Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51450 , 6 pages
10.12677/ACM.2022.125620

多不饱和脂肪酸对过敏性疾病的影响

汪希一,柏冰雪*

哈尔滨医科大学附属第二医院,黑龙江 哈尔滨

收稿日期:2022年4月18日;录用日期:2022年5月13日;发布日期:2022年5月20日

摘要

过敏性疾病流行率逐年上升,许多研究表明环境和生活方式,如饮食、感染、微生物群、污染物、运动、免疫接种等都可能影响疾病发生发展。多项研究表明,多不饱和脂肪酸在多方面影响过敏性疾病,但作用机制尚未明确。干预剂量,干预时间有待进一步探究。本文对多不饱和脂肪酸摄入对过敏性疾病的影响研究进展做一综述。

关键词

多不饱和脂肪酸,过敏性疾病,AD,食物过敏,过敏性哮喘

Effects of Polyunsaturated Fatty Acids on Allergic Diseases

Xiyi Wang, Bingxue Bai*

Second Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang

Received: Apr. 18th, 2022; accepted: May 13th, 2022; published: May 20th, 2022

ABSTRACT

The prevalence of allergic diseases is increasing year by year. Many studies have shown that environment and lifestyle, such as diet, infection, microbiome, pollutants, exercise and immunization, may affect the occurrence and development of diseases. A number of studies have shown that polyunsaturated fatty acids affect allergic diseases in many aspects, but the mechanism of action remains unclear. The dose and duration of intervention also need to be further explored. This article reviews the research progress on the effect of polyunsaturated fatty acid intake on allergic diseases.

Keywords:Polyunsaturated Fatty Acids, Allergic Disease, AD, Food Allergy, Allergic Asthma

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

常见的过敏性疾病包括湿疹,特应性皮炎(AD),过敏性哮喘等。近年来,全球过敏性疾病的发病率不断攀升。近年研究发现,多不饱和脂肪酸与过敏性疾病的发生发展相关。

2. 过敏性疾病与免疫失调

免疫系统可分为先天性免疫和获得性免疫。先天性免疫包括屏障功能,炎症反应。获得性免疫可分为由T细胞介导的细胞免疫及以B细胞和抗体产生为特征的体液免疫。先天性免疫和后天性免疫是相互关联的。吞噬细胞(如巨噬细胞和树突状细胞)是先天性免疫的一部分,它们具有抗原呈递的功能,将吞噬微生物衍生的抗原加工并呈递给抗原特异性T细胞,从而引发获得性免疫。其中,适应性免疫可对抗原致敏,并对这些抗原产生效应和记忆反应。其中包括B细胞、嗜碱性粒细胞、肥大细胞、嗜酸性粒细胞、TH2细胞 [1]。树突状细胞(DCs)是主要的抗原提呈细胞,内化抗原并将其运送到引流淋巴结。一旦进入淋巴结,抗原被处理并通过主要组织相容性复合体II类分子(MHCII)呈递给CD4+TH2细胞,然后产生IL-4和IL-13。这种级联反应促进了B细胞产生IgE3。胸腺基质淋巴细胞生成素(TSLP)促进树突状细胞向表皮迁移,诱导TH2极化。朗格汉斯细胞是表皮的特有的树突状细胞,表达TLR,FcDRI和FcFRIII/CD16受体。TLR识别抗原,而FcDRI和FcFRIII/CD16分别对抗原驱动的抗体交联IgE和IgG产生反应。另外,活化的T细胞产生的细胞因子调节先天免疫细胞的活性。Th2产生的细胞因子,如IL-4、IL-5和IL-13刺激B细胞、肥大细胞和表皮细胞,导致IgE的产生和肥大细胞脱颗粒,以及产生不同的细胞因子,介导过敏性疾病的发生 [2]。而Th1产生的IFN-γ可以抑制IgE的产生。

3. 多不饱和脂肪酸在过敏性疾病中的作用机制

3.1. 脂肪酸的分类

脂肪酸(FA)是具有不同数量碳的羧酸。根据烃链的不同,可分为饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)。根据碳链长短,又分为:短链脂肪酸,其碳链上碳原子数量小于6;碳链上碳原子数量为6-12的中链脂肪酸及碳链上碳原子数量大于12的长链脂肪酸。根据第一个双键所在的位置不同,将长链多不饱和脂肪酸分为n-6系和n-3系。n-6系多不饱和脂肪酸主要包括花生四烯酸(AA),亚油酸(LA)。n-3系多不饱和脂肪酸主要包括二十碳六烯酸(DHA),二十碳五烯酸(EPA)及α-亚麻酸(ALA) [3]。其中AA主要饮食来源是肉和蛋,而EPA和DHA主要来源于海产品。

