Advances in Clinical Medicine
Vol. 13  No. 08 ( 2023 ), Article ID: 70615 , 12 pages
10.12677/ACM.2023.1381788

非酒精性脂肪肝病和血管疾病:临床证据与 机制回顾

屈飏,张百慧

西安医学院研究生院,陕西 西安

收稿日期:2023年7月13日;录用日期:2023年8月3日;发布日期:2023年8月15日

摘要

非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)是全球肝病负担日益加重的重要原因。全世界约有25%的成年人可能受到NAFLD的影响。由于NAFLD通常与肥胖、2型糖尿病或高血压等代谢合并症(metabolic syndrome, MetS)相关,因此通常被认为是MetS的肝脏表现。NAFLD和MetS之间的关联已经确定,但仍需要证明NAFLD对血管风险和心血管疾病(cardiovascular disease, CVD)进展的独立影响。值得注意的是,越来越多的证据表明,NAFLD患者患冠心病、心肌病和心律失常的风险很高,CVD是NAFLD患者死亡的主要原因。在本综述中,我们讨论了NAFLD患者血管损伤的病理驱动因素。此外,还将讨论NAFLD对亚临床和临床CVD的发生,严重程度和进展的影响。最后,描述了在该高危人群中筛查CVD的当前和潜在前景。

关键词

非酒精性脂肪肝,心血管疾病,代谢综合征

Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: Clinical Evidence and a Mechanistic Review

Yang Qu, Baihui Zhang

Graduate School, Xi’an Medical University, Xi’an Shaanxi

Received: Jul. 13th, 2023; accepted: Aug. 3rd, 2023; published: Aug. 15th, 2023

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is an important cause of the increasing burden of liver disease worldwide. About 25% of adults worldwide may be affected by NAFLD. Because NAFLD is often associated with metabolic comorbidities (MetS) such as obesity, type 2 diabetes, or hypertension, it is generally considered a hepatic manifestation of MetS. The association between NAFLD and MetS has been established, but there is still a need to demonstrate the independent effect of NAFLD on vascular risk and cardiovascular disease (CVD) progression. Notably, there is growing evidence that patients with NAFLD are at high risk of coronary heart disease, cardiomyopathy, and arrhythmias, and that CVD is the leading cause of death in patients with NAFLD. In this review, we discuss the role of NAFLD as an emerging risk factor for CVD, outlining the pathological drivers of vascular injury in patients with NAFLD. In addition, the impact of NAFLD on the occurrence, severity, and progression of subclinical and clinical CVD will be discussed. Finally, the current and potential prospects for screening for CVD in this high-risk population are described.

Keywords:Non-Alcoholic Fatty Liver, Cardiovascular Diseases, Metabolic Syndrome

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

非酒精性脂肪肝病(nonalcoholic fatty liver disease, NAFLD)是全球慢性肝病的最常见原因,在成年人中的患病率已高达30%,这造成巨大的临床和经济负担 [1] 。NAFLD与动脉粥样硬化性血脂异常、腹部肥胖、高血压和糖耐量受损等多项代谢综合征(metabolic syndrome, MetS)的特征密切相关,通常被认为是MetS的肝脏表现 [2] 。NAFLD患者的死亡率远高于一般人群,心血管疾病(cardiovascular disease, CVD)是NAFLD患者最常见的并发症和死因 [3] [4] 。与未患有NAFLD的患者相比,被诊断为NAFLD的患者在10年内发生心血管事件的倾向显著升高。根据弗雷明汉评分,患有NAFLD的男性平均心血管风险为16.0%,而没有患NAFLD的男性为12.7%。同样,患有NAFLD的女性平均患心血管疾病的风险为6.7%,而没有患NAFLD的女性为4.6% [5] 。NAFLD本身是否代表心血管风险,是否是MetS的必然结果,还是两者的结合,目前仍存在争议。多项研究表明,NAFLD是独立于传统心血管风险因素的心血管风险因素。特别是,最近的一项为期14年的队列研究表明,NAFLD患者的主要不良心血管事件发生率显著提高 [6] 。与对照组相比,脑卒中发生率增加1.58、充血性心力衰竭发生率增加1.75、以及心血管死亡率增加1.37 [6] 。在本综述中,我们讨论了NAFLD和CVD的潜在病理生理机制,NAFLD作为代谢功能障碍相关心血管危险因素的作用。此外,还将讨论NAFLD对亚临床和临床CVD的发生,严重程度和进展的影响。

2. 病理生理机制

NAFLD和CVD都是MetS终末器官损伤的表现,NAFLD中CVD发生的潜在机制尚不完全清楚,同时涉及许多不同的途径。内脏脂肪组织功能失调引起的腹型肥胖,在不良心脏代谢结局中起着核心作用 [7] 。内脏肥胖与循环中游离脂肪酸(free fatty acid, FFA)的慢性溢出有关,会诱发肝脏胰岛素抵抗。甘油三酯、小密度低密度脂蛋白和低密度脂蛋白颗粒的过量产生,这些物质都很容易滞留在外周血管,进而导致动脉粥样硬化血脂异常的发生 [8] 。腹型肥胖已被发现是上肢和下肢动脉疾病的独立危险因素 [9] 。同时,FFA水平的升高有可能直接或间接激活肝糖异生,降低肝脏胰岛素敏感性。胰岛素敏感性的下降导致极低密度脂蛋白的增加和高密度脂蛋白的减少,从而加速了动脉粥样硬化性血脂异常的循环 [10] 。

人们还普遍认识到,造成这种改变的机制可能与超重和肥胖无关。异位脂肪的积累以及随后来自脂肪的代谢物的释放和炎症途径的激活,在局部和系统水平上均引发了级联的病理生理改变,最终导致NAFLD和CVD的发生 [11] 。内脏脂肪组织作为一个自主的内分泌器官,释放脂肪因子(如肿瘤坏死因子-α、白细胞介素-6和白细胞介素-10),这些因子不仅会引起慢性炎症反应,而且可能影响肝细胞内的胰岛素信号通路并破坏胰岛素敏感性,促进了动脉粥样硬化性血脂异常的发展和肝细胞中FFA的积累 [12] [13] 。值得注意的是,性别差异带来的脂肪沉积可能部分解释了CVD风险的差异。在持续的体能训练测试中发现,女性优先动员脂肪储存,脂肪氧化供能更强,因此男性会比女性更容易出现内脏肥胖 [14] 。NAFLD的流行病学特征也证实了这一性别差异,男性NAFLD患病率显著高于女性 [15] 。

大量的脂质在外周和肝脏内堆积,进而发生线粒体和内质网产生脂毒性应激,导致线粒体功能的改变和活性氧产生的增加 [16] 。一方面,内质网稳态的扰动和氧化应激已被证明通过诱导内皮功能障碍影响代谢性炎症,使NAFLD患者易发生心血管事件 [17] ;另一方面,由此产生的氧化应激也通过脂质过氧化,促进多不饱和脂肪酸的脂质过氧化,并产生有毒的醛产物,引起脂质损伤,这些经过氧化修饰的脂质具有更强的致动脉粥样硬化作用 [18] 。一项针对NAFLD进展和消退的前瞻性队列研究进一步证实了脂肪堆积、氧化应激、胰岛素抵抗所营造的低度系统性炎症在NAFLD晚期病程中会产生血管结构和功能的不可逆性损伤 [19] 。内皮功能障碍是动脉粥样硬化发展的初始阶段,已被观察到富含甘油三酯的脂蛋白含有载脂蛋白C3能够通过半胱天冬酶-3诱导替代NLRP3炎症小体和Toll样受体8和2的二聚化来激活人单核细胞中的NLRP4炎症小体 [20] 。NAFLD还被发现与高凝状态有关。NAFLD患者不仅对血栓栓塞事件的易感性增加,而且纤溶酶原激活剂抑制剂1、纤维蛋白原和血管性血肿因子的血液浓度水平也有所升高 [21] [22] 。

