Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65305 , 8 pages
10.12677/ACM.2023.1351063

DS-8201a治疗HER2表达实体肿瘤的研究进展

王宁1,岳麓2*

1大连医科大学研究生院,辽宁 大连

2青岛市市立医院肿瘤精准治疗中心,山东 青岛

收稿日期:2023年4月11日;录用日期:2023年5月6日;发布日期:2023年5月15日

摘要

在精准治疗背景下,针对各种肿瘤驱动基因的靶向治疗极大地改变了当今的治疗现状。表皮生长因子受体2 (Human Epidermal Growth Factor Receptor 2; HER2)是多种肿瘤的驱动基因,DS-8201a (Trastuzumab deruxtecan; T-Dxd)作为一种新型靶向HER2的抗体偶联药物(Antibody-Drug Conjugates; ADC),不仅对HER2过表达的肿瘤具有抗肿瘤作用,而且对于HER2低表达、扩增及突变患者也具有不错的疗效。目前DS-8201a已经在多种实体瘤中进行了广泛的临床研究。本文概述了DS-8201a的结构和作用特点,并介绍其在各种实体肿瘤中的研究进展,为未来的精准靶向治疗提供方向。

关键词

DS-8201a,HER2,乳腺癌,胃癌

Research Progress of DS-8201a in the Treatment of HER2-Expressing Solid Tumors

Ning Wang1, Lu Yue2*

1Graduate School of Dalian Medical University, Dalian Liaoning

2Cancer Precision Treatment Center, Qingdao Municipal Hospital, Qingdao Shandong

Received: Apr. 11th, 2023; accepted: May 6th, 2023; published: May 15th, 2023

ABSTRACT

In the context of precision therapy, targeted therapy for various tumor driver genes has greatly changed the current therapeutic status. The epidermal growth factor receptor 2 (HER2) is a wide variety of tumor driver gene, DS-8201a (Trastuzumab deruxtecan; T-Dxd; Enhertu) as a novel HER2-targeting Antibody-drug conjugates (ADC), not only has antitumor effect on tumors with overexpression of HER2, but also has efficacy in patients with low expression, amplification and mutation of HER2. DS-8201a has been extensively tested in clinical trials in a variety of solid tumors. This article summarizes the structure and functional characteristics of DS-8201a, and introduces its research progress in various solid tumors, and provides directions for future precise targeted therapy.

Keywords:DS-8201a, HER2, Breast Cancer, Gastric Cancer

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据最新的癌症统计数据,2020年在全球范围内,大约有近2000万新发癌症病例和近1000万癌症死亡病例 [1] ,作为主要死因之一,恶性肿瘤不仅给个人和家庭带来了极大的伤害,也给社会带来了巨大的负担。随着精准治疗理念的发展,针对肿瘤细胞上特定靶点的靶向治疗得到了极大的发展,尤其在非小细胞肺癌(Non-Small Cell Lung Cancer; NSCLC)中针对表皮生长因子受体(Epidermal Growth Factor Receptor; EGFR)和间变性淋巴瘤激酶(Anaplastic Lymphoma Kinase; ALK)的靶向治疗显著延长了患者的生存时间,使这部分患者真正实现了恶性肿瘤的慢病化管理。在药物方面,除了大家熟知的大分子单克隆抗体和小分子酪氨酸激酶抑制剂(Tyrosine Kinase Inhibitor; TKI)外,ADC作为新型的靶向药物在各种实体肿瘤中具有很大的发展潜力。ADC由细胞毒性药物分子(有效载荷)、针对癌细胞表面特异性抗原的单克隆抗体和将前两者连接起来的连接子三部分组成 [2] 。ADC药物通过静脉途径给药,进入人体后,ADC分子中的单克隆抗体和肿瘤细胞表面特异性抗原结合,形成ADC-抗原复合物,之后通过特异性抗体介导的内吞途径和非特异性的胞饮途径使ADC-抗原复合物进入细胞内,在细胞内的溶酶体作用下ADC-抗原复合物经过一系列反应,连接子断裂或抗体被消化,释放细胞毒性药物,通过损伤DNA或者抑制微管蛋白的合成最终使细胞死亡 [3] 。