3.2. PUFA在过敏性疾病中的作用机制

PUFA作为膜磷脂的重要组成部分,通过影响二十烷类化合物的产生、细胞膜流动性和基因表达,发挥免疫调节作用。EPA,DHA和AA存在于人体免疫细胞膜中,AA含量更高。细胞膜中EPA通过竞争抑制底物(AA) [4] [5] 产生二十烷类合成的酶从而减少了促炎因子PGE2和LTB4的产生。PGE2具有免疫抑制作用,促炎作用,增强其他介质如缓激肽和组胺引起的疼痛反应;低浓度PGE2抑制外周血淋巴细胞IFN-γ的形成,进而使IgE生成增加;也可以直接作用于B细胞,刺激IgE的形成 [6]。LT4s可作为白细胞趋化剂产生促炎作用。EPA是COX和LOX的作用底物,分别产生炎性小于AA所产生的类花生酸类物质:PGE3,LT5s [7]。EPA,DHA还产生促分解介质参与抗炎和控制类花生酸的合成 [8]。EPA,DHA的代谢产物有抗炎或炎症分解性。总结来说,n-3PUFA可以通过影响细胞膜流动性和细胞信号传导、二十烷酸的产生等机制影响免疫细胞的功能,从而影响过敏反应。

4. 膳食PUFA在过敏性疾病中的研究进展

在西方膳食PUFA摄入中,LA和AlA占95%以上。20世纪下半叶,随着食用油的引进和市场推广,西方国家对LA的摄入量大幅度增加 [9]。这种模式导致了n-6PUFA摄入比例显著增加。有大量研究显示,随着饮食结构的改变,过敏性疾病的发生率也在增加。

4.1. PUFA与食物过敏

食物过敏影响患者及其家属的生活质量,可发生严重反应甚至危及生命。近来食物过敏的患病率有所增加,但由于现有的预防和治疗手段不足,目前的护理标准仍侧重于消除饮食过敏原。食物过敏发生的免疫机制包括口服耐受的破坏、Th2型反应的诱导、过敏原特异性IgE的产生和肥大细胞的激活 [10]。

在观察性研究中发现,无论是孕期 [11] [12] 或婴儿期 [13] 接受膳食鱼油补充,儿童食物过敏率降低,过敏严重程度呈剂量相关,且出生后半年内就开始补充鱼油的孩子比半年后补充鱼油的孩子食物过敏发生率更低。这可能成为预防婴儿过敏的一种手段。PUFA在体内会转化为极长链PUFA(VLC-PUFA)。一项动物实验中,虽然未检测到必需脂肪酸缺乏饮食(EFAD)对OVA诱导致敏小鼠免疫水平和短时间内PUFA的影响,但此实验中发现小鼠小肠中VLC-PUFA水平在致敏后升高,并且EFAD饮食期间得以维持 [14]。此项研究提示可进一步探究VLC-PUFA在消化道中的维持机制。

4.2. PUFA与过敏性哮喘

近年来,过敏性哮喘发病率不断上升,研究发现脂肪酸或影响其发生发展。已知AA是炎症和抗炎脂质介质的前体,或许与过敏性哮喘发生相关。在动物实验中,饮食中的n-3 PUFA可以通过竞争抑制AA的产生,产生炎性较弱的二十碳五烯代谢物以及分解素和保护素,从而减轻气道炎症 [15] [16]。

在过敏性哮喘发病初期进行n-3PUFA的干预补充,或许可以延缓疾病进展。韩国一项调查研究报告中,与确诊过敏性哮喘患者相比,仅有喘息症状的受试者饮食中海产品,n-3/n-6PUFA摄入量显著降低且患病率与摄入量呈显著负相关 [17]。流行病学研究显示,孕妇孕期饮食与儿童哮喘的发生率相关,婴儿期母乳中n-6和n-3PUFA水平与14岁儿童哮喘发病率分别呈正相关和负相关 [18]。同时有研究显示这种相关性在母亲患过敏性哮喘群体中更显著;且子代为女性的发病率更高 [19]。但这一结论并不完全一致。最新一项队列研究结果显示,孕期高n-6PUFA浓度与后代肺功能较好相关 [20]。

