Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67178 , 9 pages
10.12677/ACM.2023.1361320

OCTA在糖尿病性视网膜病变中的研究进展

张景馨1,韩珊1,李都吉雅1,赵全良2*

1内蒙古民族大学临床医学院,内蒙古 通辽

2内蒙古民族大学第二临床医学院,内蒙古 通辽

收稿日期:2023年5月13日;录用日期:2023年6月7日;发布日期:2023年6月16日

摘要

糖尿病性视网膜病变(DR)是全球国家工作人群导致失明的主要原因之一,是糖尿病患者最常见的微血管并发症,随着科技的进步,光学相干断层扫描血管成像(OCTA)以一种非侵入性的方式提供了视网膜和脉络膜的不同层的无创图像分割。逐步地在糖尿病性视网膜病变的诊断和监测起到了不可或缺的作用。本文就OCTA在糖尿病视网膜病变的研究进展进行综述。

关键词

光学相干断层扫描血管成像,糖尿病性视网膜病变,视网膜毛细血管,糖尿病性黄斑水肿

Research Progress of OCTA in Diabetic Retinopathy

Jingxin Zhang1, Shan Han1, Dujiya Li1, Quanliang Zhao2*

1Clinical Medical College, Inner Mongolia Minzu University, Tongliao Inner Mongolia

2The Second Clinical Medical College, Inner Mongolia Minzu University, Tongliao Inner Mongolia

Received: May 13th, 2023; accepted: Jun. 7th, 2023; published: Jun. 16th, 2023

ABSTRACT

Diabetic Retinopathy (DR) is one of the main causes of blindness among national workers around the world, and is the most common microvascular complication of diabetes patients. With the progress of science and technology, optical coherence tomography angiography (OCTA) provides non-invasive image segmentation of different layers of retina and choroid in a non-invasive manner. It gradually plays an indispensable role in the diagnosis and monitoring of diabetes retinopathy. This article reviews the research progress of OCTA in diabetes retinopathy.

Keywords:Optical Coherence Tomography Angiography, Diabetic Retinopathy, Retinal Capillaries, Diabetic Macular Edema

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病会影响体内的所有大血管和小血管,血管功能障碍最终导致组织损伤和变性。视网膜是由脆弱的神经上皮细胞,排列在眼睛的后段,在视觉功能上有着重大作用 [1] 。脉络膜是眼睛中血管最多的结构,它在视网膜外层代谢供应上有着至关重要的作用。糖尿病不仅会影响到视网膜,并且糖尿病患者的脉络膜血管系统也会受到影响 [1] 。糖尿病的代谢状态会促进血管水平病理过程的发展,导致基底膜增厚和血管的内皮细胞和周细胞损伤进而出现微血管病变伴血管硬化和毛细血管阻塞等血–视网膜屏障的表现 [2] 。过去我们对视网膜和脉络膜的各层血管的观察有限,但随着科学技术的进步,光学相干断层血管造影(OCTA)能够可视化和测量视网膜循环直到脉络膜毛细血管水平,并且是发现和评估糖尿病视网膜及脉络膜病变的主要成像方式 [3] 。在这篇综述中,我们重点研究了与DR的早期发现、分期和进展相关的OCTA衍生的定量指标的应用。

2. 糖尿病视网膜及脉络膜病变生理、病理变化的相关性研究

糖尿病性视网膜病变(DR)是糖尿病最常见的微血管并发症之一,是许多国家工作人群预防失明的主要原因 [4] 。长期的高血糖水平引起的DR的主要病理生理变化包括局部缺血、血管病变、基底膜增厚和功能障碍、基底膜增厚和周细胞耗竭 [5] 。有研究显示高血糖引起的主要代谢异常会增加氧化应激反应,加速细胞氧化还原稳态的失衡,形成的恶性循环导致氧化应激过程中产生的高水平活性氧(ROS),从而导致细胞凋亡、炎症、线粒体损伤和脂质过氧化,这些因素共同参与了视网膜病变的发病机制,因此高血糖介导的氧化应激的作用激活失调炎症小体和线粒体稳态失衡完全有助于DR的病理生理学的研究 [6] 。研究表明VEGF在糖尿病性黄斑水肿(DME)的发病机制中起着重要作用,当视网膜缺血缺氧时会诱导的VEGF的上调,进而使毛细血管的通透性升高发生DME,DME可能发生在DR的每一个分期中,导致DR患者视力损害的主要原因 [7] 。通过OCT血管造影(OCTA)可以对视网膜血管进行高分辨率成像,使我们能够在体内无创地测量血管特征,并显示出更高分辨率的精细微血管损伤 [8] 。根据视网膜及脉络膜血管组织结构,OCTA常用的分析层面为浅层毛细血管层(SCP)、深层毛细血管层(DCP)、视乳头周围放射状毛细血管层(RPC)、以及脉络膜毛细血管层(CC)。