2. DS-8201a的结构和作用机制

DS-8201a是由抗HER2人源化的单克隆抗体、可切割的四肽连接子以及拓扑异构酶I抑制剂Dxd组成的继T-DM1后新一代的ADC [4] ,与T-DM1相比,其药物抗体比率(Drug-Antibody Ratio, DAR)达到8,明显高于其他的ADC药物的DAR,即一分子单克隆抗体能携带8个有效载荷Dxd,且Dxd的抗癌活性强大,为伊立替康活性成分SN-38的10倍;由于DS-8201a四肽连接子的裂解特性,使其在血液中高度稳定而在细胞内却能发挥强大的抗癌特性,具有高效低毒的作用 [5] [6] [7] 。此外在Dxd内化进入HER2阳性细胞后,Dxd释放进入细胞质,由于Dxd具有很强的渗透细胞膜的能力,因此Dxd可以穿透HER2阳性肿瘤细胞的细胞膜,从而进入到细胞间隙中并杀伤间质附近HER2低表达或者HER2阴性的肿瘤细胞,此过程称为旁观者效应 [8] ,旁观者效应具有积极的抗肿瘤作用:除了作用于HER2表达阳性的肿瘤细胞,其对HER2低表达或者不表达的肿瘤细胞表现出抗癌活性,在一定程度上可以克服肿瘤内HER2的异质性 [9] ,不仅使HER2表达阳性的肿瘤患者获益,更是未来治疗HER2低表达的实体瘤的重要方法。近年来,DS-8201a在各种实体瘤中进行了广泛的临床研究,其中一些研究的结果已经改变了临床实践。以下将对DS-8201a在各种实体瘤中的研究进展做一综述。

3. DS-8201a在各种实体瘤中的研究进展

3.1. 乳腺癌

最近几十年全球乳腺癌发病率一直呈上升趋势,到2020年,新发病例达到230万,首次超过肺癌成为发病率第一的肿瘤 [1] ;其中大约有15%到20%的患者为HER2的过度表达 [10] [11] [12] 。DESTINY-Breast01研究纳入了中位治疗线数为6线且全部经过曲妥珠单抗和T-DM1治疗后进展的HER2阳性转移性乳腺癌患者,接受5.4 mg/kg的DS-8201a治疗:客观反应率(Objective Response Rate; ORR)为60.9%,中位无进展生存期(Progression-Free Survival; PFS)达16.4个月 [13] ,基于此,2019年12月FDA批准DS-8201a用于接受过2种以上抗HER2治疗后进展的转移性HER2阳性乳腺癌患者。DESTINY-Breast03是一项全球、随机、III期的临床研究,头对头比较了DS-8201a与T-DM1二线治疗的疗效,其结果使DS-8201a成为现有HER2阳性转移性乳腺癌的标准二线治疗 [9] [14] 。但是在乳腺癌中,大约40%~50%为HER2低表达(IHC1+或IHC2+ (FISH阴性))的患者,对于这部分患者传统的抗HER2治疗均无效;DESTINY-Breast04研究纳入既往接受过至少1次系统治疗的HER2低表达转移性乳腺癌患者,2:1随机比例分配至接受DS-8201a和医生选择的化疗方案进行治疗,结果表明:在激素受体阳性的队列中,两者的PFS分别为10.1个月和5.4个月(P < 0.001),总生存期(Overall Survival; OS)分别为23.9月和17.5月(P = 0.003);而在所有患者中,两者的PFS分别为9.9个月和5.1个月(P < 0.001),OS分别为23.4月和16.8个月(P = 0.001)。DESTINY-Breast04研究取得了PFS和OS的双终点阳性,不论HER2表达情况、不论激素受体状态如何,与医生选择的化疗方案相比,患者均能从DS-8201a中获益 [15] [16] 。因此DESTINY-Breast04研究确定了DS-8201a治疗HER2低表达乳腺癌患者新标准,DS-8201a使这部分既往认为不能使用抗HER2治疗的乳腺癌患者也能从抗HER2治疗中获益。大多数乳腺癌患者在疾病发展过程中往往会出现脑转移,脑转移患者预后差,然而化疗和大分子单抗不能有效透过血脑屏障,脑转移患者急需新的治疗方法 [17] [18] :许多研究提示DS-8201a对HRE2阳性和HER2低表达的乳腺癌脑转移患者具有一定疗效,其中还包括了活动性脑转移患者 [3] 。Iwata TN等人对DS-8201a的免疫激活能力进行了评价:DS-8201a在体内增加肿瘤浸润的树突状细胞并上调其CD86的表达、增加肿瘤浸润的CD8+ T细胞还增加了肿瘤细胞上PD-L1和MHC-I类分子的表达,从而增强了T细胞对肿瘤的识别、增强了抗肿瘤免疫,为两者的联合治疗提供了理论基础 [19] ,DESTINY-Breast07和DESTINY-Breast08两个I期临床研究分别探索在HER2阳性和HER2低表达乳腺癌患者中DS-8201a联合应用免疫治疗的有效性和安全性。总之,DS-8201a已经改变了乳腺癌现有的治疗格局,期待更多研究结果的公布使DS-8201a面向更多的乳腺癌患者,进一步提高这些乳腺癌患者的生存。