4.3. PUFA与AD

AD是一种常见慢性炎症性疾病,好发于婴幼儿。目前研究发现孕妇产前PUFA水平可能影响疾病发生发展。大多数研究显示,n-3PUFA有利于AD的预防及缓解,而n-6PUFA作用与其相反。分别检测妊娠期期各阶段PUFA水平,发现妊娠各阶段PUFA水平均与后代AD患病率相关。与高n-6PUFA水平相比,,妊娠期高n-3PUFA水平的孕妇,其子代AD患病率下降 [21] [22]。有所不一致的是,最新一项研究发现,人乳PUFA的比例及其比率以性别特异性方式与婴儿特应性疾病相关。在女婴中,高 ARA/DHA比例可能与低食物过敏和特应性皮炎风险相关 [23]。不只妊娠期,婴儿期母乳脂肪酸情况也与AD发病相关,与非AD婴儿母乳相比,AD患儿的母乳中饱和脂肪酸比例更高,而n-3PUFA的比例相对低 [11]。这些提示从妊娠期到婴儿期,PUFA水平影响婴儿AD发展,低n-3PUFA饮食可能是婴儿AD的危险因素。

5. 补充膳食PUFAs对过敏性疾病的影响

由于n-3PUFA主要来源于海产品,所以一些非沿海地区的婴幼儿饮食存在先天的缺乏。已经有一部分实验证实,通过补充膳食脂肪酸可以提高血液中及红细胞膜上相应脂肪酸及其代谢产物的水平 [24]。Argaw [25] 通过为360个妊娠中晚期孕妇补充鱼油胶囊证实膳食脂肪酸补充会提高母乳中脂肪酸水平,同时发现母乳n-3PUFA水平和婴儿毛细血管血中AA/(DHA+EPA)有相关性。

5.1. 膳食脂肪酸补充与食物过敏

孕有过敏风险胎儿的孕妇从妊娠第25周开始每日补充EPA和DHA或安慰剂后,与安慰剂组相比,实验组婴儿两岁内食物过敏率更低且呈剂量相关 [26]。动物实验中 [14],饲喂富含ALA的亚麻籽作为实验组小鼠(Lin-mice),OVA诱导腹泻后,实验组出现过敏性腹泻症状的比例明显降低且大肠中ALA,EPA,DHA的水平更高,LA,AA水平更低。在排除LA的干扰后这一结论依然得到证实。但与上述结论有所不同的是,Palmer [27] 对孕有过敏性疾病风险胎儿的孕妇从妊娠21周起,实验组每天补充含900 mg n-3PUFA的鱼油胶囊。两组婴儿三岁内由IgE介导的过敏性疾病患病率没有明显差异。虽然这项实验中并未得出孕妇饮食补充n-3系对婴儿短期过敏性疾病预防的有益影响,但芬兰一项研究报告显示,孕妇饮食中n-6PUFA的比例越高,后代5岁内患鼻结膜炎的风险就越高 [28]。由于有关膳食干预实验研究的干预时间,干预量不同,其对疾病的具体作用尚不能得到统一结论。

5.2. 膳食脂肪酸补充与过敏性哮喘

在轻度哮喘患者的饮食中补充富含ALA和GLA两种不同剂量的植物油(BO和EO),三周后发现体内EPA、DHA和DGLA水平,同时抑制白三烯的生成 [29]。相关研究显示,在孕期补充n-3PUFA,其子代体内n-3PUFA水平升高,且可能对过敏性哮喘具有长期预防效果,尤其补充量在2 g以上时,统计结果更为一致 [24],另外,在同等治疗量前提下,补充n-3PUFA对低基础水平的人群也许效果更加显著 [30]。