随着近年来的研究发现,肠肝轴这一原本源于解剖学的概念,开始同样适用于分析NAFLD和CVD在发病机制上的功能学问题 [23] 。在NAFLD患者高果糖和高脂肪的饮食习惯导致的病理条件下,破坏了肠上皮屏障和肠道血管屏障的原有的功能和通透性,通过门静脉系统连接的肠肝轴,导致小肠细菌过度生长及细菌代谢物、内源性乙醇、胆汁酸–微生物串扰和脂多糖等内毒素进入肝脏及全身血液系统,最终发展为全身性低度炎症 [24] [25] [26] [27] [28] ,参与了AS的发病 [29] 。一项荟萃分析强调,大肠杆菌、普氏菌、链球菌、粪球菌、粪杆菌和瘤胃球菌的丰度变化是NAFLD的普遍肠道细菌特征 [30] 。失衡的肠道细菌将左旋肉碱、胆碱和卵磷脂等含甲胺的营养素转化为三甲胺,肝脏中的黄素单加氧酶对其进一步加工成三甲胺N-氧化物 [31] 。已有文章证实三甲胺N-氧化物水平升高与发生动脉粥样硬化等重大不良心血管事件的风险增加有关 [32] [33] 。2019年的一项在34名经活检证实为NAFLD患者中进行的临床队列研究发现三甲胺N-氧化物还通过介导肝法尼样X受体信号传导来加重肝脂肪变性 [34] 。如此看来,循环中的三甲胺N-氧化物水平与NAFLD的严重程度、动脉粥样硬化高度相关。

大规模的全基因组关联研究已经确定了与NAFLD易感性和其严重程度相关的特定基因,包括含有patatin样磷脂酶结构域3 (PNPLA3)和跨膜6超家族成员2 (TM6SF2)基因的多态性。TM6SF2编码的蛋白质影响富含甘油三酯的脂蛋白的分泌和肝脂滴含量 [35] 。TM6SF2野生型等位基因的携带促进甘油三酯和胆固醇分泌到循环中,总体上降低肝脏脂肪含量 [36] 。这些患者出现严重的血脂异常,这使他们患动脉粥样硬化的风险增加。有趣的是,PNPLA3传变异的携带者往往具有明显的心脏保护表型。携带PNPLA148中的I738409M变体增加了肝脏脂肪含量,但可以预防CVD [37] 。然而,关于NAFLD患者心血管风险的遗传易感性的数据有限且尚无定论。最近一项双样本孟德尔随机化研究显示,遗传预测的NAFLD与冠状动脉疾病之间存在着强关联 [38] 。

本质上,NAFLD中动脉粥样硬化的发病机制受到动脉粥样硬化性血脂异常、氧化应激、促炎环境、高血糖、血栓前状态和遗传易感性的相互作用的复杂影响。

3. NAFLD与亚临床血管疾病

亚临床血管疾病(subclinical vascular disease, SVD)能够帮助识别和预防过早死亡,并且SVD的无创测量是老年人心血管事件的危险因素 [39] [40] 。SVD的首发改变是内皮功能障碍,之后出现动脉粥样硬化的形态学和功能学改变,例如血管顺应性降低和颈动脉内中膜厚度(carotid intima-media thickness, CIMT)增加。

在NAFLD中,多种因素可能影响内皮功能,例如致动脉粥样硬化性血脂异常、慢性低度炎症状态,高血糖、氧化应激以及血栓前状态 [41] 。血管内皮功能障碍表现为内皮依赖性血管舒张受损、氧化应激升高、慢性炎症、白细胞粘附和通透性过高以及内皮细胞衰老。目前使用肱动脉的高频超声成像以评估内皮依赖性血流介导的血管舒张 [42] 。临床研究已经证实,无论是否存在MetS的特征,NAFLD患者的内皮依赖性血流介导的血管舒张均有所降低,出现内皮功能受损 [43] 。此外,在没有糖尿病,病态肥胖和不受控制的高血压的情况下,健康人群比经活检证实的NAFLD患者具有更好的内皮功能 [44] 。

动脉弹性特性是由血管壁中的胶原蛋白和弹性蛋白之间的比例决定,并通过其生产和降解过程之间的动态平衡来保证血管最佳的弹性和顺应性。血管系统的老化与动脉壁结构属性的深层变化有关 [45] 。动脉硬度是动脉结构和功能的可靠特征,大量的研究显示动脉硬度增加与许多心血管终点事件高度相关 [46] [47] [48] 。目前评估动脉僵硬度的方法很多,研究中使用较多的有颈股搏波速度(cf-PWV)、臂踝脉搏波速度(ba-PWV)或颈动脉脉搏波速度(cPWV) [49] 。与非NAFLD患者相比,NAFLD患者的ba-PWV较高。即使在调整性别和年龄后,同时患有MetS和NAFLD的患者的ba-PWV显着高于分别患有这两种疾病或均不患有这两种疾病的患者 [50] 。另一项荟萃分析显示,与非NAFLD患者相比,NAFLD患者的cf-PWV,增强指数和ba-PWV均显着增加 [51] 。

CIMT是用于检测亚临床动脉粥样硬化性血管疾病的最常用方法,可作为临床试验中CVD风险的替代标志物。通过CIMT定义的颈动脉粥样硬化和NAFLD之间的关联已在多项横断面与前瞻性研究中得到广泛证明 [52] 。NAFLD脂肪变性的逐步增加会显着增加NAFLD发生颈动脉粥样硬化的风险。数据显示超过三分之一的患者患有颈动脉粥样硬化,颈动脉粥样硬化的常规评估对于NAFLD至关重要 [53] 。NAFLD患者的CIMT显着高于非NAFLD患者,Logistic回归显示NAFLD使CIMT的比值比增加35%,与传统危险因素和MetS的存在无关 [50] 。通过NAFLD纤维化评分和组织学评估,晚期纤维化分期与较高的CIMT与之间的有较强的相关性 [54] [55] 。有趣的是,NAFLD的遗传倾向似乎也会导致SVD,特别是已得到广泛研究的PNPLA3。PNPLA3基因负责编码脂联蛋白,在脂细胞的脂质代谢调控中起着至关重要的作用。与突变型GG携带者和对照组相比,野生型CC PNPLA3表型的个体表现更高的CIMT [56] 。

总而言之,有多种证据表明NAFLD与亚临床血管损伤的存在和进展相关,独立于其他代谢危险因素。纤维化阶段还与血管疾病的严重程度相关,有效的纤维化筛查可以防止NAFLD患者CVD的进展。

4. NAFLD中的临床血管疾病和急性心血管事件

NAFLD与突发的临床CVD的风险增加有关 [57] 。根据最近在瑞典进行的一项纵向研究发现,与一般人群相比,NAFLD的CVD的风险提高了54% [58] 。在接受冠状动脉造影的患者中,与无NAFLD人群相比,NAFLD患者与更严重的血管疾病(一个或多个冠状动脉狭窄)相关 [59] 。此外,NAFLD的存在还与高风险斑块的存在和更快的疾病进展有关。研究表明,NAFLD是高危冠状动脉斑块的独立预测指标,并可能部分阐明冠状动脉事件的高易感性 [60] 。在脆弱的动脉粥样硬化斑块恶化或破裂,导致急性冠状动脉综合征的情况下,NAFLD的存在与不利的临床后果有关。对360例诊断为ST段抬高型心肌梗死的患者进行的综合检查显示,与对照组相比,NAFLD患者的住院死亡率和3年死亡率均增加 [61] 。晚期纤维化与NAFLD患者的CIMT、颈动脉斑块的存在和动脉僵硬度呈正相关,独立于传统的心脏代谢危险因素和胰岛素抵抗 [62] 。