3.2. 胃癌

胃癌是全球发病率第五、死亡率第四的恶性肿瘤,每年超100万人发病,死亡80万人左右 [1] 。DESTINY-Gastric01研究纳入189例至少经过两线系统性治疗的HER2阳性进展期胃或胃食管交界部腺癌患者,2:1随机比例分配至DS-8201a组与医生选择的化疗方案组,相对于医生选择的化疗,DS-8201a无论是FPS还是OS均具有临床意义的明显的延长,OS分别为12.5个月和8.4个月(HR = 0.59, P = 0.01),且不良反应可控;此外在HER2低表达(IHC2+/ISH−和IHC1+)队列中DS-8201a也显示出了很强的活性:ORR为26.3%,中位PFS为4.4个月、中位OS为7.8个月。因此DS-8201a在HER2低表达胃癌中的获益也进一步佐证了DS-8201a的结构优势及其对HER2低表达患者的特殊的作用家价值;因此2021年1月FDA批准DS-8201a用于局部晚期或转移性HER2阳性胃癌或胃食管交界部腺癌的之前接受过曲妥珠单抗治疗的患者 [20] [21] [22] 。DESTINY-Gastric02是一项在欧美人群中进行的II期临床研究,初步结果在2021 ESMO进行的口头报道,截止2021年4月9日,研究达到了主要终点和关键次要终点,ORR达38%,DCR达81%,中位PFS为5.5个月,表明DS-8201a二线治疗晚期胃癌具有临床意义的持续应答,且未出现新的安全信号。ADC药物联合化疗和免疫是目前的研究方向之一,DESTINY-Gastric03研究旨在评估DS-8201a单药或联合治疗的安全性和初步抗肿瘤活性,研究纳入HER2阳性局部晚期或转移性胃癌(IHC3+或2+/ISH+)患者。研究第一部分为剂量递增研究,纳入含曲妥珠单抗方案治疗后进展的HER2阳性胃癌患者;第二部分为剂量扩展研究,纳入既往未经治疗、经证实为HER2阳性胃癌患者。用药方案将与曲妥珠单抗联合化疗方案直接对比,探索方案包括:DS-8201a单药、DS-8201a联合化疗,DS-8201a联合免疫,DS-8201a联合化疗及免疫,初步研究结果证明含曲妥珠单抗方案治疗后进展的HER2阳性胃癌患者可继续从DS-8201a联合化疗中获益,且DS-8201a联合单药的氟尿嘧啶类的ORR可达70%左右 [23] 。