5.3. 膳食脂肪酸补充与AD

膳食脂肪酸的补充除了可以直接提高AD患者体内PUFA水平,对疾病临床症状也可以有较为直观的作用。PUFA对已确诊AD患者临床症状可产生影响。对AD患者进行每日摄入n-3PUFA约3g的鱼油12周后,实验组从皮损表现,瘙痒情况和整体主观严重性方面均优于对照组 [31]。对AD患者输注n-3系脂乳液或常规n-6系脂乳液同样可发现,二组患者临床症状均有所改善,但n-3系组患者临床症状改善更明显。意外的是,在治疗后1个月,n-3组出现复发情况,而n-6组可以维持更为长期的改善 [32]。

6. 小结

目前已有大量实验研究证明多不饱和脂肪酸对过敏性疾病的发生发展产生影响,通过膳食补充的方式,可以使体内相应脂肪酸及其代谢物水平升高,进而改善过敏性疾病的发生率及预后。其中,大部分实验结论显示,n-3PUFA会对过敏性疾病的预防及缓解发挥积极作用,而较高的n-6PUFA通常表现出不利影响。目前研究认为,n-3系发挥正向作用的主要机制是竞争减少n-6系多不饱和脂肪酸的产生,从而减少炎性因子的产生,抑制炎症反应。但对于n-3PUFA是否会对过敏性哮喘,AD等过敏性疾病均产生明确的正向作用,仍需进一步探究。另外,膳食脂肪酸用于预防过敏性疾病发生的干预时间,干预量及对疾病长期维持等系列问题仍需要进一步探讨。

文章引用

汪希一,柏冰雪. 多不饱和脂肪酸对过敏性疾病的影响
Effects of Polyunsaturated Fatty Acids on Al-lergic Diseases[J]. 临床医学进展, 2022, 12(05): 4281-4286. https://doi.org/10.12677/ACM.2022.125620

参考文献

  1. 1. Soumelis, V., Reche, P.A., Kanzler, H., Yuan, W., Edward, G., Homey, B., et al. (2002) Human Epithelial Cells Trigger Dendritic Cell Mediated Allergic Inflammation by Producing TSLP. Nature Immunology, 3, 673-680. https://doi.org/10.1038/ni805

  2. 2. Palomares, O., Akdis, M., Martin-Fontecha, M. and Akdis, C.A. (2017) Mech-anisms of Immune Regulation in Allergic Diseases: The Role of Regulatory T and B Cells. Immunological Reviews, 278, 219-236. https://doi.org/10.1111/imr.12555

  3. 3. Yaqoob, P. and Calder, P.C. (2007) Fatty Acids and Immune Function: New Insights into Mechanisms. British Journal of Nutrition, 98, S41-S45. https://doi.org/10.1017/S0007114507832995

  4. 4. Calder, P.C. (2007) Immunomodulation by Omega-3 Fatty Ac-ids. Prostaglandins, Leukotrienes and Essential Fatty Acids, 77, 327-335. https://doi.org/10.1016/j.plefa.2007.10.015

  5. 5. Calder, P.C. (2008) The Relationship between the Fatty Acid Composition of Immune Cells and Their Function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 79, 101-108. https://doi.org/10.1016/j.plefa.2008.09.016

  6. 6. Muñoz-Cano, R.M., Casas, R., Araujo, G., de la Cruz, C., Martin, M., Roca-Ferrer, J., et al. (2020) Prostaglandin E2 Decreases Basophil Activation in Patients with Food-Induced Ana-phylaxis. Allergy, 76, 1556-1559. https://doi.org/10.1111/all.14615

  7. 7. Calder, P.C. and Yaqoob, P. (2009) Understanding Omega-3 Polyunsatu-rated Fatty Acids. Postgraduate Medicine, 121, 148-157. https://doi.org/10.3810/pgm.2009.11.2083

  8. 8. Flesher, R.P., Herbert, C. and Kumar, R.K. (2014) Resolvin E1 Promotes Resolution of Inflammation in a Mouse Model of an Acute Exacerbation of Allergic Asthma. Clinical Science, 126, 805-814. https://doi.org/10.1042/CS20130623

  9. 9. Blasbalg, T.L., Hibbeln, J.R., Ramsden, C.E., Majchrzak, S.F. and Rawlings, R.R (2011) Changes in Consumption of Omega-3 and Omega-6 Fatty Acids in the United States during the 20th Century. The American Journal of Clinical Nutrition, 93, 950-962. https://doi.org/10.3945/ajcn.110.006643