脉络膜是眼部重要的血管组织,为视网膜外层提供血液供应,包括视网膜色素上皮(RPE)和光感受器,是无血管中央凹代谢交换的唯一来源 [9] 。而糖尿病会影响体内的所有大血管和小血管,进而导致脉络膜血管异常。很多组织病理学研究表明,糖尿病的代谢紊乱会导致脉络膜的异常,典型的病变包括毛细血管内皮变性,脉络膜毛细血管变薄和稀疏,层流沉积,弯曲和串珠状血管,甚至脉络膜新血管 [10] [11] [12] 。Dmitriev等人利用光诱导[H+]研究正常和早期糖尿病大鼠完整的视网膜pH的变化,他们发现最显著的糖尿病相关影响是在RPE和脉络膜血供应之间的酸交换水平,这种交换在早期糖尿病患者中似乎受到损害,提示糖尿病小鼠的脉络膜绒毛膜中的光诱导酸性增加 [13] 。有研究利用内源性碱性磷酸酶(Apase)的酶的组织化学活性记录了糖尿病脉络膜中功能性CC的缺失,Apase染色整个脉络膜血管系统;当酶活性不存在时,就没有活的内皮细胞,且本研究受试者包含了糖尿病的所有阶段和类型且许多没有视网膜病变,且糖尿病脉络膜病越严重,沉积高度越高,提示血管功能不全导致BrMb上和BrMb内碎片堆积 [14] 。随着糖尿病的病程延长,即使没有临床证实的视网膜病变,脉络膜结构和CVI也会改变 [15] 。

2.1. OCTA与FAZ

中心凹无血管区(FAZ)是人眼黄斑中心凹处有一片缺乏视网膜毛细血管灌注的区域,是由三个神经丛(SCP、MCP和DCP)分隔 [16] 。SCP、MCP和DCP是由眼动脉的一个末端分支——视网膜中央动脉,它分裂并形成覆盖整个视网膜形成的不同视网膜丛构成 [17] 。当持续的高血糖水平状态时可以导致视网膜微循环功能障碍,并导致糖尿病视网膜病变(DR) [18] 。研究表明FAZ的变化与视觉功能密切相关 [19] 。Ryu G等人在一项研究中显示,在副中央凹和中央凹周围区域,所有糖尿病组(无DR、NPDR和PDR)的SCP和DCP血管密度均显著低于正常对照组,SCP和DCP的血管密度随着DR严重程度的增加而降低,SCP和DCP的FAZ面积随着DR的加重均显著增加。这表明黄斑微血管系统的改变与DR的严重程度显著相关并且即使没有糖尿病患者的视网膜微血管也会发生形态学变化 [20] 。也有研究显示,FAZ面积的扩大也会提示DR的进展 [21] 。在以往的研究中,视网膜神经元变性和微血管功能障碍已被证明可促进DR的发生和发展 [22] [23] 。Qiu B等人在DR患者中网膜神经元变性与微血管病变之间关系的研究中发现,发现视网膜神经纤维层的相对平均厚度、FAZ和FAZ周长的增加、SCP和DCP中的FAZ循环指数的降低与DR的严重程度相关,SCP和DCP中的FAZ循环指数和SCP中的FAZ周长比FAZ更能预测DR的严重程度。这些结果表明,糖尿病微血管病变与神经元变性高度相关,所以对神经元保护是改善、预防和管理DR非常重要 [24] 。同样在Vujosevic S等人的研究中显示,糖尿病患者的FAZ大小明显更大,且在1型糖尿病患者没有出现DR的临床表现时,FAZ区域在中也有增加,这表明FAZ的改变出现在糖尿病的早期 [25] 。通过OCTA对视网膜毛细血管层的成像,FAZ在临床前和临床DR的诊断和控制中有重要的作用。