3.3. 非小细胞肺癌

肺癌作为全球癌症相关死亡的首要原因,每年导致大约180万人死亡 [1] ,其中NSCLC占所有肺癌的80%以上 [24] 。NSCLC是基因多样性最强的癌症之一,HER2突变NSCLC约占NSCLC的5%左右,同时HER2继发改变被认为是NSCLC EGFR TKIs耐药的机制 [25] [26] [27] [28] [29] ,HER2改变包括了HER2突变、HER2扩增和HER2蛋白过表达三个亚型,然而在现行标准下,在NSCLC中还没有针对HER2改变的公认的标准治疗。DS-8201a的出现使得含有HER2改变的NSCLC的治疗有了新的方向。DS8201-A-J101是一项旨在探索DS-8201a在多种晚期实体恶性肿瘤中应用的安全性、耐受性和活性的Ⅰ期临床研究,此研究共纳入18例非小细胞肺癌患者。结果表明在HER2阳性或HER2基因突变型NSCLC亚组中,ORR为55.6%,中位PFS为11.3个月,对于HER2突变NSCLC患者,其确定的ORR高达73% [30] ,表明DS-8201a是治疗HER2突变的NSCLC的有效治疗方法。DESTINY-Lung01是一项国际多中心的II期临床研究,探讨了DS-8201a (6.4 mg/kg)用于HER2突变、经标准治疗失败的晚期NSCLC患者,经过16.7个月随访:ORR为54.9%,PFS为8.2个月,OS达18.6个月;DESTINY-Lung02的国际多中心、II期临床研究则提示与高剂量的6.4 mg/kg组相比,5.4 mg/kg DS-8201a组的ORR更高(53.8% VS 42.9%)、≥3级治疗相关不良事件(Treatment-Related Adverse Event; TRAE)发生率更低(31.7% VS 58.0%),基于此,FDA批准了DS-8201a (5.4 mg/kg)用于既往接受过全身治疗、HER2突变的不可切除或转移性NSCLC成人患者。而对于HER2过表达人群,DESTINY-Lung01研究结果也同样显示对于高剂量(6.4 mg/kg)的DS-8201a,5.4 mg/kg组DS-8201a ORR更高(34.1% VS 26.5%),≥3级TRAE发生率也更低(22.0% VS 53.1%)。总的来说无论HER2改变类型,NSCLC都可能从DS-8201a的治疗中获益(尤其是5.4 mg/kg低剂量的DS-8201a),特别是对于NSCLC HER2突变的患者DS-8201a具有重要的应用前景,在HER2其他改变的NSCLC中仍需要继续进行探索,以求达到DS-8201a治疗效应的最大化 [20] [31] 。全球范围内的III期临床试验DESTINY-Lung04入组了先前没有经过治疗的携带HER2突变的不可切除的局部晚期或者转移性的NSCLC患者,与现有标准一线治疗进行头对头比较,探究DS-8201a一线用于HER2突变的NSCLC的疗效。I期DESTINY-Lung03和Ⅱ期伞式HUDSON研究则是探索DS-8201a联合免疫治疗的疗效和安全性的临床研究 [6] [32] ,这些研究的铺开有望进一步改变当前NSCLC的治疗格局。

3.4. 结直肠癌

HER2突变或扩增的转移性CRC约占晚期结直肠癌的5%左右 [33] ,同时HER2突变或扩增的结直肠癌患者往往对EGFR抗体具有抵抗力,易对西妥昔单抗产生耐药,与HER2阴性肿瘤患者相比,预后更差 [33] [34] [35] [36] [37] 。当前HER2阳性转移性结直肠癌患者的靶向治疗并未得到满足,同时结直肠癌是一种具有HER2高度异质性的肿瘤,DS-8201a由于其高DAR和旁观者效应可能在克服这种异质性方面具有特别重要的作用,因为DS-8201a不仅作用于HER2阳性的肿瘤细胞,而且还能作用于HER2阳性肿瘤细胞周围的HER2低表达或者HER2阴性的肿瘤细胞,实现更广泛的抗肿瘤细胞作用 [38] [39] :II期研究DESTINY-CRC01纳入78名经过两种或两种以上治疗的HER2表达的转移性结直肠癌患者,根据HER2表达水平将患者分为A、B、C三组,队列A (HER2 IHC3+、IHC2+/ISH+)的ORR接近50%,DCR高达83%;但在队列B (HER2 IHC2+/ISH−)和C (IHC1+)中没有观察到反应,由于登记的病人太少,还需要进一步研究 [20] 。总体而言,DS-8201a在HER2过表达的转移性结直肠癌中显示出强大而持久的抗肿瘤活性,为未来实现对HER2过表达的转移性结直肠癌的精准靶向治疗提供依据。