此外,越来越多的证据表明,NAFLD与心律失常之间存在相关性,包括房颤,室性心律失常和心脏传导阻滞 [63] [64] [65] 。这种关联可归因于NAFLD的炎症性质,它导致体循环或心包脂肪组织内局部产生促炎介质。这些介质可以通过影响特定的离子通道来影响心肌,从而延长动作电位的持续时间,进而延长QT间期 [66] 。最近的一项研究让人们关注到这样一个事实,即晚期肝病患者往往在房颤的防治不足,这可能是由于对出血风险增加的担忧 [67] 。

除了功能性心脏改变外,在NAFLD患者中也经常观察到心脏结构异常。一些研究结果表明,NAFLD与主动脉瓣硬化和二尖瓣环钙化有关,这可能有利于该人群发生功能相关的瓣膜疾病 [68] [69] 。此外,相当比例的NAFLD患者经历心肌重构,特别是左心室,常伴有收缩和/或舒张功能受损 [70] [71] 。这些结构异常反过来又成为心律失常的另一个诱发因素。在超声心动图指标方面,心脏几何结构改变和舒张功能障碍(舒张期后壁厚度、左心室质量、相对壁厚和左心房容积以及射血分数、E/A比值)与NAFLD患者纤维化严重程度有关且独立于心脏代谢因素 [72] 。患有严重脂肪变性的患者在再灌注后表现出更高的心肌功能受损率。这些改变是左心室功能下降、梗塞面积增大和死亡率增加的有力预测因素 [73] 。然而,一项包含279,013名患者数据的大型荟萃分析并未证实与肝脏脂肪含量相关的缺血性心脏病风险 [74] 。

多项研究显示NAFLD与脑血管疾病之间存在关联 [57] [75] 。42.5%的急性缺血性脑卒中患者发生NAFLD [76] 。NAFLD可能与更严重的中风和更差的结果有关使用肝脏瞬时弹性成像评估的肝脏硬度结果显示,显着纤维化的存在,肝脏硬度测量值每增加一个单位,中风风险就会增加1.26倍 [77] 。但是,另一项孟德尔随机化研究显示,NAFLD对缺血性脑卒中的潜在致病影响可能局限于大动脉粥样硬化和小血管闭塞这两个亚型 [78] 。此外,还发现超声诊断的NAFLD可以预测急性脑干梗塞的严重程度和进展,急性脑干梗塞是与高度残余残疾相关的特殊中风亚组 [79] 。总体而言,没有足够的证据表明NAFLD与所有形式的中风的发生和严重程度相关。

最后,人们对微血管疾病与NAFLD之间的关联也越来越感兴趣,特别是作为这些患者慢性肾衰竭的常见原因 [80] 。众所周知,糖尿病和/或高血压本身就容易引发多种微血管疾病。一项随访4.6年的中国队列研究显示,代谢功能障碍合并NAFLD与慢性肾脏病的风险增高有关,而与单纯NAFLD的相关性不大 [81] 。然而,一些研究表明,NAFLD与微血管病相关,独立于传统的心血管危险因素 [82] 。此外,肝脏硬度与NAFLD患者肾脏结局可能存在着联系。荟萃分析结果显示,肝纤维化与NAFLD患者慢性肾脏疾病和白蛋白尿风险增高有关。一致的是,在一个由1763名中国糖尿病患者组成的大型队列中,晚期纤维化的存在(使用瞬时弹性成像检测)与肾病相关 [83] 。在本研究中,微量白蛋白尿的几率随着肝脏硬度测量值的增加而增加。

总之,越来越多的证据表明,代谢失调作为一个共同的因素,可以解释观察到的NAFLD与冠状动脉疾病、心律失常和结构性心脏病之间的相关性。因此,一个专家小组最近提出采用术语“MAFLD”(代谢功能障碍相关的脂肪肝疾病)作为一个更合适和更全面的描述符,准确地代表NAFLD的潜在机制 [84] 。

5. NAFLD患者的血管疾病筛查与干预

CVD是NAFLD患者发病和死亡的主要原因。CVD和NAFLD之间的强相关性强调了在该人群中早期发现和适当治疗心脏代谢危险因素的必要性 [85] 。因此,指南建议NAFLD患者进行CVD风险综合评估,并根据个体情况每一到两年进行一次重新评估 [86] 。然而,尽管被归类为高危患者,但目前缺乏证据,需要坚持对NAFLD患者心血管危险因素的传统管理方法 [87] 。NAFLD的纤维化阶段已被确定为决定预后的一个重要因素 [88] 。大量研究表明,纤维化的进展也可以作为CVD发展的预测因子,其风险随着纤维化的进展成比例地增加 [89] [90] [91] 。对于F ≥ 2纤维化阶段的患者,可以考虑进行CVD筛查,因为晚期纤维化(F3-F4)患者面临更高的心血管事件死亡风险 [92] 。有研究评估了联合血液检测在预测CVD相关预后中的重要性。然而,目前的证据体系还不足以建立筛查方案。此外,在这一特定人群中,缺乏支持传统心血管评分。值得注意的是,由于止血活性的提高,平均血小板体积已证明其在预测心血管事件方面的效用 [93] 。弗雷明汉后代研究是第一项表明γ-谷氨酰转移酶(gamma-glutamyl transferase, GGT)与CVD相关的流行病学研究 [94] 。GGT与动脉粥样硬化斑块之间的关联已在普通人群中得到充分证实。在这项研究中,GGT与较高的体重指数、血压、低密度脂蛋白胆固醇、甘油三酯和葡萄糖相关。特别是,在调整心血管风险因素后,GGT每增加一个标准差,CVD风险和死亡率就会增加13%和26%。

生活方式的改变,包括饮食改变、身体活动和减肥干预是NAFLD的一线治疗。在这种情况下,最好采用实用方法,将饮食限制与逐渐增加有氧或阻力训练相结合,并应根据具体情况进行调整 [95] 。体重减轻对超重或肥胖NAFLD患者非常重要,可通过限制热量、减肥手术或剧烈运动来实现 [96] 。体重减轻约5%的总体重与肝脏脂肪含量显著降低约30%和代谢异常的改善有关。然而,为了显著减少肝细胞炎症,至少减轻至少7%至10%可能是必要的。此外,至少减轻总体重的10%就需要解决与预后相关的纤维化 [97] [98] 。与以往的身体活动水平相比,从事任何形式的身体活动或增加活动水平都比久坐不动的生活方式更可取。在被诊断为NAFLD的个体中,体育活动表现出剂量–反应相关性,其中高强度运动如跑步产生更有利的结果,包括改善非酒精性脂肪性肝炎和纤维化 [99] 。在改善整体心脏代谢健康方面,特别是阻力训练继承了有益的效果,因为它以促进整体抗炎和抗动脉粥样硬化状态的方式影响身体成分 [100] 。适度的身体活动,特别是与饮食干预相结合,对减少内脏脂肪组织也有很大的影响。具体来说,除了减少肝内脂肪外,地中海饮食结合低碳水化合物消耗还能够进一步调动致动脉粥样硬化和糖尿病异位脂肪库,例如心包内脂肪,胰腺脂肪或皮下脂肪 [101] 。