2.2. OCTA与乳头周围微血管系统

放射状乳头周围毛细血管丛(RPC)只存在于乳头周围区域,为视乳头周围的视网膜乳头周围神经纤维层(pRNFL)供血,在维持神经元健康方面具有重要作用 [26] [27] 。很多作者常研究青光眼患者的RPC血管密度,但最近有一些关于糖尿病患者乳头周围微血管改变的报道。Cao D等人的研究中表明DR是一种神经血管疾病,在DR的临床前期视神经头(ONH)的微循环和神经元活性就已经遭到损害,乳头周围微血管功能不全可能先于视神经的神经缺陷 [28] 。Rodrigues TM用OCTA在对155只眼的RPC进行横断面研究评估时发现即使在没有DR迹象的情况下,糖尿病患者的眼睛的RPC密度也显著降低,RNFL的厚度和RPC密度有很强的相关性 [29] 。同样,一些研究显示,糖尿病患者的pRNFL跟健康人相比是变薄的,且无DR组和NPDR组的乳头周围微血管参数均低于正常对照组 [30] [31] 。Yuan M的前瞻性队列研究显示乳头周围血管密度(pVD)和乳头周围血管长度密度(pVLD)的指标的降低与DR的发生率和进展成RDR事件的风险增加相关 [32] 。pVD和pVLD的降低使DR发生率升高可能有一下两种机制:1) 糖尿病患者中肾素–血管紧张素系统(RAS)的激活,使ONH周围的毛细血管灌注减低 [33] 。2) 高血糖会导致周细胞和内皮细胞凋亡使乳头周围血管直径减小 [34] 。这两种机制都会使视网膜缺血缺氧而造成DR发生率升高。

2.3. OCTA与微动脉瘤(MAs)

微动脉瘤(MAs)是一种毛细血管的组织病理学扩张,与周细胞和内皮细胞凋亡有关 [34] 。MAs出现在DR的早期,最常出现在视网膜的深层毛细血管层(DCP),有三种不同的形态模式囊状、梭状和局灶性凸起 [35] 。通过荧光素血管造影(FA)这种检查工具在视网膜上出现荧光素渗漏与包膜结构紊乱可以发现DR中细微微血管异常,但由于其有创的成像总会引起患者的不适,所以不适合定期筛查DR。而OCTA是另一种无创成像技术,可提供视网膜和脉络膜微血管的三维图像,且有研究证明位于视网膜深层毛细血管的MAs可以被OCTA更好的识别 [36] 。OCTA的一个主要缺点是它无法可视化的泄漏,Salz和同事发现,与FA相比,OCTA在检测MAs方面的敏感性为85%,特异性为75% [37] 。在最近的研究中,Cui Y等人用广角场扫描源光学相干断层扫描血管造影(WF SS-OCTA)和超广视野彩色眼底摄影(UWF CFP)前瞻性观察性研究了101名参与者中的152只眼睛,发现WF SS-OCTA + UWF CFP与宽场荧光素血管造影(UWF-FA)进行比较时,MAs是相同的,这表明WFSS-OCTA + UWF CFP可能为DR诊断提供一种侵袭性较低的替代FA [38] 。也有研究显示,联合使用OCT b扫描图像、OCT en-face图像和OCTA图像,提高了糖尿病MAs的检出率 [39] 。此外,MAs的特征被证明是糖尿病性黄斑水肿(DME)患者治疗反应的预后因素 [40] [41] 。在DME的严重程度与周围区域MAs的数量是呈正相关的 [42] 。

