Hans Journal of Ophthalmology
Vol.07 No.01(2018), Article ID:24198,6 pages
10.12677/HJO.2018.71008

Effects of Change in Intraocular Pressure on the Calculation of Intraocular Lens

Yanping Wang1*, Jing Ling2, Ling Leng2, Yingying Qi1, Xiaoxiao Li1

1Department of Medicine, Qingdao University, Qingdao Shandong

2Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Mar. 3rd, 2018; accepted: Mar. 19th, 2018; published: Mar. 27th, 2018

ABSTRACT

Purpose: To measure the axial eye length (AL) and corneal curvature (K) of cataract patients under different intraocular pressures, to evaluate the influence of intraocular pressure (IOP) on the calculation of intraocular lens (IOL). Methods: This is a prospective study enrolling 87 cataract patients who have visited the Department of Ophthalmology, Affiliated Hospital of Qingdao University from May to August in 2017. 87 cases (87 eyes) age-related cataract patients were divided into 3 groups according to the axial eye length, short AEL group (AEL < 23 mm) 20 cases (20 eyes), normal AEL group (23 mm ≤ AEL ≤ 26 mm) 41 cases (41 eyes), long AEL group (AEL > 26 mm) 26 cases (26 eyes). The axial eye length and corneal curvature under different intraocular pressures were measured after the phacoemulsification and intraocular lens implantation. The effects of intraocular pressure on the length of axial eye and corneal curvature were analyzed. Results: With the elevation of intraocular pressure, the axial eye length of the three groups all increased. The long AEL group changed the most, followed by the normal AEL group and the short AEL group changed the least. But the corneal curvature in three groups did not follow any obvious regular patterns. Conclusions: With the increase of intraocular pressure, the axial eye length became longer, and there was no obvious change rule on corneal curvature.

Keywords:Intraocular Pressure, Intraocular Lens, Axial Eye Length, Corneal Curvature

眼压高低对人工晶体度数测定的影响

王艳萍1*,林 静2,冷 林2,齐莹莹1,李晓晓1

1青岛大学,医学部,山东 青岛

2青岛大学附属医院,眼科,山东 青岛

收稿日期:2018年3月3日;录用日期:2018年3月19日;发布日期:2018年3月27日

摘 要

目的:应用IOL master测量白内障患者在不同眼压下的眼轴长度和角膜曲率,观察眼压高低对人工晶体度数测定的影响。方法:对2017年5月至8月就诊于青岛大学附属医院眼科,符合纳入标准的白内障患者行前瞻性研究。将87例(87眼)年龄相关性白内障患者依据眼轴长度分为短眼轴组(20例20眼),正常眼轴组(41例41眼),长眼轴组(26例26眼),均常规行白内障超声乳化吸除联合人工晶体植入术,测量患者术后不同眼压下的眼轴长度、角膜曲率,统计学分析眼压高低对眼轴长度、角膜曲率的影响。结果:随着眼压的升高,短眼轴组、正常眼轴组、长眼轴组患者术眼眼轴长度均增长,其中长眼轴组眼轴长度增长最多,正常眼轴组次之,短眼轴组增长最少。随眼压的波动,三组患者术眼角膜曲率变化无明显规律。结论:眼压升高,眼轴长度变长,角膜曲率无明显变化规律。

关键词 :眼压,人工晶体度数,眼轴长度,角膜曲率

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

白内障手术现今已由单纯的复明手术逐步迈向屈光手术时代,术后最终的屈光状态和患者满意度决定着白内障手术成功与否 [1] 。准确地测量眼轴长度、角膜曲率,计算人工晶状体的屈光度数成为术后视力恢复和屈光状态重建的关键,也是有效预防术后发生人工晶状体屈光意外的重要措施之一。有研究指出,白内障术后屈光误差54%来自眼轴长度的测量,8%来自角膜曲率的测量 [2] 。平均0.1 mm的眼轴长度测量误差相当于0.27 D的眼屈光力误差 [3] 。眼压高低是影响眼部生物学参数测量精确度的一大重要因素 [4] 。一些作者曾对眼压、眼轴长度和角膜曲率之间的关系做出研究 [5] [6] [7] 。Usui S研究指出青光眼小梁切除术后,眼轴长度缩短,脉络膜增厚 [8] 。临床工作中在针对白内障膨胀期继发性青光眼患者及青光眼合并白内障患者行青白联合手术等术前高眼压状态下测定人工晶体度数时,高眼压对眼轴长度和角膜曲率的影响不可忽视。因此研究眼轴长度、角膜曲率随眼压波动的变化规律具有重要的临床意义,可为临床白内障膨胀期继发性青光眼等高眼压状态下的白内障患者准确计算人工晶体屈光度数提供依据。