总之,虽然CVD仍然是NAFLD患者死亡的主要原因,但目前没有足够的证据支持对这些患者实施筛查方案。尽管如此,还需要进一步的前瞻性研究来确定非侵入性纤维化标志物在预测这一特定人群的心血管预后方面的效用。此外,加强对NAFLD患者代谢危险因素管理的优化也势在必行。除了基于个人的方法外,还迫切需要旨在减少久坐不动的工作时间和环境压力因素的负担的公共卫生干预措施,例如公共建筑中的烟草烟雾,非生理性光暴露(即蓝光),环境噪音和空气污染,并且对于使预防心脏代谢疾病更加全面非常重要 [102] 。

6. 结论

CVD是NAFLD患者死亡的主要原因。无论是否存在常规代谢因素,NAFLD都是CVD发展、严重程度和进展的危险因素。随着时间的推移,NAFLD可能将极大地造成与CVD相关的健康问题的全球负担。近期在理解NAFLD和心血管风险之间关联的机制基础方面取得的进展,可能有助于在该人群中实施对心血管风险的系统评估和管理。

文章引用

屈 飏,张百慧. 非酒精性脂肪肝病和血管疾病:临床证据与机制回顾
Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: Clinical Evidence and a Mechanistic Review[J]. 临床医学进展, 2023, 13(08): 12753-12764. https://doi.org/10.12677/ACM.2023.1381788

参考文献

  1. 1. Wang, Y., Guo, X., Zhang, Y., Zhang, R. and Li, J. (2023) Differ-ent Associations of General and Abdominal Obesity with Upper and Lower Extremity Artery Disease among a Commu-nity Population in China. Nutrition & Metabolism, 20, Article No. 14. https://doi.org/10.1186/s12986-023-00736-1

  2. 2. Sakurai, Y., Kubota, N., Yamauchi, T. and Kadowaki, T. (2021) Role of Insulin Resistance in MAFLD. International Journal of Molecular Sciences, 22, Article No. 4156. https://doi.org/10.3390/ijms22084156

  3. 3. Deprince, A., Haas, J.T. and Staels, B. (2020) Dysregulated Lipid Me-tabolism Links NAFLD to Cardiovascular Disease. Molecular Metabolism, 42, Article ID: 101092. https://doi.org/10.1016/j.molmet.2020.101092

  4. 4. Geng, Y., Faber, K.N., de Meijer, V.E., Blokzijl, H. and Moshage, H. (2021) How Does Hepatic Lipid Accumulation Lead to Lipotoxicity in Non-Alcoholic Fatty Liver Disease? Hepatology International, 15, 21-35. https://doi.org/10.1007/s12072-020-10121-2

  5. 5. Badmus, O.O., Hillhouse, S.A., Anderson, C.D., Hinds, T.D. and Stec, D.E. (2022) Molecular Mechanisms of Metabolic Associated Fatty Liver Disease (MAFLD): Functional Anal-ysis of Lipid Metabolism Pathways. Clinical Science, 136, 1347-1366. https://doi.org/10.1042/CS20220572

  6. 6. Beckner, M.E., Thompson, L., Radcliffe, P.N., Cherian, R., Wilson, M., Barringer, N., Margolis, L.M. and Karl, J.P. (2023) Sex Differences in Body Composition and Serum Metabolome Re-sponses to Sustained, Physical Training Suggest Enhanced Fat Oxidation in Women Compared with Men. Physiological Genomics, 55, 235-247. https://doi.org/10.1152/physiolgenomics.00180.2022

  7. 7. Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9

  8. 8. Dabravolski, S.A., Bezsonov, E.E., Baig, M.S., Popkova, T.V. and Orekhov, A.N. (2021) Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Internation-al Journal of Molecular Sciences, 22, Article No. 6949. https://doi.org/10.3390/ijms22136949

  9. 9. Incalza, M.A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L. and Giorgino, F. (2018) Oxidative Stress and Reactive Oxygen Spe-cies in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascular Pharmacology, 100, 1-19. https://doi.org/10.1016/j.vph.2017.05.005

  10. 10. Hoebinger, C., Rajcic, D. and Hendrikx, T. (2021) Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Frontiers in Cardio-vascular Medicine, 8, Article 824481. https://doi.org/10.3389/fcvm.2021.824481

  11. 11. Liu, S., Wang, J., Wu, S., Niu, J., Zheng, R., Bie, L., Xin, Z., Wang, S., Lin, H., Zhao, Z., et al. (2021) The Progression and Regression of Metabolic Dysfunction-Associated Fatty Liver Disease Are Associated with the Development of Subclinical Atherosclerosis: A Prospective Analysis. Metabolism: Clinical and Experimental, 120, Article ID: 154779. https://doi.org/10.1016/j.metabol.2021.154779

  12. 12. Zewinger, S., Reiser, J., Jankowski, V., Alansary, D., Hahm, E., Triem, S., Klug, M., Schunk, S.J., Schmit, D., Kramann, R., et al. (2020) Apolipoprotein C3 Induces Inflammation and Organ Damage by Alternative Inflammasome Activation. Nature Immunology, 21, 30-41. https://doi.org/10.1038/s41590-019-0548-1

  13. 13. Tripodi, A., Lombardi, R., Primignani, M., La Mura, V., Peyvandi, F. and Fracanzani, A.L. (2022) Hypercoagulability in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD): Caus-es and Consequences. Biomedicines, 10, Article No. 249. https://doi.org/10.3390/biomedicines10020249

  14. 14. Di Minno, M.N., Tufano, A., Rusolillo, A., Di Minno, G. and Tarantino, G. (2010) High Prevalence of Nonalcoholic Fatty Liver in Patients with Idiopathic Venous Thromboembolism. World Journal of Gastroenterology, 16, 6119-6122. https://doi.org/10.3748/wjg.v16.i48.6119

  15. 15. Drożdż, K., Nabrdalik, K., Hajzler, W., Kwiendacz, H., Gumprecht, J. and Lip, G.Y.H. (2021) Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients, 14, Article No. 103. https://doi.org/10.3390/nu14010103

  16. 16. Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., Mileti, E., Galbiati, M., Invernizzi, P., Adorini L., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. https://doi.org/10.1016/j.jhep.2019.08.005

  17. 17. Gottlieb, A. and Canbay, A. (2019) Why Bile Acids Are So Im-portant in Non-Alcoholic Fatty Liver Disease (NAFLD) Progression. Cells, 8, Article No. 1358. https://doi.org/10.3390/cells8111358

  18. 18. De Munck, T.J.I., Xu, P., Verwijs, H.J.A., Masclee, A.A.M., Jonkers, D., Verbeek, J. and Koek, G.H. (2020) Intestinal Permeability in Human Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Liver International, 40, 2906-2916. https://doi.org/10.1111/liv.14696

  19. 19. Sookoian, S. and Pirola, C.J. (2021) Liver Tissue Microbiota in Nonalcoholic Liver Disease: A Change in the Paradigm of Host-Bacterial Interactions. Hepatobiliary Surgery and Nutrition, 10, 337-349. https://doi.org/10.21037/hbsn-20-270

  20. 20. Kolodziejczyk, A.A., Zheng, D., Shibolet, O. and Elinav, E. (2019) The Role of the Microbiome in NAFLD and NASH. EMBO Molecular Medicine, 11, e9302. https://doi.org/10.15252/emmm.201809302

  21. 21. Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. https://doi.org/10.1038/s41586-021-03392-8