3.5. HER2表达的其他实体肿瘤

DS8201-A-J101研究纳入了60例泛瘤种患者(其中包括了8例唾液腺肿瘤;2例乳腺癌;2例食管癌;2例子宫内膜癌;2例佩吉特病;2例胆道癌;以及胰腺癌、子宫颈癌、骨外黏液样软骨肉瘤和小肠腺癌患者各1例),这些患者均接受了DS-8201a的治疗。研究结果表明HER2表达和突变的唾液腺肿瘤、胆道癌和子宫内膜癌均对DS-8201a具有客观反映 [40] 。5%~20%的胆道肿瘤以及高达60%的涎腺肿瘤具有HER2的突变和扩增 [41] [42] ,因此在胆道肿瘤和涎腺导管癌中,针对HER2靶点的ADC药物治疗有望提高这部分患者的生存,在这些肿瘤中实现抗HER2的精准治疗,一项II期的单臂研究(HERB;JMA-IIA00423)纳入HER2表达的胆道癌患者,旨在评估DS-8201a单独治疗的ORR。此外研究表明HER-2的过度表达与侵袭性子宫内膜和宫颈肿瘤相关并与不良的疾病结局相关 [43] [44] ,因此针对HER2的靶向治疗可能在未来能够进一步延长这部分妇科肿瘤患者的生存期,评估DS-8201a作为单一疗法治疗子宫内膜癌和宫颈癌的临床研究NCT04482309以及与其他药物联合治疗子宫内膜癌的临床研究NCT04585958、NCT04704661正在开展中,期待有初步研究结果的公布 [45] 。DESTINY-PanTumor02则是一项II期临床实验,评估DS-8201a治疗HER2表达的泛瘤种(包括尿路上皮性膀胱癌、胆道癌、宫颈癌、子宫内膜癌、卵巢癌、胰腺癌等)研究,期待这些研究成果的公布能改写HER2表达实体瘤的治疗格局。

4. DS-8201a的不良反应及毒性

尽管DS-8201a在多种实体瘤中具有不错的疗效,但毒性仍然是不可忽略的问题:1) 应该格外注意间质性肺疾病(Interstitial Lung Disease; ILD)的发生。在DESTINY⁃Breast 01研究中,即使是较低剂量的(5.4 mg/kg) DS-8201a,ILD的发生率仍高达13.6% [21] ,在DESTINY⁃Breast 04研究中,在接受DS⁃8201a治疗的患者中,12.1%的发生了ILD,0.8%的患者发生了ILD相关的死亡。在病理水平上,ILD是包括由肺泡炎、肺泡结构紊乱和肺泡间质纤维化等引起的多种肺部疾病,DS-8201a诱导ILD的具体机制尚不清楚,可能至少部分与所携带的有效载荷Dxd及针对HER2的靶向治疗有关,两者均在研究中被发现与肺毒性有关 [46] 。现在许多研究正在就DS-8201a引起的ILD的危险因素和机制进行探讨,在临床实践中应该注意对ILD引起的相关的症状和体征如咳嗽、发热、呼吸困难等密切观察,同时对有症状的患者应及时完善实验室检查及影像学检查。一旦怀疑发生ILD,应尽快停药并开始肾上腺皮质激素类药物治疗。2) 根据I、II期临床研究的结果,DS-8201a最常见的TRAE为胃肠道和血液学事件:所有级别的恶心呕吐发生率高达50%以上,Matthew S在其小样本研究中采用中等致吐风险来管理应用DS-8201a的患者,结果提示即使使用中等致吐风险来管理应用DS-8201a的患者,仍有28.9%的恶心呕吐发生率,表明按照中等致吐风险管理仍达不到治疗要求,推荐将DS-8201a作为一种高风险呕吐方案来进行管理 [47] ;贫血、中性粒细胞降低、白细胞降低、血小板降低等血液学毒性的发生率分别为31%、29%、22%、20%,因此在临床用药中应密切注意血象的变化,及时复查血常规等,避免发生IV度骨髓抑制。3) 其他如便秘、腹泻、疲劳、脱发食欲下降等毒性发生率也较高,在临床实践中也许注意管理与纠正。4) 不同于针对HER2的大分子单抗如曲妥珠单抗和帕妥珠单抗等引起的心脏相关不良反应,DS-8201a的心脏毒性发生率较低。

5. 总结与展望

综上所述,DS-8201a是治疗HER2表达实体肿瘤的一种很有前途的药物。目前正在进行许多临床试验,评估DS-8201a单药或与其他药物联合使用的抗肿瘤活性和毒性,一些III期临床研究的结果已经改变了指南。与传统的抗HER2药物只针对HER2过表达患者不同,DS-8201a在HER2低表达和HER2突变的实体肿瘤中也能发挥抗肿瘤作用,为这部分肿瘤患者提供了新的治疗选择。但需注意DS-8201a的毒性,尤其是需要密切监测肺部的不良反应。

文章引用

王 宁,岳 麓. DS-8201a治疗HER2表达实体肿瘤的研究进展
Research Progress of DS-8201a in the Treat-ment of HER2-Expressing Solid Tumors[J]. 临床医学进展, 2023, 13(05): 7611-7618. https://doi.org/10.12677/ACM.2023.1351063

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Kovtun, Y.V. and Goldmacher, V.S. (2007) Cell Killing by Anti-body-Drug Conjugates. Cancer Letters, 255, 232-240. https://doi.org/10.1016/j.canlet.2007.04.010

  3. 3. 曾铖, 张剑. 抗体偶联药物应用于乳腺癌治疗的研究进展[J]. 中国临床新医学, 2022, 15(6): 477-481.