2. 对象与方法

2.1. 研究对象

选取2017年5月至8月就诊于青岛大学附属医院眼科行白内障超声乳化吸除联合人工晶体植入术的年龄相关性白内障患者87例(87眼),其中男46例(46眼),女41例(41眼),年龄31~79岁,获得患者及家属知情同意且签署知情同意书后归纳入本临床观察。根据术前眼轴长度分三组:A组:短眼轴组,B组:正常眼轴组,C组:长眼轴组。

纳入标准:① 临床确诊为年龄相关性白内障患者。② 术前晶状体核硬度II至III级。③ 手术过程顺利,无后囊破裂、悬韧带断裂等意外情况。④ 全身情况控制较好,可配合测量者。

排除标准:① 术前行裂隙灯、眼底镜、眼压、B超、OCT检查,发现存在糖尿病眼底病变、高血压眼底病变等其他眼部疾病者。② 既往有角膜病变、青光眼、视网膜疾病、眼部外伤史等眼部疾病或曾行其它眼部手术者。③ 眼球震颤,固视不良者。④ 术后术眼角膜水肿无法测量者。

2.2. 研究方法

对符合纳入标准的87例入选患者行前瞻性研究。术前常规行视力、眼压、裂隙灯、眼底镜、B超、OCT、IOL master检查,并依据术前IOL master所测眼轴长度,将患者依次分为A组短眼轴组(AL < 23 mm),B组正常眼轴组(23 mm ≤ AL ≤ 26 mm),C组长眼轴组(AL > 26 mm)。

所有患者均行白内障超声乳化吸出联合人工晶体植入术,手术操作如下:

0.4%盐酸奥布卡因点术眼行表面麻醉,做鼻上方(左眼)或颞上方(右眼) 3.0 mm透明角膜缘切口,前房内注入粘弹剂形成前房并保护角膜内皮细胞。晶状体前囊膜中央连续环形撕囊,直径5.5 mm,水分离。采用爆破式超声乳化白内障核,吸除残余皮质,用推注器将IOL植入囊袋内,调整位置使IOL居中。吸除粘弹剂,封闭切口达水密。术中切口定位、撕囊、植入IOL等操作均根据术者目镜中CALLISTO eye手术辅助定位导航系统(Zeiss德国)实时导航示标完成,手术均由同一位经验丰富的医师完成,手术过程顺利,无术中并发症。

术后高眼压者行侧切口放液或降眼压滴眼液点眼降低眼压,于10分钟后使用非接触式眼压计测量眼压,IOL master测量眼轴长度和角膜曲率,每10~15分钟测量一次,获得术眼在0 mmHg~50 mmHg梯度范围内变化时,眼轴长度、角膜曲率的变化值。所有检查均由同一医师完成,观察指标均测量三次,取平均值。

2.3. 统计学分析

采用SPSS17.0统计学软件对研究中得到的数据进行统计学分析,计数资料采用Χ2检验,计量资料采用t检验。患者眼轴长度、角膜曲率随眼压高低波动的关系分析采用线性回归分析。P < 0.05为差异有统计学意义。

3. 结果

1) 该研究纳入了87名患者(87只眼),年龄从31岁到79岁不等,平均年龄为61.84岁。三组患者之间,年龄、术前眼压及角膜曲率无统计学差异,(表1)。

2) 随着眼压在0 mmHg~50 mmHg范围内的升高,A组短眼轴组、B组正常眼轴组、C组长眼轴组,各组中的眼轴长度均随眼压升高而增长,差异具有统计学意义(P < 0.05),(图1)。