  22. 22. Li, F., Ye, J., Shao, C. and Zhong, B. (2021) Compositional Al-terations of Gut Microbiota in Nonalcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis. Li-pids in Health and Disease, 20, Article No. 22. https://doi.org/10.1186/s12944-021-01440-w

  23. 23. Anto, L. and Blesso, C.N. (2022) Interplay between Diet, the Gut Microbiome, and Atherosclerosis: Role of Dysbiosis and Microbial Metabolites on Inflammation and Disordered Li-pid Metabolism. The Journal of Nutritional Biochemistry, 105, Article ID: 108991. https://doi.org/10.1016/j.jnutbio.2022.108991

  24. 24. Tang, W.H., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y. and Hazen, S.L. (2013) Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. The New England Journal of Medicine, 368, 1575-1584. https://doi.org/10.1056/NEJMoa1109400

  25. 25. Zhang, H., Jing, L., Zhai, C., Xiang, Q., Tian, H. and Hu, H. (2023) Intestinal Flora Metabolite Trimethylamine Oxide Is Inextrica-bly Linked to Coronary Heart Disease. Journal of Cardiovascular Pharmacology, 81, 175-182. https://doi.org/10.1097/FJC.0000000000001387

  26. 26. Zhou, D., Zhang, J., Xiao, C., Mo, C. and Ding, B.S. (2022) Trimethylamine-N-Oxide (TMAO) Mediates the Crosstalk between the Gut Microbiota and Hepatic Vascular Niche to Alleviate Liver Fibrosis in Nonalcoholic Steatohepatitis. Frontiers in Immunology, 13, Article 964477. https://doi.org/10.3389/fimmu.2022.964477

  27. 27. Luo, F., Oldoni, F. and Das, A. (2022) TM6SF2: A Novel Ge-netic Player in Nonalcoholic Fatty Liver and Cardiovascular Disease. Hepatology Communications, 6, 448-460. https://doi.org/10.1002/hep4.1822

  28. 28. Xue, W.-Y., Zhang, L., Liu, C.-M., Gao, Y., Li, S.-J., Huai, Z.-Y., Dai, J. and Wang, Y.-Y. (2022) Research Progress on the Relationship between TM6SF2 rs58542926 Polymorphism and Non-Alcoholic Fatty Liver Disease. Expert Review of Gastroenterology & Hepatology, 16, 97-107. https://doi.org/10.1080/17474124.2022.2032661

  29. 29. Luukkonen, P.K., Qadri, S., Lehtimäki, T.E., Juuti, A., Sammalkorpi, H., Penttilä, A.K., Hakkarainen, A., Orho-Melander, M., Arola, J. and Yki-Järvinen, H. (2021) The PNPLA3-I148M Variant Confers an Antiatherogenic Lipid Profile in Insulin-Resistant Patients. The Journal of Clinical Endocrinology and Metabolism, 106, e300-e315. https://doi.org/10.1210/clinem/dgaa729

  30. 30. Ren, Z., Simons, P., Wesselius, A., Stehouwer, C.D.A. and Brouwers, M. (2023) Relationship between NAFLD and Coronary Artery Disease: A Mendelian Randomization Study. Hepatology, 77, 230-238. https://doi.org/10.1002/hep.32534

  31. 31. Wu, C., Zhang, K., Odden, M.C., Kucharska-Newton, A.M., Palta, P., Matsushita, K., Gottesman, R.F. and Windham, B.G. (2021) Subclinical Vascular Disease Burden and Premature Mortal-ity among Middle-Aged Adults: The Atherosclerosis Risk in Communities Study. Journal of General Internal Medicine, 36, 2048-2054. https://doi.org/10.1007/s11606-020-06398-6

  32. 32. Fernández-Friera, L., Peñalvo, J.L., Fernández-Ortiz, A., Ibañez, B., López-Melgar, B., Laclaustra, M., Oliva, B., Mocoroa, A., Mendiguren, J., Martínez de Vega, V., et al. (2015) Prev-alence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation, 131, 2104-2113. https://doi.org/10.1161/CIRCULATIONAHA.114.014310

  33. 33. Xu, S., Ilyas, I., Little, P.J., Li, H., Kamato, D., Zheng, X., Luo, S., Li, Z., Liu, P., Han, J., et al. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Dis-eases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73, 924-967. https://doi.org/10.1124/pharmrev.120.000096

  34. 34. Corretti, M.C., Anderson, T.J., Benjamin, E.J., Celermajer, D., Charbonneau, F., Creager, M.A., Deanfield, J., Drexler, H., Gerhard-Herman, M., Herrington, D., et al. (2002) Guide-lines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery: A Report of the International Brachial Artery Reactivity Task Force. Journal of the American College of Cardiology, 39, 257-265. https://doi.org/10.1016/S0735-1097(01)01746-6

  35. 35. Villanova, N., Moscatiello, S., Ramilli, S., Bugianesi, E., Magalotti, D., Vanni, E., Zoli, M. and Marchesini, G. (2005) Endothelial Dysfunction and Cardiovascular Risk Profile in Nonalcoholic Fatty Liver Disease. Hepatology, 42, 473-480. https://doi.org/10.1002/hep.20781

  36. 36. Al-Hamoudi, W., Alsadoon, A., Hassanian, M., Alkhalidi, H., Abdo, A., Nour, M., Halwani, R., Sanai, F., Alsharaabi, A., Alswat, K., et al. (2020) Endothelial Dysfunction in Nonalcoholic Steatohepatitis with Low Cardiac Disease Risk. Scientific Reports, 10, Article No. 8825. https://doi.org/10.1038/s41598-020-65835-y

  37. 37. Vatner, S.F., Zhang, J., Vyzas, C., Mishra, K., Graham, R.M. and Vatner, D.E. (2021) Vascular Stiffness in Aging and Disease. Frontiers in Physiology, 12, Article 762437. https://doi.org/10.3389/fphys.2021.762437

  38. 38. Duprez, D.A. (2012) Arterial Stiffness/Elasticity in the Contribution to Progression of Heart Failure. Heart Failure Clinics, 8, 135-141. https://doi.org/10.1016/j.hfc.2011.08.001

  39. 39. Vasan, R.S., Pan, S., Xanthakis, V., Beiser, A., Larson, M.G., Seshadri, S. and Mitchell, G.F. (2022) Arterial Stiffness and Long-Term Risk of Health Outcomes: The Framingham Heart Study. Hypertension, 79, 1045-1056. https://doi.org/10.1161/HYPERTENSIONAHA.121.18776

  40. 40. Yu, S. and McEniery, C.M. (2020) Central ver-sus Peripheral Artery Stiffening and Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 1028-1033. https://doi.org/10.1161/ATVBAHA.120.313128

  41. 41. Segers, P., Rietzschel, E.R. and Chirinos, J.A. (2020) How to Measure Arterial Stiffness in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 1034-1043. https://doi.org/10.1161/ATVBAHA.119.313132

  42. 42. Huang, Y., Bi, Y., Xu, M., Ma, Z., Xu, Y., Wang, T., Li, M., Liu, Y., Lu, J., Chen, Y., et al. (2012) Nonalcoholic Fatty Liver Disease Is Associated with Athero-sclerosis in Middle-Aged and Elderly Chinese. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2321-2326. https://doi.org/10.1161/ATVBAHA.112.252957

  43. 43. Jaruvongvanich, V., Chenbhanich, J., Sanguankeo, A., Rat-tanawong, P., Wijarnpreecha, K. and Upala, S. (2017) Increased Arterial Stiffness in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. European Journal of Gastroenterology & Hepatology, 29, e28-e35. https://doi.org/10.1097/MEG.0000000000000909

