11. https://doi.org/10.1007/s00109-003-0492-1

  18. 18. Kanabrocki, E.L., Hermida, R.C., Wright, M., Young, R.M., Bremner, F.W., Third, J.L., Ryan, M.D., Ayala, D.E., Johnson, M., Nemchausky, B.A., Shirazi, P., Scheving, L.E. and Olwin, J.H. (2001) Circadian Variation of Serum Leptin in Healthy and Diabetic Men. Chronobiology International, 18, 273-283. https://doi.org/10.1081/CBI-100103191

  19. 19. 肖新怀, 陈澍, 苏丽芳. 老年2型糖尿病患者瘦素与骨量关系的研究[J]. 实用医学杂志, 2005, 21(1): 41-42.

  20. 20. Bandeira, E., Neves, A.P., Costa, C., et al. (2012) Association be-tween Vascular Calcification and Osteoporosis in Men with Type 2 Diabetes. Journal of Clinical Densitometry, 15, 55-60. https://doi.org/10.1016/j.jocd.2011.07.002

  21. 21. Ma, R., Wang, L., Zhao, B., Liu, C., Liu, H., Zhu, R., Chen, B., Li, L., Zhao, D., Mo, F., Li, Y, Niu, J., Jiang, G., Fu, M., Bromme, D., Gao, S. and Zhang, D. (2017) Diabetes Per-turbs Bone Microarchitecture and Bone Strength through Regulation of Sema3A/IGF-1/β-Catenin in Rats. Cellular Physiology and Biochemistry, 41, 55-66. https://doi.org/10.1159/000455936

  22. 22. Almeida, M., Han, L., Martin-Millan, M., Plotkin, L.I., Stewart, S.A., Roberson, P.K., Kousteni, S., O’Brien, C.A., Bellido, T., Parfitt, A.M., Weinstein, R.S., Jilka, R.L. and Manolagas, S.C. (2007) Skeletal Involution by Age-Associated Oxidative Stress and Its Acceleration by Loss of Sex Steroids. Journal of Biological Chemistry, 282, 27285-27297. https://doi.org/10.1074/jbc.M702810200

  23. 23. Romagnoli, C., Marcucci, G., Favilli, F., et al. (2013) Role of GSH/GSSG Redox Couple in Osteogenic Activity and Osteoclastogenic Markers of Human Osteoblast-Like SaOS-2 Cells. FEBS Journal, 280, 867-879. https://doi.org/10.1111/febs.12075

  24. 24. 孔婧. 抗氧化治疗老年糖尿病性骨质疏松的效果研究[J]. 现代诊断与治疗, 2015, 26(20): 4730-4731.

  25. 25. 王凯, 宋敏, 文皓楠, 等. 从OPG/RANK/RANKL信号转导系统探讨老年性骨质疏松的发病机制[J]. 中国骨质疏松杂志, 2020, 26(6): 910-914.

  26. 26. Sato, K., Suematsu, A., Okamoto, K., Ya-maguchi, A., Morishita, Y., Kadono, Y., Tanaka, S., Kodama, T., Akira, S., Iwakura, Y., Cua, D.J. and Takayanagi, H. (2006) Th17 Functions as Anosteoclastogenic Helper T Cell Subset That Links T Cell Activation and Bone Destruction. Journal of Experimental Medicine, 203, 2673-2682. https://doi.org/10.1084/jem.20061775

  27. 27. 江玮, 林硕, 曾龙驿. 初诊断2型糖尿病患者外周血中性粒细胞/淋巴细胞比值变化的临床研究[J]. 中华肥胖与代谢病电子杂志, 2016, 2(3): 156-160.