3) 三组间,当在基础值上眼压升高相同数值时,长眼轴组眼轴长度增长最多,正常眼轴组次之,短眼轴组增长最少,(表2图2)。

Table 1. Preoperative measurements values

表1. 三组患者术前年龄、眼压、角膜曲率比较

短眼轴组 正常眼轴组 长眼轴组

Figure 1. Correlation of change in AEL and change in IOP

图1. 三组间眼轴长度(mm)随眼压(mmHg)升高的变化

Figure 2. Comparison of axial length variation (ΔAL μm) along with different intraocular pressure gradient (ΔIOP mmHg) in the three groups

图2. 眼压升高相同数值(mmHg)时,三组间眼轴长度的增长值(mm)

Table 2. Comparison of axial length variation (ΔAL μm) along with different intraocular pressure gradient (ΔIOP mmHg)in the three groups

表2. 三组间眼压升高相同数值(mmHg)时对应眼轴长度的增长值(mm)的比较

Table 3. Comparison of axial length variation (ΔAL μm) along with different intraocular pressure gradient (ΔIOP mmHg)in the three groups

表3. 三组间眼压升高相同数值(mmHg)时对应眼轴长度的增长值(mm)的比较

4) 随着眼压在0 mmHg~50 mmHg范围内的升高,A组短眼轴组、B组正常眼轴组、C组长眼轴组,其角膜曲率随眼压升高无明显变化规律,差异不具有统计学意(P>0.05),(表3)。

4. 讨论

角膜曲率和眼轴长度为白内障术前人工晶体度数测定的两大重要参数。目前关于眼压对眼轴长度测量的影响已有相关文献报道,Francis [9] 和Kook’s [10] 等研究表明青光眼小梁切除术后,伴随着患者眼压降低,眼轴长度也随之缩短。Leydolt等 [11] 在18名正常范围眼压的志愿者受试眼颞侧放置巩膜吸盘,先后在基础眼压上增加10 mmHg,20 mmHg压力。测得伴随眼压增加,受试眼眼轴增加了23 μm和39 μm。而当巩膜吸盘去除10分钟,眼压比基线值下降5.1 mmHg后,眼轴长度相应缩短了7 μm,眼压升降与眼轴长度升降之间有显着的相关性。本研究将白内障患者依据术前眼轴长度依次分为短眼轴组、正常眼轴组和长眼轴组,利用患者术后自身眼压波动来进一步研究眼压与眼轴长度的相关性,避免了过多外部操作对实验准确性和可信度的影响。

本研究表明,随着眼压的升高,短眼轴组、正常眼轴组、长眼轴组患者术眼眼轴长度均增长,其中长眼轴组增长最多,正常眼轴组次之,短眼轴组增长最少。其原因考虑为随着眼压升高,脉络膜血流灌注量减少,导致脉络膜变薄以及巩膜纤维被拉长。其中长眼轴组高度近视患者,眼轴长度随眼压增长量较短眼轴组、正常眼轴组明显较大的原因可能为:

①长眼轴高度近视白内障患者眼底存在特征性改变,如视网膜变薄、豹纹状眼底、脉络膜萎缩、色素和局部血管缺失 [12] [13] 。高度近视患者眼底各区脉络膜厚度与正常眼轴患者不同 [14] 。它随着眼轴长度的变化而变化 [15] 。眼底脉络膜血管异常,灌注紊乱,使其无法维持稳定的血流,从而更易受眼压波动等因素的影响,厚度变化大,缓冲性差 [16] 。

②长轴眼患者除了视网膜和脉络膜变薄外,巩膜的弹性和显微结构也发生了改变。巩膜纵纤维变薄,线状条纹消失,横向纤维相互分离 [17] 。这使得长眼轴患者巩膜的抗拉强度降低,弹性增大 [18] 。在一定眼压的作用下,高度近视眼与正常眼相比更容易发生变形,具有较低的承载能力。