  44. 44. Willeit, P., Tschiderer, L., Allara, E., Reuber, K., Seekircher, L., Gao, L., Liao, X., Lonn, E., Gerstein, H.C., Yusuf, S., et al. (2020) Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation, 142, 621-642. https://doi.org/10.1161/CIRCULATIONAHA.120.046361

  45. 45. Tang, A.S.P., Chan, K.E., Quek, J., Xiao, J., Tay, P., Teng, M., Lee, K.S., Lin, S.Y., Myint, M.Z., Tan, B., et al. (2022) Non-Alcoholic Fatty Liver Disease Increases Risk of Carotid Atherosclerosis and Ischemic Stroke: An Updated Meta-Analysis with 135,602 Individuals. Clinical and Mo-lecular Hepatology, 28, 483-496. https://doi.org/10.3350/cmh.2021.0406

  46. 46. Arai, T., Atsukawa, M., Tsubota, A., Kato, K., Abe, H., Ono, H., Kawano, T., Yoshida, Y., Tanabe, T., Okubo, T., et al. (2021) Liver Fibrosis Is Associated with Carotid Atherosclerosis in Patients with Liver Biopsy-Proven Nonalcoholic Fatty Liver disease. Scientific Reports, 11, Article No. 15938. https://doi.org/10.1038/s41598-021-95581-8

  47. 47. Arai, T., Atsukawa, M., Tsubota, A., Kawano, T., Koeda, M., Yoshida, Y., Tanabe, T., Okubo, T., Hayama, K., Iwashita, A., et al. (2019) Factors Influencing Subclinical Atheroscle-rosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. PLOS ONE, 14, e0224184. https://doi.org/10.1371/journal.pone.0224184

  48. 48. Di Costanzo, A., D’Erasmo, L., Polimeni, L., Baratta, F., Coletta, P., Di Martino, M., Loffredo, L., Perri, L., Ceci, F., Montali, A., et al. (2017) Non-Alcoholic Fatty Liver Disease and Subclinical Atherosclerosis: A Comparison of metabolically- versus Genetically-Driven Excess Fat Hepatic Storage. Atherosclerosis, 257, 232-239. https://doi.org/10.1016/j.atherosclerosis.2016.12.018

  49. 49. Alexander, M., Loomis, A.K., van der Lei, J., Du-arte-Salles, T., Prieto-Alhambra, D., Ansell, D., Pasqua, A., Lapi, F., Rijnbeek, P., Mosseveld, M., et al. (2019) Non-Alcoholic Fatty Liver Disease and Risk of Incident Acute Myocardial Infarction and Stroke: Findings from Matched Cohort Study of 18 Million European Adults. BMJ, 367, Article No. l5367. https://doi.org/10.1136/bmj.l5367

  50. 50. Hagström, H., Nasr, P., Ekstedt, M., Hammar, U., Stål, P., Askling, J., Hultcrantz, R. and Kechagias, S. (2019) Cardiovascular Risk Factors in Non-Alcoholic Fatty Liver Disease. Liver Inter-national, 39, 197-204. https://doi.org/10.1111/liv.13973

  51. 51. Wong, V.W.-S., Wong, G.L.-H., Yeung, J.C.-L., Fung, C.Y.-K., Chan, J.K.-L., Chang, Z.H.-Y., Kwan, C.T.-Y., Lam, H.-W., Limquiaco, J., Chim, A.M.-L., et al. (2016) Long-Term Clinical Outcomes after Fatty Liver Screening in Patients Undergoing Coronary Angiogram: A Prospective Cohort Study. Hepa-tology, 63, 754-763. https://doi.org/10.1002/hep.28253

  52. 52. Hsu, P.-F., Wang, Y.-W., Lin, C.-C., Wang, Y.-J., Ding, Y.-Z., Liou, T.-L., Huang, S.-S., Lu, T.-M., Chan, W.-L., Lin, S.-J., et al. (2021) The Association of the Steatosis Severity in Fatty Liver Disease with Coronary Plaque Pattern in General Population. Liver International, 41, 81-90. https://doi.org/10.1111/liv.14637

  53. 53. Keskin, M., Hayıroğlu, M., Uzun, A.O., Güvenç, T.S., Şahin, S. and Kozan, Ö. (2017) Effect of Nonalcoholic Fatty Liver Disease on in-Hospital and Long-Term Outcomes in Patients with ST-Segment Elevation Myocardial Infarction. The American Journal of Cardiology, 120, 1720-1726. https://doi.org/10.1016/j.amjcard.2017.07.107

  54. 54. Chen, Y., Xu, M., Wang, T., Sun, J., Sun, W., Xu, B., Huang, X., Xu, Y., Lu, J., Li, X., et al. (2015) Advanced Fibrosis Associates with Atherosclerosis in Subjects with Nonalcoholic Fatty Liver Disease. Atherosclerosis, 241, 145-150. https://doi.org/10.1016/j.atherosclerosis.2015.05.002

  55. 55. Mantovani, A., Dauriz, M., Sandri, D., Bonapace, S., Zoppini, G., Tilg, H., Byrne, C.D. and Targher, G. (2019) Association between Non-Alcoholic Fatty Liver Disease and Risk of Atrial Fibrillation in Adult Individuals: An Updated Meta-Analysis. Liver International, 39, 758-769. https://doi.org/10.1111/liv.14044

  56. 56. Mantovani, A., Csermely, A., Taverna, A., Cappelli, D., Benfari, G., Bona-pace, S., Byrne, C.D. and Targher, G. (2023) Association between Metabolic Dysfunction-Associated Fatty Liver Dis-ease and Supraventricular and Ventricular Tachyarrhythmias in Patients with Type 2 Diabetes. Diabetes & Metabolism, 49, Article ID: 101416. https://doi.org/10.1016/j.diabet.2022.101416

  57. 57. Mantovani, A., Rigolon, R., Pichiri, I., Bonapace, S., Morani, G., Zoppini, G., Bonora, E. and Targher, G. (2017) Nonalcoholic Fatty Liver Disease Is Associated with an Increased Risk of Heart Block in Hospitalized Patients with Type 2 Diabetes Mellitus. PLOS ONE, 12, e0185459. https://doi.org/10.1371/journal.pone.0185459

  58. 58. Chen, Z., Liu, J., Zhou, F., Li, H., Zhang, X.-J., She, Z.-G., Lu, Z., Cai, J. and Li, H. (2021) Nonalcoholic Fatty Liver Disease: An Emerging Driver of Cardiac Arrhythmia. Circulation Research, 128, 1747-1765. https://doi.org/10.1161/CIRCRESAHA.121.319059

  59. 59. Whitsett, M., Wilcox, J., Yang, A., Zhao, L., Rinella, M. and VanWagner, L.B. (2019) Atrial Fibrillation Is Highly Prevalent yet Undertreated in Patients with Biopsy-Proven Nonalcoholic Steatohepatitis. Liver International, 39, 933-940. https://doi.org/10.1111/liv.14018

  60. 60. Bonapace, S., Valbusa, F., Bertolini, L., Pichiri, I., Mantovani, A., Rossi, A., Zenari, L., Barbieri, E. and Targher, G. (2014) Nonalco-holic Fatty Liver Disease Is Associated with Aortic Valve Sclerosis in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 9, e88371. https://doi.org/10.1371/journal.pone.0088371

  61. 61. Mantovani, A., Pernigo, M., Bergamini, C., Bonapace, S., Lipari, P., Valbusa, F., Bertolini, L., Zenari, L., Pichiri, I., Dauriz, M., et al. (2015) Heart Valve Calcifica-tion in Patients with Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Metabolism: Clinical and Experimental, 64, 879-887. https://doi.org/10.1016/j.metabol.2015.04.003