  28. 28. Montagnani, A., Gonnelli, S., Alessandri, M. and Nuti, R. (2011) Osteoporosis and Risk of Fracture in Patients with Diabetes: An Update. Aging Clinical and Experimental Research, 23, 84-90. https://doi.org/10.1007/BF03351073

  29. 29. Ni, Y., Li, H., Zhang, Y., Zhang, H., Pan, Y., Ma, J. and Wang, L. (2014) Association of IL-6 G-174C Polymorphism with Bone Mineral Density. Journal of Bone and Mineral Metabolism, 32, 167-173. https://doi.org/10.1007/s00774-013-0477-2

  30. 30. Narimiya, T., Kanzaki, H., Yamaguchi, Y., et al. (2019) Nrf2 Ac-tivation in Osteoblasts Suppresses Osteoclastogenesis via Inhibiting IL-6 Expression. Bone Reports, 11, Article ID: 100228. https://doi.org/10.1016/j.bonr.2019.100228

  31. 31. Mirza, S., Hossain, M., Mathews, C., Martinez, P., Pino, P., Gay, J.L., Rentfro, A., McCormick, J.B. and Fisher-Hoch, S.P. (2012) Type 2-Diabetes Is Associated with Elevated Levels of TNF-Alpha, IL-6 and Adiponectin and Low Levels of Leptin in a Population of Mexican Americans: A Cross-Sectional Study. Cytokine, 57, 136-142. https://doi.org/10.1016/j.cyto.2011.09.029

  32. 32. 高明, 王涤非, 林奕辰, 等. 糖尿病肾病患者骨密度及骨代谢标志物的临床研究[J]. 中国骨质疏松杂志, 2014, 20(2): 166-170.

  33. 33. Eshraghian, A. (2017) Bone Metabolism in Non-Alcoholic Fatty Liver Disease: Vitamin D Status and Bone Mineral Density. Minerva Endocrinology, 42, 164-172. https://doi.org/10.23736/S0391-1977.16.02587-6

  34. 34. Shah, B., Rockman, C.B., Guo, Y., Chesner, J., Schwartzbard, A.Z., Weintraub, H.S., Adelman, M.A., Riles, T.S. and Berger, J.S. (2014) Diabetes and Vascular Dis-ease in Different Arterial Territories. Diabetes Care, 37, 1636-1642. https://doi.org/10.2337/dc13-2432

  35. 35. Zhong, N., et al. (2018) Microangiopathy Is Associated with Bone Loss in Female Type 2 Diabetes Mellitus Patients. Diabetes and Vascular Disease Research, 15, 433-441. https://doi.org/10.1177/1479164118779386

  36. 36. Cui, R., Sun, S.Q., Zhong, N., Xu, M.X., Cai, H.D., Zhang, G., Qu, S. and Sheng, H. (2020) The Relationship between Atherosclerosis and Bone Mineral Density in Patients with Type 2 Diabetes Depends on Vascular Calcifications and Sex. Osteoporosis International, 31, 1135-1143. https://doi.org/10.1007/s00198-020-05374-4

  37. 37. Negre-Salvayre, A., Salvayre, R., Augé, N., Pamplona, R. and Portero-Otín, M. (2009) Hyperglycemia and Glycation in Diabetic Complications. Antioxidants & Redox Signaling, 11, 3071-3109. https://doi.org/10.1089/ars.2009.2484

  38. 38. Khan, N., Bakshi, K.S., Jaggi, A.S. and Singh, N. (2009) Ameliorative Potential of Spironolactone in Diabetes Induced Hyperalgesia in Mice. Yakugaku Zasshi, 129, 593-599. https://doi.org/10.1248/yakushi.129.593

  39. 39. Alikhani, M., Alikhani, Z., Boyd, C., MacLellan, C.M., Raptis, M., Liu, R., Pischon, N., Trackman, P.C., Gerstenfeld, L. and Graves, D.T. (2007) Advanced Glycation End Products Stim-ulate Osteoblast Apoptosis via the MAP Kinase and Cytosolic Apoptotic Pathways. Bone, 40, 345-353. https://doi.org/10.1016/j.bone.2006.09.011

  40. 40. 程群, 朱汉民. 骨质疏松和动脉钙化的研究进展[J]. 中国骨质疏松杂志, 2003, 9(4): 364-367.