  4. 4. 陆宁, 佟仲生. 抗体药物偶联物在乳腺癌中的研究进展[J]. 中国慢性病预防与控制, 2021, 29(7): 535-538.

  5. 5. Källsten, M., Hartmann, R., Kovac, L., et al. (2020) Investigating the Im-pact of Sample Preparation on Mass Spectrometry-Based Drug-to-Antibody Ratio Determination for Cysteine- and Ly-sine-Linked Antibody-Drug Conjugates. Antibodies (Basel), 93, Article No. 46. https://doi.org/10.3390/antib9030046

  6. 6. 朱逸晖, 李婷, 胡夕春. Trastuzumab Deruxtecan的临床研究进展及展望——HER2耐药患者的新希望[J]. 中国癌症杂志, 2021, 31(8): 754-761.

  7. 7. Doi, T., Shitara, K., Naito, Y., et al. (2017) Safety, Pharmacokinetics, and Antitumour Activity of Trastuzumab Deruxtecan (DS-8201), a HER2-Targeting Antibody-Drug Conjugate, in Patients with Advanced Breast and Gastric or Gastro-Oesophageal Tumours: A Phase 1 Dose-Escalation Study. The Lancet Oncology, 18, 1512-1522. https://doi.org/10.1016/S1470-2045(17)30604-6

  8. 8. Ogitani, Y., Aida, T., Hagihara, K., et al. (2016) DS-8201a, a Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Effi-cacy with Differentiation from T-DM1. Clinical Cancer Research, 22, 5097-5108. https://doi.org/10.1158/1078-0432.CCR-15-2822

  9. 9. (2021) Trastuzumab Deruxtecan Data Impresses at ESMO. Cancer Discovery, 11, 2664-2665. https://doi.org/10.1158/2159-8290.CD-NB2021-0382

  10. 10. Gonzalez-Angulo, A.M., Litton, J.K., Broglio, K.R., et al. (2009) High Risk of Recurrence for Patients with Breast Cancer Who Have Human Epidermal Growth Factor Recep-tor 2-Positive, Node-Negative Tumors 1 cm or Smaller. Journal of Clinical Oncology, 27, 5700-5706. https://doi.org/10.1200/JCO.2009.23.2025

  11. 11. Onitilo, A.A., Engel, J.M., Greenlee, R.T., et al. (2009) Breast Cancer Subtypes Based on ER/PR and Her2 Expression: Comparison of Clinicopathologic Features and Survival. Clini-cal Medicine & Research, 7, 4-13. https://doi.org/10.3121/cmr.2008.825

  12. 12. Slamon, D.J., Clark, G.M., Wong, S.G., et al. (1987) Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/Neu Oncogene. Science, 235, 177-182. https://doi.org/10.1126/science.3798106

  13. 13. Modi, S., Saura, C., Yamashita, T., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. The New England Journal of Medicine, 382, 610-621. https://doi.org/10.1056/NEJMoa1914510

  14. 14. Cortes, J., Kim, S.B., Chung, W.P., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. The New England Journal of Medicine, 386, 1143-1154. https://doi.org/10.1056/NEJMoa2115022

  15. 15. 雷蕾, 王晓稼. 从ADC药物发展看乳腺癌精准靶向治疗未来[J]. 肿瘤学杂志, 2021, 27(7): 515-520.

  16. 16. Modi, S., Jacot, W., Yamashita, T., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. The New England Journal of Medicine, 387, 9-20. https://doi.org/10.1056/NEJMoa2203690

  17. 17. 王帅, 崔中豪, 杨毅. HER2阳性乳腺癌脑转移的靶向治疗研究进展[J]. 医学研究生学报, 2020, 33(2): 215-219.