2.4. OCTA与新生血管(NV)

视网膜缺血后会产生新生血管(NV),NV是PDR主要特征,因此早期发现及时处理非常重要,可以改善视力预后并能够组织PDR进一步发展。FA一直是诊断NV的金标准,但由于其产生的染料渗漏,会影响判断NV的成像区域。而OCTA是在不同的层面成像,不会受到燃料的干扰,因此已成为NV诊断有效工具。NV按照部位可以分为视盘新生血管(NVD)和其他部位新生血管(NVE)。通过观察OCTA中ILM上方的流量信号可以检测到视网膜NVs [43] 。OCTA可以特征性的区分出IRMA和NV,在一些研究中发现,NV的血流可以突破上方覆盖的ILM或血流突破后向玻璃体内部生长,而IRMA局限在视网膜层内,会有比IRMA更密集、更集中的血管血流外观 [44] [45] 。最近的研究聚焦于WF SS-OCTA与UWF-FA在评估PDR的比较,例如Stino H等人在一项前瞻性、横断面研究中评估了WF-OCTA对使用单次OCTA扫描检测NVEs的诊断价值,发现WF-OCTA检测PDR的敏感性为0.95,UWF-FA检测PDR的敏感性为1。WF-OCTA和UWF-FA在对颞上NVE的检出率一致性较高,并且NVEs常位于颞侧 [46] 。同样Zeng QZ比较了超广角(24 × 20 mm2) SS-OCTA和FA评估DR中的作用,他们发现两种技术在视网膜内微血管异常(IRMA)和新生血管(NV)计数上无显著性差异 [47] 。Hirano T等人用Xephilio OCT-S1 (可以捕获单采集23 × 20-mm的SS-OCTA)扫描以视盘为中心的宽视场(23 × 20 mm) SS-OCTA,几乎一次就可以识别所有PDR眼部的NVs。因此,广域OCTA可以作为替代FA评估NV的合理选择,它检测PDR的高可靠性可以改善临床检查 [48] 。

2.5. OCTA与DME

糖尿病性黄斑水肿(DME)是糖尿病患者视力损害的主要原因,其发生是由于在液体在视网膜内流入、流出不平衡,导致视网膜内液或视网膜下液的积累 [49] 。在正常情况下,液体的产生可能来源于SCP,它通过视网膜的间质组织,被Muller细胞和DCP的作用吸收 [50] 。在一项前瞻性研究中发现,在SCP的血管密度(VD)较低的眼睛中更容易发生DME [51] 。同样在Han R探讨DME在不同阶段的OCTA特征研究中发现,DME的进展会使DVP中的血管变得更加稀疏,DME严重程度与FAZ面积成正比,且会导致视力进一步下降 [52] 。Huang WH回顾性研究了58只眼,观察2年间用5 + PRN模式行抗VEGF治疗的DME的患者,评估OCTA的中心凹无血管区周围300 μm宽度内的血管密度(%),其结果显示DME患者的FAZ完整性与抗VEGF治疗反应和临床病程相关 [53] 。研究认为对抗VEGF反应良好的DME眼与反应不良的DME眼进行比较。发现在DCP中,不良反应者会表现出更大的FAZ面积,更多的MAs [54] 。应用OCTA观察玻璃体切除术后接受阈下微脉冲黄色激光(SMYL)治疗的患者6个月后的疗效观察,发现SMYL组的SCP和DCP的副中央凹VD显著升高,SMYL组的FAZ面积也明显小于对照组 [55] 。综上所述,OCTA可能是一种很有前途的评估DME严重程度和视力的设备,在鉴别与DME发展相关的因素、预测和监测患者的治疗反应方面有实用作用。