  41. 41. Sugiyama, T., Okuno, T., Fukuhara, M., Oku, H., Ikeda, T., Obayashi, H., Ohta, M., Fukui, M., Hasegawa, G. and Nakamura, N. (2007) Angiotensin II Receptor Blocker Inhibits Abnormal Accumula-tion of Advanced Glycation End Products and Retinal Damage in a Rat Model of Type 2 Diabetes. Experimental Eye Re-search, 85, 406-412. https://doi.org/10.1016/j.exer.2007.06.008

  42. 42. Yamada, H., Yamada, E., Higuchi, A. and Matsumura, M. (2005) Retinal Neovascularisation without Ischaemia in the Spontaneously Diabetic Torii Rat. Diabetologia, 48, 1663-1668. https://doi.org/10.1007/s00125-005-1809-0

  43. 43. Mohr, M., Helge, E.W., Petersen, L.F., et al. (2015) Effects of Soccer vs Swim Training on Bone Formation in Sedentary Middle-Aged Women. European Journal of Applied Physiol-ogy, 115, 2671-2679. https://doi.org/10.1007/s00421-015-3231-8

  44. 44. Jang, W.G., Kim, E.J., Bae, I.H., et al. (2011) Metformin Induces Osteoblast Differentiation via Orphan Nuclear Receptor SHP-Mediated Transactivation of Runx2. Bone, 48, 885-893. https://doi.org/10.1016/j.bone.2010.12.003

  45. 45. 庞晓娜, 胡予. 二甲双胍与骨质疏松的关系[J]. 中国骨质疏松杂志, 2012, 18(8): 764-766, 724.

  46. 46. 房玲玲, 张启华. 2型糖尿病合并骨质疏松症的相关影响因素分析[J]. 现代实用医学, 2014, 26(12): 1537-1539.

  47. 47. Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2005) Relative Fracture Risk in Patients with Diabetes Mellitus, and the Impact of Insulin and Oral Antidiabetic Medication on Relative Fracture Risk. Diabetologia, 48, 1292-1299. https://doi.org/10.1007/s00125-005-1786-3

  48. 48. Lapane, K.L., Jesdale, B.M., Dubé, C.E., Pimentel, C.B. and Raj-pathak, S.N. (2015) Sulfonylureas and Risk of Falls and Fractures among Nursing Home Residents with Type 2 Diabe-tes Mellitus. Diabetes Research and Clinical Practice, 109, 411-419. https://doi.org/10.1016/j.diabres.2015.05.009

  49. 49. Ma, P., Gu, B., Xiong, W., et al. (2014) Glimepiride Promotes Osteogenic Differentiation in Rat Osteoblasts via the PI3K/Akt/eNOS Pathway in a High Glucose Microenvironment. PLOS ONE, 9, e112243. https://doi.org/10.1371/journal.pone.0112243

  50. 50. Kanazawa, I., Yamaguchi, T., Yamamoto, M. and Sugimoto, T. (2010) Relationship between Treatments with Insulin and Oral Hypoglycemic Agents versus the Presence of Vertebral Fractures in Type 2 Diabetes Mellitus. Journal of Bone and Mineral Metabolism, 28, 554-560. https://doi.org/10.1007/s00774-010-0160-9

  51. 51. Monami, M., Cresci, B., Colombini, A., Pala, L., Balzi, D., Gori, F., Chiasserini, V., Marchionni, N., Rotella, C.M. and Mannucci, E. (2008) Bone Fractures and Hypoglycemic Treatment in Type 2 Diabetic Patients: A Case-Control Study. Diabetes Care, 31, 199-203. https://doi.org/10.2337/dc07-1736

  52. 52. Grey, A., Bolland, M., Gamble, G., Wattie, D., Horne, A., Davidson, J., et al. (2007) The Peroxisome Proliferator-Activated Receptor Gamma Agonist Rosiglitazone Decreases Bone Formation and Bone Mineral Density in Healthy Postmenopausal Women: A Randomized, Controlled Trial. The Journal of Clinical Endocrinology & Metabolism, 92, 1305-1310. https://doi.org/10.1210/jc.2006-2646

  53. 53. Viscoli, C.M., Inzucchi, S.E., Young, L.H., Insogna, K.L., Conwit, R., Furie, K.L., et al. (2017) Pioglitazone and Risk for Bone Fracture: Safety Data from a Randomized Clinical Trial. The Journal of Clinical Endocrinology & Metabolism, 102, 914-922.