  18. 18. Brosnan, E.M. and Anders, C.K. (2018) Understanding Pat-terns of Brain Metastasis in Breast Cancer and Designing Rational Therapeutic Strategies. Annals of Translational Medi-cine, 69, Article No. 163. https://doi.org/10.21037/atm.2018.04.35

  19. 19. Iwata, T.N., Ishii, C., Ishida, S., et al. (2018) A HER2-Targeting An-tibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mo-lecular Cancer Therapeutics, 17, 1494-1503. https://doi.org/10.1158/1535-7163.MCT-17-0749

  20. 20. Indini, A., Rijavec, E. and Grossi, F. (2021) Trastuzumab Deruxtecan: Changing the Destiny of HER2 Expressing Solid Tumors. International Journal of Molecular Sciences, 22, Article No. 4774. https://doi.org/10.3390/ijms22094774

  21. 21. 李佳雨, 王风华. DS-8201开启了HER2阳性晚期胃癌靶向治疗新篇章[J]. 循证医学, 2021, 21(5): 273-277.

  22. 22. Shitara, K., Bang, Y.J., Iwasa, S., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. The New England Journal of Medicine, 382, 2419-2430. https://doi.org/10.1056/NEJMoa2004413

  23. 23. Aoki, M., Iwasa, S. and Boku, N. (2021) Trastuzumab Deruxtecan for the Treatment of HER2-Positive Advanced Gastric Cancer: A Clinical Perspective. Gastric Cancer, 24, 567-576. https://doi.org/10.1007/s10120-021-01164-x

  24. 24. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492

  25. 25. Díaz-Serrano, A., Gella, P., Jiménez, E., et al. (2018) Targeting EGFR in Lung Cancer: Current Standards and Developments. Drugs, 78, 893-911. https://doi.org/10.1007/s40265-018-0916-4

  26. 26. Gu, F.F., Zhang, Y., Liu, Y.Y., et al. (2016) Lung Adenocarci-noma Harboring Concomitant SPTBN1-ALK Fusion, c-Met Overexpression, and HER-2 Amplification with Inherent Resistance to Crizotinib, Chemotherapy, and Radiotherapy. Journal of Hematology & Oncology, 91, Article No. 66. https://doi.org/10.1186/s13045-016-0296-8

  27. 27. Murtuza, A., Bulbul, A., Shen, J.P., et al. (2019) Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Research, 79, 689-698. https://doi.org/10.1158/0008-5472.CAN-18-1281

  28. 28. Ramalingam, S.S., Yang, J.C., Lee, C.K., et al. (2018) Osimertinib as First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 36, 841-849. https://doi.org/10.1200/JCO.2017.74.7576

  29. 29. Yu, H.A., Arcila, M.E., Rekhtman, N., et al. (2013) Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR-TKI Therapy in 155 Patients with EGFR-Mutant Lung Cancers. Clinical Cancer Research, 19, 2240-2247. https://doi.org/10.1158/1078-0432.CCR-12-2246

  30. 30. Tsurutani, J., Iwata, H., Krop, I., et al. (2020) Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discovery, 10, 688-701. https://doi.org/10.1158/2159-8290.CD-19-1014

  31. 31. Azar, I., Alkassis, S., Fukui, J., et al. (2021) Spotlight on Trastuzumab Deruxtecan (DS-8201, T-DXd) for HER2 Mutation Positive Non-Small Cell Lung Cancer. Lung Cancer (Auckland, N.Z.), 12, 103-114. https://doi.org/10.2147/LCTT.S307324

  32. 32. Planchard, D., Yang, J.C.H., Brahmer, J.R., Ragone, A., et al. (2021) A Phase Ib Dose-Escalation Study Evaluating Trastuzumab Deruxtecan (T-DXd) and Durvalumab in Combination with Chemotherapy as First-Line Treatment in Patients with Advanced or Metastatic Nonsquamous Non-Small Cell Lung Cancer (NSCLC) and HER2 Overexpression (DESTINY-Lung03). Journal of Thoracic Oncology, 16, S798-S798. https://doi.org/10.1016/S1556-0864(21)02027-X

  33. 33. Siena, S., Sartore-Bianchi, A., Marsoni, S., et al. (2018) Targeting the Human Epidermal Growth Factor Receptor 2 (HER2) Oncogene in Colorectal Cancer. Annals of Oncology, 29, 1108-1119. https://doi.org/10.1093/annonc/mdy100