  62. 62. Anstee, Q.M., Mantovani, A., Tilg, H. and Targher, G. (2018) Risk of Cardiomyopathy and Cardiac Arrhythmias in Patients with Nonalcoholic Fatty Liver Disease. Nature Re-views Gastroenterology & Hepatology, 15, 425-439. https://doi.org/10.1038/s41575-018-0010-0

  63. 63. Lee, Y.-H., Kim, K.-J., Yoo, M.-E., Kim, G., Yoon, H.-J., Jo, K., Youn, J.-C., Yun, M., Park, J.Y., Shim, C.Y., et al. (2018) Association of Non-Alcoholic Steatohepatitis with Subclini-cal Myocardial Dysfunction in Non-Cirrhotic Patients. Journal of Hepatology, 68, 764-772. https://doi.org/10.1016/j.jhep.2017.11.023

  64. 64. Petta, S., Argano, C., Colomba, D., Cammà, C., Di Marco, V., Cabibi, D., Tuttolomondo, A., Marchesini, G., Pinto, A., Licata, G., et al. (2015) Epicardial Fat, Cardiac Geometry and Cardiac Function in Patients with Non-Alcoholic Fatty Liver Disease: Association with the Severity of Liver Disease. Journal of Hepatology, 62, 928-933. https://doi.org/10.1016/j.jhep.2014.11.030

  65. 65. VanWagner, L.B., Wilcox, J.E., Colangelo, L.A., Lloyd-Jones, D.M., Carr, J.J., Lima, J.A., Lewis, C.E., Rinella, M.E. and Shah, S.J. (2015) Association of Nonalcoholic Fatty Liver Disease with Subclinical Myocardial Remodeling and Dysfunction: A Population-Based Study. Hepatology, 62, 773-783. https://doi.org/10.1002/hep.27869

  66. 66. Lauridsen, B.K., Stender, S., Kristensen, T.S., Kofoed, K.F., Køber, L., Nordestgaard, B.G. and Tybjærg-Hansen, A. (2018) Liver Fat Content, Non-Alcoholic Fatty Liver Disease, and Is-chaemic Heart Disease: Mendelian Randomization and Meta-Analysis of 279 013 Individuals. European Heart Journal, 39, 385-393. https://doi.org/10.1093/eurheartj/ehx662

  67. 67. Bisaccia, G., Ricci, F., Khanji, M.Y., Sorella, A., Melchiorre, E., Iannetti, G., Galanti, K., Mantini, C., Pizzi, A.D., Tana, C., et al. (2023) Cardiovascular Morbidity and Mortality Related to Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Current Problems in Cardiology, 48, Article ID: 101643. https://doi.org/10.1016/j.cpcardiol.2023.101643

  68. 68. Abdeldyem, S.M., Goda, T., Khodeir, S.A., Abou Saif, S. and Abd-Elsalam, S. (2017) Nonalcoholic Fatty Liver Disease in Patients with Acute Ischemic Stroke Is Associated with More Severe Stroke and Worse Outcome. Journal of Clinical Lipidology, 11, 915-919. https://doi.org/10.1016/j.jacl.2017.04.115

  69. 69. Kim, G., Kim, K.J., Rhee, Y. and Lim, S.K. (2017) Significant Liver Fibrosis Assessed Using Liver Transient Elastography Is Independently Associated with Low Bone Mineral Density in Patients with Non-Alcoholic Fatty Liver Disease. PLOS ONE, 12, e0182202. https://doi.org/10.1371/journal.pone.0182202

  70. 70. Wu, M., Zha, M., Lv, Q., Xie, Y., Yuan, K., Zhang, X. and Liu, X. (2022) Non-Alcoholic Fatty Liver Disease and Stroke: A Mendelian Randomization Study. European Journal of Neurology, 29, 1534-1537. https://doi.org/10.1111/ene.15277

  71. 71. Li, H., Hu, B., Wei, L., Zhou, L., Zhang, L., Lin, Y., Qin, B., Dai, Y. and Lu, Z. (2018) Non-Alcoholic Fatty Liver Disease Is Associated with Stroke Severity and Progression of Brainstem In-farctions. European Journal of Neurology, 25, 577-e34. https://doi.org/10.1111/ene.13556

  72. 72. Byrne, C.D. and Targher, G. (2020) NAFLD as a Driver of Chronic Kidney Disease. Journal of Hepatology, 72, 785-801. https://doi.org/10.1016/j.jhep.2020.01.013

  73. 73. Liang, Y., Chen, H., Liu, Y., Hou, X., Wei, L., Bao, Y., Yang, C., Zong, G., Wu, J. and Jia, W. (2022) Association of MAFLD with Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. The Journal of Clinical Endocrinology and Metabolism, 107, 88-97. https://doi.org/10.1210/clinem/dgab641

  74. 74. Wang, T.-Y., Wang, R.-F., Bu, Z.-Y., Targher, G., Byrne, C.D., Sun, D.-Q. and Zheng, M.-H. (2022) Association of Metabolic Dysfunction-Associated Fatty Liver Disease with Kidney Disease. Nature Reviews Nephrology, 18, 259-268. https://doi.org/10.1038/s41581-021-00519-y

  75. 75. Yeung, M.-W., Wong, G.L.-H., Choi, K.C., Luk, A.O., Kwok, R., Shu, S.S., Chan, A.W., Lau, E.S.H., Ma, R.C.W., Chan, H.L., et al. (2017) Advanced Liver Fibrosis but Not Steato-sis Is Independently Associated with Albuminuria in Chinese Patients with Type 2 Diabetes. Journal of Hepatology, 68, 147-156. https://doi.org/10.1016/j.jhep.2017.09.020

  76. 76. Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., Zelber-Sagi, S., Wong, V. W.-S., Dufour, J.F., Schattenberg, J.M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039

  77. 77. Chitturi, S., Wong, V.W.-S., Chan, W.-K., Wong, G.L.-H., Wong, S.K.-H., Sollano, J., Ni, Y.-H., Liu, C.-J., Lin, Y.-C., Lesmana, L.-A., et al. (2018) The Asia-Pacific Working Party on Non-Alcoholic Fatty Liver Disease Guidelines 2017-Part 2: Management and Special Groups. Journal of Gastroenter-ology and Hepatology, 33, 86-98. https://doi.org/10.1111/jgh.13856

  78. 78. Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., Harrison, S.A., Brunt, E.M. and Sanyal, A.J. (2018) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 67, 328-357. https://doi.org/10.1002/hep.29367

  79. 79. Paul, S. and Davis, A.M. (2018) Diagnosis and Management of Nonalco-holic Fatty Liver Disease. JAMA, 320, 2474-2475. https://doi.org/10.1001/jama.2018.17365

  80. 80. Vilar-Gomez, E., Calzadilla-Bertot, L., Wong, V.W.-S., Castellanos, M., Aller-de la Fuente, R., Metwally, M., Eslam, M., Gonzalez-Fabian, L., Sanz, M.A.-Q., Conde-Martin, A.F., et al. (2018) Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients with Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. Gastroenterology, 155, 443-457. https://doi.org/10.1053/j.gastro.2018.04.034

  81. 81. Taylor, R.S., Taylor, R.J., Bay-liss, S., Hagström, H., Nasr, P., Schattenberg, J.M., Ishigami, M., Toyoda, H., Wong, V.W.-S., Peleg, N., et al. (2020) Association between Fibrosis Stage and Outcomes of Patients with Nonalcoholic Fatty Liver Disease: A Systematic Re-view and Meta-Analysis. Gastroenterology, 158, 1611-1625. https://doi.org/10.1053/j.gastro.2020.01.043