  54. 54. Benvenuti, S., Cellai, I., Luciani, P., Deledda, C., Baglioni, S., Giuliani, C., Saccardi, R., Mazzanti, B., Dal Pozzo, S., Mannucci, E., Peri, A. and Serio, M. (2007) Rosiglitazone Stimulates Adipogenesis and Decreases Osteo-blastogenesis in Human Mesenchymal Stem Cells. Journal of Endocrinological Investigation, 30, RC26-RC30. https://doi.org/10.1007/BF03350807

  55. 55. Zhu, Z.N., Jiang, Y.F. and Ding, T. (2014) Risk of Fracture with Thia-zolidine Ediones: An Updated Meta-Analysis of Randomized Clinical Trials. Bone, 68, 115-123. https://doi.org/10.1016/j.bone.2014.08.010

  56. 56. Schwartz, A.V., Sellmeyer, D.E., Vittinghoff, E., Palermo, L., Lecka-Czernik, B., Feingold, K.R., et al. (2006) Thiazolidinedione Use and Bone Loss in Older Diabetic Adults. The Journal of Clinical Endocrinology & Metabolism, 91, 3349-3354. https://doi.org/10.1210/jc.2005-2226

  57. 57. Eriksson, R., Broberg, B.V., Ishoy, P.L., et al. (2019) Bone Status in Obese, Non-Diabetic, Antipsychotic-Treated Patients, and Effects of the Glucagon-Like Peptide-1 Receptor Agonist Ex-enatide on Bone Turnover Markers and Bone Mineral Density. Frontiers in Psychiatry, 9, Article No. 781. https://doi.org/10.3389/fpsyt.2018.00781

  58. 58. Schiellerup, S.P., Skov-Jeppesen, K., Windeløv, J.A., et al. (2019) Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment. Fron-tiers in Endocrinology (Lausanne), 10, Article No. 75. https://doi.org/10.3389/fendo.2019.00075

  59. 59. Bilezikian, J.P., Watts, N.B., Usiskin, K., Polidori, D., Fung, A., Sullivan, D., et al. (2016) Evaluation of Bone Mineral Density and Bone Biomarkers in Patients with Type 2 Diabetes Treated with Canagliflozin. The Journal of Clinical Endocrinology & Metabolism, 101, 44-51. https://doi.org/10.1210/jc.2015-1860

  60. 60. Blau, J.E., Bauman, V., Conway, E.M., Piaggi, P., Walter, M.F., Wright, E.C., et al. (2018) Canagliflozin Triggers the FGF23/1,25-dihydroxyvitamin D/PTH Axis in Healthy Volunteers in a Randomized Crossover Study. JCI Insight, 3, e99123. https://doi.org/10.1172/jci.insight.99123

  61. 61. Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V., Ferrari, S.L., et al. (2017) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinol-ogy, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153

  62. 62. Tang, H.L., Li, D.D., Zhang, J.J., Hsu, Y.H., Wang, T.S., Zhai, S.D., et al. (2016) Lack of Evidence for a Harmful Effect of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Fracture Risk among Type 2 Diabetes Patients: A Network and Cumulative Meta-Analysis of Randomized Controlled Trials. Di-abetes, Obesity and Metabolism, 18, 1199-1206. https://doi.org/10.1111/dom.12742

  63. 63. Ljunggren, O., Bolinder, J., Johansson, L., Wilding, J., Langkilde, A.M., Sjostrom, C.D., et al. (2012) Dapagliflozin Has No Effect on Markers of Bone Formation and Resorption or Bone Mineral Density in Patients with Inadequately Controlled Type 2 Diabetes Mellitus on Metformin. Diabetes, Obesity and Metabolism, 14, 990-999. https://doi.org/10.1111/j.1463-1326.2012.01630.x

  64. 64. Walsh, J.S. and Vilaca, T. (2017) Obesity, Type 2 Diabetes and Bone in Adults. Calcified Tissue International, 100, 528-535. https://doi.org/10.1007/s00223-016-0229-0

  65. 65. Iwaniec, U.T., Dube, M.G., Boghossian, S., Song, H., Helferich, W.G., Turner, R.T. and Kalra, S.P. (2009) Body Mass Influences Cortical Bone Mass Independent of Leptin Signaling. Bone, 44, 404-412. https://doi.org/10.1016/j.bone.2008.10.058

  66. 66. Lane, N.E. (2006) Epidemiology, Etiology, and Diagnosis of Os-teoporosis. American Journal of Obstetrics & Gynecology, 194, S3-S11. https://doi.org/10.1016/j.ajog.2005.08.047

  67. NOTES

    *通讯作者。

期刊菜单