③角膜内皮细胞密度随着近视度数的增加而减少 [19] ,高度近视患者的角膜内皮细胞大小不均,形态不规则,六角形细胞明显减少,每个细胞的平均面积增大 [20] 。角膜内皮细胞的主要功能是维持角膜的去水合状态,通过屏障功能和泵–漏机制保证角膜的恒定含水量,以维持正常角膜的厚度及透明性。高度近视眼患者角膜内皮细胞“泵”的功能下降,在一定程度上已不能保证角膜的恒定含水量。在这种状态下,角膜内皮细胞更易受到眼压等各种因素影响,出现水肿,角膜厚度增大。这与临床上高度近视白内障患者术后更易发生眼压升高和角膜水肿这一现象也是一致的。

本研究中三组患者角膜曲率随眼压的升降未呈现明显规律。目前有关眼压与角膜曲率的相关性研究较少,但有国内学者研究指出眼内压越高,角膜曲率越小 [21] ,与本研究存在差异,考虑为白内障术后患者角膜水肿、泪膜稳定差导致所测角膜曲率大小和轴向不稳定所致。

综上所述,眼压波动是影响眼轴长度变化的一大因素,眼压升高时眼轴长度可相应增加。不同眼轴长度的患者,因其脉络膜灌注稳定性、巩膜弹性及角膜内皮“泵”功能差异性影响,眼轴长度的增长量有所不同。因此,临床中在进行高眼压状态下白内障患者术眼人工晶体测量,尤其是对长眼轴高度近视白内障患者测量时,需考虑眼压对眼轴长度的影响,准确选定晶体度数,避免发生术后屈光意外。

本研究通过利用白内障患者术后术眼眼压波动下眼轴长度、角膜曲率的变化,来反推术前测量时高眼压对眼轴长度和角膜曲率的影响。细化了短眼轴、正常眼轴、长眼轴患者其眼轴长度在眼压升高时的变化规律,为临床人工晶体度数的选择提供了一定的依据。但因白内障患者术后角膜水肿及泪膜稳定性差,角膜曲率随眼压升高的变化规律尚需进一步的研究。

文章引用

王艳萍,林 静,冷 林,齐莹莹,李晓晓. 眼压高低对人工晶体度数测定的影响
Effects of Change in Intraocular Pressure on the Calculation of Intraocular Lens[J]. 眼科学, 2018, 07(01): 49-54. https://doi.org/10.12677/HJO.2018.71008

参考文献

  1. 1. Kaswin, G., Rousseau, A., Mgarrech, M., et a1. (2014) Biometry and Intraocular Lens Power Calculation Results with a New Optical Biometry Device: Comparison with the Gold Standard. Journal of Cataract & Refract Surgery, 40, 593-600.
    https://doi.org/10.1016/j.jcrs.2013.09.015

  2. 2. Olsen, T. (1992) Sources of Error in Intraocular Lens Power Calculation. Journal of Cataract & Refract Surgery, 18, 125-129.
    https://doi.org/10.1016/S0886-3350(13)80917-0

  3. 3. Olsen, T. (2007) Calculation of Intraocular Lens Power: A Review. Acta Ophthamologica, 85, 472-485.

  4. 4. Masayuki, H., Fumitaka, H., Akio, O., et a1. (2012) Changes in Choroidal Thickness and Optical Axial Length Accompanying Intraocular Pressure Increase. Japanese Journal of Ophthalmology, 56, 564-568.
    https://doi.org/10.1007/s10384-012-0173-0

  5. 5. Read, S.A., Collins, M.J. and Iskander, D.R. (2008) Diurnal Variation of Axial Length, Intraocular Pressure, and Anterior Eye Biometrics. Investigative Ophthalmology & Visual Science, 49, 2911-2918.
    https://doi.org/10.1167/iovs.08-1833

  6. 6. Chakraborty, R., Read, S.A. and Collins, M.J. (2011) Diurnal Variations in Axial Length, Choroidal Thickness, Intraocular Pressure, and Ocular Biometrics. Investigative Ophthalmology & Visual Science, 52, 5121-5129.
    https://doi.org/10.1167/iovs.11-7364