2.6. OCTA与脉络膜毛细血管(CC)

脉络膜毛细血管(CC)构成脉络膜的最内侧部分,是在Bruch膜外由Sattler’s层的小动脉在脉络膜毛细血管层中形成一层吻合的蜂窝状小叶毛细血管 [56] 。随着技术的不断发展,基于SS-OCT的OCTA可以无创地很好地显示脉络膜的血流图像。Loria O等人对120名患者的72只眼睛展开研究,研究发现,在非DR的糖尿病患者中CC的改变较健康受试者显著增加且CC的改变与DR的分期呈正相关,这说明这些改变先于DR的临床体征,并与DR分期相关 [57] 。Wei Wang等人在一项对1222名糖尿病(非DR患者1082例,轻度NPDR患者140例)患者的研究中,使用超高速SS-OCTA测量中央1 mm区域、内圈(1.5 mm~2.5 mm)、外圆(2.5 mm~5.0 mm)和黄斑区整个区域的毛绒毛膜流量不足百分比(choriocapillaris flow deficit percentage, CC FD%),研究发现在1年的随访中65例(5.32%)发生了RDR,CC FD%每增加1%,RDR发生的风险增加1.69倍,这说明CC FD%可以作为预测DR发生和进展的一种新的生物标志物 [58] 。同样的,在对乳头周围CC血流量的研究发现,乳头周围CC微循环改变也对于预测DR进展和DME的发展具有额外的预测价值 [59] 。此外,绒毛膜为光感受器提供氧气和营养物质 [60] ,在缺氧期间,在糖尿病视网膜病变(DR)的眼中,这种贡献似乎更大。Borrelli E及其同事在2020年的研究证实,NPDR眼的特征是CC灌注减少且EZ反射率较低,值得注意的是,健康的眼睛没有显示出CC和EZ之间的任何显著关联,因此在糖尿病脉络膜病中CC低灌注与光感受器损伤密切相关 [61] 。

2.7. OCTA与脉络膜血管指数(CVI)

脉络膜血管指数(choroidal vascularity index, CVI)是脉络膜血管腔面积(luminal area, LA)与脉络膜总面积(total choroid area, TCA)的比值。众所周知,CT可受年龄、性别、轴长、昼夜变化、眼压、血压等生理因素的影响 [62] [63] ,而CVI不受这些因素影响则可以对脉络膜状况进行一个更稳定和更客观评估,从而发现脉络膜血管系统的变化 [64] 。Xu F及其同事在一项观察性横断面研究种观察68名受试者的131只眼,分为健康对照组、DR前期组、早期DR组,并对其进行SS-OCTA检查,结果显示,DR前期和早期组的CVI明显下降,DR患者的CVI值明显低于健康对照组,DM患者外周区的CVI值明显低于中心区,这提示我们可以通过CVI的变化可以更好地了解早期糖尿病患者的血管异常,可以促进糖尿病视网膜病变的早期发现和治疗 [65] 。另一项研究表明,无DR的糖尿病眼黄斑下Haller’s的CVI明显低于健康对照组,并且随着时间的推移,无论血糖控制如何,中心凹下CVI和脉络膜体积继续减少,因此黄斑下Haller’s层CVI可能作为新的诊断糖尿病患者DR标记物,并可能作为糖尿病眼的预后工具 [66] 。同样,在小鼠模型中,研究表明即使是年轻的糖尿病小鼠,也提示了脉络膜血流减少,因此脉络膜血流不足会导致糖尿病视网膜病变的早期病理改变 [67] 。综上所述,CVI能够帮助医师更好地认识DC及DR,为今后DM及其并发症的临床预测、诊断、治疗、预后提供参考和依据。

3. 总结

综上所述,在糖尿病视网膜病变中,OCTA技术在DR评估中拥有广阔的发展前景。在没有出现DR的体征时,OCTA可以提供大量关于糖尿病患者视网膜毛细血管层和CC的发现。可以获得包括FAZ,NV,CC FD%,MAs,RPC密度等多种指标,监测糖尿病性黄斑水肿的预后和发展。但由于OCTA不能进行大范围成像,范围越大分辨率越低,因为不使用造影剂所以不存在造影剂的渗漏的情况,则不能很好的观察视网膜血管屏障功能,对MA的观察能力有限,所以不能完全取代FA。WF-OCTA在检测血管病变、NV方面具有很大的优势,不仅在黄斑,而且在周围,这可能会改变以后疾病的诊断和管理。

文章引用

张景馨,韩 珊,李都吉雅,赵全良. OCTA在糖尿病性视网膜病变中的研究进展
Research Progress of OCTA in Diabetic Retinopathy[J]. 临床医学进展, 2023, 13(06): 9433-9441. https://doi.org/10.12677/ACM.2023.1361320

参考文献

  1. 1. Lutty, G.A. (2017) Diabetic Choroidopathy. Vision Research, 139, 161-167. https://doi.org/10.1016/j.visres.2017.04.011