  34. 34. Raghav, K., Loree, J.M., Morris, J.S., et al. (2019) Validation of HER2 Amplification as a Predictive Biomarker for Anti-Epidermal Growth Factor Receptor Antibody Therapy in Metastatic Colorectal Cancer. JCO Precision Oncology, 3, 1-13. https://doi.org/10.1200/PO.18.00226

  35. 35. Ross, J.S., Fakih, M., Ali, S.M., et al. (2018) Targeting HER2 in Colo-rectal Cancer: The Landscape of Amplification and Short Variant Mutations in ERBB2 and ERBB3. Cancer, 124, 1358-1373. https://doi.org/10.1002/cncr.31125

  36. 36. Sartore-Bianchi, A., Amatu, A., Porcu, L., et al. (2019) HER2 Positivity Predicts Unresponsiveness to EGFR-Targeted Treatment in Metastatic Colorectal Cancer. Oncologist, 24, 1395-1402. https://doi.org/10.1634/theoncologist.2018-0785

  37. 37. Sawada, K., Nakamura, Y., Yamanaka, T., et al. (2018) Prognostic and Predictive Value of HER2 Amplification in Patients with Metastatic Colorectal Cancer. Clinical Colorec-tal Cancer, 17, 198-205. https://doi.org/10.1016/j.clcc.2018.05.006

  38. 38. Grob, T.J., Kannengiesser, I., Tsourlakis, M.C., et al. (2012) Het-erogeneity of ERBB2 Amplification in Adenocarcinoma, Squamous Cell Carcinoma and Large Cell Undifferentiated Car-cinoma of the Lung. Modern Pathology, 25, 1566-1573. https://doi.org/10.1038/modpathol.2012.125

  39. 39. Marx, A.H., Burandt, E.C., Choschzick, M., et al. (2010) Heterogenous High-Level HER-2 Amplification in a Small Subset of Colorectal Cancers. Human Pathology, 41, 1577-1585. https://doi.org/10.1016/j.humpath.2010.02.018

  40. 40. Shitara, K., Iwata, H., Takahashi, S., et al. (2019) Trastuzumab Deruxtecan (DS-8201a) in Patients with Advanced HER2-Positive Gastric Cancer: A Dose-Expansion, Phase 1 Study. The Lancet Oncology, 20, 827-836. https://doi.org/10.1016/S1470-2045(19)30088-9

  41. 41. Di Villeneuve, L., Souza, I.L., Tolentino, F.D.S., et al. (2020) Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Frontiers in Oncol-ogy, 10, Article ID: 580141. https://doi.org/10.3389/fonc.2020.580141

  42. 42. Nam, A.R., Kim, J.W., Cha, Y., et al. (2016) Therapeutic Implica-tion of HER2 in Advanced Biliary Tract Cancer. Oncotarget, 7, 58007-58021. https://doi.org/10.18632/oncotarget.11157

  43. 43. English, D.P., Roque, D.M. and Santin, A.D. (2013) HER2 Ex-pression beyond Breast Cancer: Therapeutic Implications for Gynecologic Malignancies. Molecular Diagnosis & Thera-py, 17, 85-99. https://doi.org/10.1007/s40291-013-0024-9

  44. 44. Mariani, A., Sebo, T.J., Katzmann, J.A., et al. (2005) HER-2/Neu Overexpression and Hormone Dependency in Endometrial Cancer: Analysis of Cohort and Review of Literature. Anti-Cancer Research, 25, 2921-2927.

  45. 45. Martín-Sabroso, C., Lozza, I., Torres-Suárez, A.I., et al. (2021) Anti-body-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics, 13, Article No. 1705. https://doi.org/10.3390/pharmaceutics13101705

  46. 46. Tarantino, P., Modi, S., Tolaney, S.M., et al. (2021) Intersti-tial Lung Disease Induced by Anti-ERBB2 Antibody-Drug Conjugates: A Review. JAMA Oncology, 7, 1873-1881. https://doi.org/10.1001/jamaoncol.2021.3595

  47. 47. Stankowicz, M., Mauro, L., Harnden, K., et al. (2021) Manage-ment of Chemotherapy-Induced Nausea and Vomiting with Trastuzumab Deruxtecan: A Case Series. Breast Care (Basel), 16, 408-411. https://doi.org/10.1159/000511049

  48. NOTES

    *通讯作者。

期刊菜单