  10. 10. Chinthrajah, R.S., Hernandez, J.D., Boyd, S.D., Galli, S.J. and Nadeau, K.C. (2016) Molecular and Cellular Mechanisms of Food Allergy and Food Tolerance. The Journal of Allergy and Clinical Immunology, 137, 984-997. https://doi.org/10.1016/j.jaci.2016.02.004

  11. 11. Lee, Q.U., Palmer, D.J., Sullivan, T. and Makrides, M. (2014) Fish Oil Supplementation in Pregnancy and Childhood Allergies. Allergy, 69, 411-412. https://doi.org/10.1111/all.12353

  12. 12. Miles, E.A. and Calder, P.C. (2017) Can Early Omega-3 Fatty Acid Expo-sure Reduce Risk of Childhood Allergic Disease? Nutrients, 9, Article No.784. https://doi.org/10.3390/nu9070784

  13. 13. Clausen, M., Jonasson, K., Keil, T., Beyer, K. and Sigurdardottir, S.T. (2018) Fish Oil in Infancy Protects against Food Allergy in Iceland—Results from a Birth Cohort Study. Allergy, 73, 1305-1312. https://doi.org/10.1111/all.13385

  14. 14. Hayashi, Y., Yokomizo, Y., Fujiwara, Y. and Ichi, I. (2021) The Effect of Polyunsaturated Fatty Acid Deficiency on Allergic Response in Ovalbumin-Immunized Mice. Prostaglandins, Leukotrienes and Essential Fatty Acids, 164, Article ID: 102231. https://doi.org/10.1016/j.plefa.2020.102231

  15. 15. Venter, C., Meyer, R.W., Nwaru, B.I., Roduit, C., Untersmayr, E., Adel-Patient, K., et al. (2019) EAACI Position Paper: Influence of Dietary Fatty Acids on Asthma, Food Allergy, and Atopic Dermatitis. Allergy, 74, 1429-1444. https://doi.org/10.1111/all.13764

  16. 16. Kunisawa, J., Arita, M., Hayasaka, T., Harada, T., Iwamoto, R., Nagasawa, R., et al. (2015) Dietary Omega3 Fatty Acid Exerts Anti-Allergic Effect through the Conversion to 17,18-Epoxyeicosatetraenoic Acid in the Gut. Scientific Reports, 5, Article No. 9750. https://doi.org/10.1038/srep09750

  17. 17. Kim, E.K. and Ju, S.Y. (2019) Asthma and Dietary Intake of Fish, Sea-weeds, and Fatty Acids in Korean Adults. Nutrients, 11, Article No. 2187. https://doi.org/10.3390/nu11092187

  18. 18. Van Elten, T.M.,Van Rossem, L., Wijga, A.H., Brunekreef, B., de Jong-ste, J.C., Koppelman, G.H., et al. (2015) Breast Milk Fatty Acid Composition has a Long-Term Effect on the Risk of Asthma, Eczema, and Sensitization. Allergy, 70, 1468-1476. https://doi.org/10.1111/all.12703

  19. 19. Wijga, A.H., Van Houwelingen, A.C., Kerkhof, M., Tabak, C., de Jongste, J.C., Gerritsen, J., et al. (2006) Breast Milk Fatty Acids and Allergic Disease in Preschool Children: The Prevention and Incidence of Asthma and Mite Allergy Birth Cohort Study. Journal of Allergy and Clinical Immunology, 117, 440-447. https://doi.org/10.1016/j.jaci.2005.10.022

  20. 20. Mensink-Bout, S.M., Voortman, T., Dervishaj, M., Reiss, I.K.M., De Jongste, J.C., Jaddoe, V.W.V., et al. (2020) Associations of Plasma Fatty Acid Patterns during Pregnancy with Res-piratory and Allergy Outcomes at School Age. Nutrients, 12, Article No. 3057. https://doi.org/10.3390/nu12103057

  21. 21. Montes, R., Chisaguano, A.M., Castellote, A.I., Morales, E., Sunyer, J., López-Sabater, M.C., et al. (2013) Fatty-Acid Composition of Maternal and Umbilical Cord Plasma and Early Childhood Atopic Eczema in a Spanish Cohort. European Journal of Clinical Nutrition, 67, 658-663. https://doi.org/10.1038/ejcn.2013.68