  7. 7. Mcmonnies, C.W. and Boneham, G.C. (2007) Corneal Curvature Stability with In-creased Intraocular Pressure. Eye & Contact Lens, 33, 130-137.
    https://doi.org/10.1097/01.icl.0000246910.02437.62

  8. 8. Usui, S., Ikuno, Y., Uematsu, S., et al. (2013) Changes in Axial Length and Choroidal Thickness after Intraocular Pressure Reduction Re-sulting from Trabeculectomy. Clinical Ophthalmology, 7, 1155-1161.
    https://doi.org/10.2147/OPTH.S44884

  9. 9. Francis, B.A., Wang, M., Lei, H., et al. (2005) Changes in Axial Length Following Trabeculectomy and Glaucoma Drain-Age Device Surgery. British Journal of Ophthalmology, 89, 17-20.
    https://doi.org/10.1136/bjo.2004.043950

  10. 10. Kook, M.S., Kim, H.B. and Lee, S.U. (2001) Short-Term Effect of Mitomycin-C Augmented Trabeculectomy on Axial Length and Corneal Astigmatism. Journal of Cataract & Refract Surgery, 27, 518-523.
    https://doi.org/10.1016/S0886-3350(00)00646-5

  11. 11. Leydolt, C., Findl, O. and Drexler, W. (2008) Effects of Change in Intraocular Pressure on Axial Eye Length and Lens Position. Eye, 22, 657-661.
    https://doi.org/10.1038/sj.eye.6702709

  12. 12. Kwok, E., Patel, B., Backhouse, S., et al. (2012) Peripheral Refraction in High Myopia with Spherical Soft Contact Lenses. Optometry and Vision Science, 89, 263-270.
    https://doi.org/10.1097/OPX.0b013e318242dfbf

  13. 13. Wang, S.M., Wang, Y., Gao, X.M., et al. (2015) Choroidal Thickness and High Myopia: A Cross-Sectional Study and Meta-Analysis. BMC Ophthalmology, 15, 1-10.
    https://doi.org/10.1186/s12886-015-0059-2

  14. 14. Flores-Moreno, I., Lugo, F., Duker, J.S., et a1. (2013) The Relationship be-tween Axial Length and Choroidal Thickness in Eyes with High Myopia. American Journal of Ophthalmology, 155, 314-319.
    https://doi.org/10.1016/j.ajo.2012.07.015

  15. 15. Qi, H., Chen, C., Weng, M., et al. (2014) Change of Choridal Thickness and Its Influence Factors in Adult High Myopic Patients. Chinese Journal of Experimental Ophthalmology, 32, 439-442.

  16. 16. Wang, M.M. and Pan, C. (2015) Factors Influencing Choroidal Thickness in Highly Myopic Adult Patients. Journal of Clinical and Experimental Medicine, 14, 364-366.

  17. 17. Wang, C.Y., Chen, W.Y., Hao, L., et al. (2003) Scleral Biomechanical Properties in High Myopia. Chinese Ophthalmic Research, 21, 113-115.

  18. 18. Harper, A.R. and Summers, J.A. (2015) The Dynamic Sclera: Extracellular Matrix Remodeling in Normal Ocular Growth and Myopia Development. Experimental Eye Research, 133, 100-111.
    https://doi.org/10.1016/j.exer.2014.07.015

  19. 19. Sheng, H. and Bullimore, M.A. (2006) Factors Affecting Corneal Endothelial Morphology. Journal of Cornea and External Disease, 26, 520-525.
    https://doi.org/10.1097/ICO.0b013e318033a6da

  20. 20. Shen, M., Fan, F., Xue, A., et al. (2008) Biomechanical Properties of the Cornea in High Myopia. Vision Research, 48, 2167-2171.
    https://doi.org/10.1016/j.visres.2008.06.020

  21. 21. Zhao, C.J. (2009) Relationship between Corneal Curvature in Myopia and Multiple Factors. International Journal of Ophthalmology, 9, 95-96.

  22. NOTES

    *通讯作者

期刊菜单