  82. 82. Ravaioli, F., Dajti, E., Mantovani, A., Newsome, P.N., Targher, G. and Colecchia, A. (2023) Diagnostic Accuracy of FibroScan-AST (FAST) Score for the Non-Invasive Identification of Patients with Fibrotic Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Gut, 72, 1399-1409. https://doi.org/10.1136/gutjnl-2022-328689

  83. 83. Mózes, F.E., Lee, J.A., Vali, Y., Alzoubi, O., Staufer, K., Trauner, M., Paternostro, R., Stauber, R.E., Holleboom, A.G., van Dijk, A.M., et al. (2023) Performance of Non-Invasive Tests and Histology for the Prediction of Clinical Outcomes in Patients with Non-Alcoholic Fatty Liver Disease: An Individual Participant Data Meta-Analysis. The Lancet Gastroenterology & Hepatology, 8, 704-713. https://doi.org/10.1016/S2468-1253(23)00141-3

  84. 84. Hagström, H., Nasr, P., Ekstedt, M., Hammar, U., Stål, P., Hultcrantz, R. and Kechagias, S. (2017) Fibrosis Stage but not NASH Predicts Mortality and Time to Development of Severe Liver Disease in Biopsy-Proven NAFLD. Journal of Hepatology, 67, 1265-1273. https://doi.org/10.1016/j.jhep.2017.07.027

  85. 85. Francque, S.M., van der Graaff, D. and Kwanten, W.J. (2016) Non-Alcoholic Fatty Liver Disease and Cardiovascular Risk: Pathophysiological Mechanisms and Implications. Journal of Hepatology, 65, 425-443. https://doi.org/10.1016/j.jhep.2016.04.005

  86. 86. Lee, D.S., Evans, J.C., Robins, S.J., Wilson, P.W., Albano, I., Fox, C.S., Wang, T.J., Benjamin, E.J., D’Agostino, R.B. and Vasan, R.S. (2007) Gamma Glutamyl Transferase and Metabolic Syndrome, Cardiovascular Disease, and Mortality Risk: The Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 127-133. https://doi.org/10.1161/01.ATV.0000251993.20372.40

  87. 87. Blond, E., Disse, E., Cuerq, C., Drai, J., Valette, P.J., Laville, M., Thivolet, C., Simon, C. and Caussy, C. (2017) EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease in Severely Obese People: Do They Lead to Over-Referral? Dia-betologia, 60, 1218-1222. https://doi.org/10.1007/s00125-017-4264-9

  88. 88. Kwon, O.Y., Choi, J.Y. and Jang, Y. (2023) The Effectiveness of eHealth Interventions on Lifestyle Modification in Patients with Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Journal of Medical Internet Research, 25, e37487. https://doi.org/10.2196/37487

  89. 89. Alam, S., Jahid Hasan, M., Khan, M.A.S., Alam, M. and Hasan, N. (2019) Effect of Weight Reduction on Histological Activity and Fibrosis of Lean Nonalcoholic Steatohepatitis Patient. Journal of Translational Internal Medicine, 7, 106-114. https://doi.org/10.2478/jtim-2019-0023

  90. 90. Hohenester, S., Christiansen, S., Nagel, J., Wimmer, R., Artmann, R., Denk, G., Bischoff, M., Bischoff, G. and Rust, C. (2018) Lifestyle Intervention for Morbid Obesity: Effects on Liver Steatosis, Inflammation, and Fibrosis. American Journal of Physiology Gastrointestinal and Liver Physiology, 315, G329-G338. https://doi.org/10.1152/ajpgi.00044.2018

  91. 91. Golabi, P., Locklear, C.T., Austin, P., Afdhal, S., Byrns, M., Gerber, L. and Younossi, Z.M. (2016) Effectiveness of Exercise in Hepatic Fat Mobilization in Non-Alcoholic Fatty Liver Dis-ease: Systematic Review. World Journal of Gastroenterology, 22, 6318-6327. https://doi.org/10.3748/wjg.v22.i27.6318

  92. 92. Fernández, T., Viñuela, M., Vidal, C. and Barrera, F. (2022) Life-style Changes in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. PLOS ONE, 17, e0263931. https://doi.org/10.1371/journal.pone.0263931

  93. 93. Gepner, Y., Shelef, I., Komy, O., Cohen, N., Schwarzfuchs, D., Bril, N., Rein, M., Serfaty, D., Kenigsbuch, S., Zelicha, H., et al. (2019) The Beneficial Effects of Mediterranean Diet over Low-Fat Diet May Be Mediated by Decreasing Hepatic Fat Content. Journal of Hepatology, 71, 379-388. https://doi.org/10.1016/j.jhep.2019.04.013

  94. 94. Younossi, Z.M., Golabi, P., Paik, J.M., Henry, A., Van Dongen, C. and Henry, L. (2023) The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatol-ogy, 77, 1335-1347. https://doi.org/10.1097/HEP.0000000000000004

  95. 95. Radu, F., Potcovaru, C.-G., Salmen, T., Filip, P.V., Pop, C. and Fierbințeanu-Braticievici, C. (2023) The Link between NAFLD and Metabolic Syndrome. Di-agnostics, 13, Article No. 614. https://doi.org/10.3390/diagnostics13040614

  96. 96. Cai, J., Zhang, X.-J., Ji, Y.-X., Zhang, P., She, Z.-G. and Li, H. (2020) Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in Cardiovascular Diseases. Circulation Research, 126, 679-704. https://doi.org/10.1161/CIRCRESAHA.119.316337

  97. 97. Mantovani, A., Scorletti, E., Mosca, A., Alisi, A., Byrne, C.D. and Targher, G. (2020) Complications, Morbidity and Mortality of Nonalcoholic Fatty Liver Disease. Metabolism: Clinical and Experimental, 111, Article ID: 154170. https://doi.org/10.1016/j.metabol.2020.154170

  98. 98. Motamed, N., Rabiee, B., Poustchi, H., Dehestani, B., Hemasi, G.R., Khonsari, M.R., Maadi, M., Saeedian, F.S. and Zamani, F. (2017) Non-Alcoholic Fatty Liver Disease (NAFLD) and 10-Year Risk of Cardiovascular Diseases. Clinics and Research in Hepatology and Gastroenterology, 41, 31-38. https://doi.org/10.1016/j.clinre.2016.07.005

  99. 99. Simon, T.G., Roelstraete, B., Hagström, H., Sundström, J. and Ludvigsson, J.F. (2022) Non-Alcoholic Fatty Liver Disease and Incident Major Adverse Cardiovascular Events: Results from a Nationwide Histology Cohort. Gut, 71, 1867-1875. https://doi.org/10.1136/gutjnl-2021-325724

  100. 100. Azzu, V., Vacca, M., Virtue, S., Allison, M. and Vidal-Puig, A. (2020) Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology, 158, 1899-1912. https://doi.org/10.1053/j.gastro.2019.12.054

  101. 101. Rosso, C., Kazankov, K., Younes, R., Esmaili, S., Marietti, M., Sacco, M., Carli, F., Gaggini, M., Salomone, F., Møller, H.J., et al. (2019) Crosstalk between Adipose Tissue Insulin Resistance and Liver Macrophages in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 71, 1012-1021. https://doi.org/10.1016/j.jhep.2019.06.031

  102. 102. Dolce, A. and Torre, S.D. (2023) Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients, 15, Article No. 2335. https://doi.org/10.3390/nu15102335

期刊菜单