  22. 22. Gardner, K.G., Gebretsadik, T., Hartman, T.J., Rosa, M.J., Tylavsky, F.A., Adgent, M.A., et al. (2020) Prenatal Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Childhood Atopic Dermatitis. The Journal of Allergy and Clinical Immunology, 8, 937-944. https://doi.org/10.1016/j.jaip.2019.09.031

  23. 23. Miliku, K., Richelle, J., Becker, A.B., Simons, E., Moraes, T.J., Stuart, T.E., et al. (2021) Sex-Specific Associations of Human Milk Long-Chain Polyunsaturated Fatty Acids and Infant Allergic Conditions. Pediatric Allergy and Immunology, 32, 1173-1182. https://doi.org/10.1111/pai.13500

  24. 24. Hansen, S., Strom, M., Maslova, E., Dahl, R., Hoffmann, H.J., Rytter, D., et al. (2017) Fish Oil Supplementation during Pregnancy and Allergic Respiratory Disease in the Adult Offspring. The Journal of Allergy and Clinical Immunolog, 139, 104-111.E4. https://doi.org/10.1016/j.jaci.2016.02.042

  25. 25. Argaw, A., Bouckaert, K.P., Wondafrash, M., Kolsteren, P., Lachat, C., De Meulenaer, B., et al. (2021) Effect of Fish-Oil Supplementation on Breastmilk Long-Chain Polyunsaturated Fatty Acid Concentration: A Randomized Controlled Trial in Rural Ethiopia. European Journal of Clinical Nutrition, 75, 809-816. https://doi.org/10.1038/s41430-020-00798-x

  26. 26. Furuhjelm, C., Warstedt, K., Fageras, M., Fälth-Magnusson, K., Larsson, J., Fredriksson, M., et al. (2011) Allergic Disease in Infants up to 2 Years of Age in Relation to Plasma Ome-ga-3 Fatty Acids and Maternal Fish Oil Supplementation in Pregnancy and Lactation. Pediatric Allergy and Immunology, 22, 505-514. https://doi.org/10.1111/j.1399-3038.2010.01096.x

  27. 27. Palmer, D.J., Sullivan, T., Gold, M.S., Prescott, S.L., Hed-dle, R., Gibson, R.A., et al. (2013) Randomized Controlled Trial of Fish Oil Supplementation in Pregnancy on Childhood Allergies. Allergy, 68, 1370-1376. https://doi.org/10.1111/all.12233

  28. 28. Nwaru, B.I., Erkkola, M., Lumia, M., Kronberg-Kippilä, C., Ahonen, S., Kaila, M., et al. (2012) Maternal Intake of Fatty Acids during Pregnancy and Allergies in the Offspring. British Journal of Nutrition, 108, 720-732. https://doi.org/10.1017/S0007114511005940

  29. 29. Arm, J.P., Boyce, J.A., Wang, L., Chhay, H., Zahid, M., Patil, V., et al. (2013) Impact of Botanical Oils on Polyunsaturated Fatty Acid Metabolism and Leukotriene Generation in Mild Asthmatics. Lipids in Health and Disease, 12, Article No. 141. https://doi.org/10.1186/1476-511X-12-141

  30. 30. Bisgaard, H., Stokholm, J., Chawes, B.L., Vissing, N.H., Bjarna-dóttir E., Schoos, A.M., et al. (2016) Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. New England Journal of Medicine, 375, 2530-2539. https://doi.org/10.1056/NEJMoa1503734

  31. 31. Bjorneboe, A., Soyland, E., Bjorneboe, G.E., Rajka, G. and Drevon, C.A. (1989) Effect of n-3 Fatty Acid Supplement to Patients with Atopic Dermatitis. Journal of Internal Medicine, 225, 233-236. https://doi.org/10.1111/j.1365-2796.1989.tb01462.x

  32. 32. Mayser, P., Mayer, K., Mahloudjian, M., Benzing, S., Kramer, H., Schill, W., et al. (2002) A Double-Blind, Randomized, Placebo-Controlled Trial of n-3 versus n-6 Fatty Ac-id-Based Lipid Infusion in Atopic Dermatitis. Journal of Parenteral and Enteral Nutrition, 26, 151-158. https://doi.org/10.1177/0148607102026003151

  33. NOTES

    *通讯作者。

期刊菜单