  2. 2. Barth, T. and Helbig, H. (2021) Diabetische Retinopathie [Dia-betic Retinopathy]. Klinische Monatsblätter für Augenheilkunde, 238, 1143-1159. https://doi.org/10.1055/a-1545-9927

  3. 3. Hormel, T.T., Jia, Y., Jian, Y., Hwang, T.S., Bailey, S.T., Pennesi, M.E., et al. (2021) Plexus-Specific Retinal Vascular Anatomy and Pathologies as Seen by Projection-Resolved Optical Coher-ence Tomographic Angiography. Progress in Retinal and Eye Research, 80, Article ID: 100878. https://doi.org/10.1016/j.preteyeres.2020.100878

  4. 4. Klein, R., Klein, B.E., Moss, S.E., Davis, M.D. and DeMets, D.L. (1984) The Wisconsin Epidemiologic Study of Diabetic Retinopathy. III. Prevalence and Risk of Diabetic Reti-nopathy When Age at Diagnosis Is 30 or More Years. Archives of Ophthalmology, 102, 527-532. https://doi.org/10.1001/archopht.1984.01040030405011

  5. 5. Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B. and Asemi, Z. (2022) Quercetin: An Effective Polyphenol in Alleviating Diabetes and Diabetic Complications. Critical Reviews in Food Science and Nutrition, 1-24. https://doi.org/10.1080/10408398.2022.2067825

  6. 6. Sharma, I., Yadav, K.S. and Mugale, M.N. (2022) Re-doxisome and Diabetic Retinopathy: Pathophysiology and Therapeutic Interventions. Pharmacological Research, 182, Article ID: 106292. https://doi.org/10.1016/j.phrs.2022.106292

  7. 7. Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362. https://doi.org/10.3390/cells11213362

  8. 8. Battista, M., Borrelli, E., Sacconi, R., Bandello, F. and Querques, G. (2020) Optical Coherence Tomography Angiography in Diabetes: A Review. European Journal of Ophthalmology, 30, 411-416. https://doi.org/10.1177/1120672119899901

  9. 9. Mrejen, S. and Spaide, R.F. (2013) Optical Coherence Tomogra-phy: Imaging of the Choroid and Beyond. Survey of Ophthalmology, 58, 387-429. https://doi.org/10.1016/j.survophthal.2012.12.001

  10. 10. Hidayat, A. and Fine, B. (1985) Diabetic Choroidopathy: Light and Electron Microscopic Observations of Seven Cases. Ophthalmology, 67, 512-522. https://doi.org/10.1016/S0161-6420(85)34013-7

  11. 11. Fryczkowski, A.W. (1988) Diabetic Choroidal Involvement: Scanning Electron Microscopy Study. Klinika Oczna, 90, 145-149.

  12. 12. Fryczkowski, A.W., Hodes, B.L. and Walker, J. (1989) Diabetic Choroidal and Iris Vasculature Scanning Electron Microscopy Findings. International Ophthalmology, 13, 269-279. https://doi.org/10.1007/BF02280087

  13. 13. Dmitriev, A.V., Henderson, D. and Linsenmeier, R.A. (2016) Light-Induced pH Changes in the Intact Retinae of Normal and Early Diabetic Rats. Experimental Eye Research, 145, 148-157. https://doi.org/10.1016/j.exer.2015.11.015

  14. 14. Lutty, G.A. and McLeod, D.S. (2005) Phosphatase Enzyme Histochemistry for Studying Vascular Hierarchy, Pathology, and Endothelial Cell Dysfunction in Retina and Choroid. Vision Research, 45, 3504-3511. https://doi.org/10.1016/j.visres.2005.08.022

  15. 15. Temel, E., Özcan, G., Yanık, Ö., et al. (2022) Choroidal Structur-al Alterations in Diabetic Patients in Association with Disease Duration, HbA1c Level, and Presence of Retinopathy. In-ternational Ophthalmology, 42, 3661-3672. https://doi.org/10.1007/s10792-022-02363-w

  16. 16. Nesper, P.L. and Fawzi, A.A. (2018) Human Parafoveal Capil-lary Vascular Anatomy and Connectivity Revealed by Optical Coherence Tomography Angiography. Investigative Oph-thalmology & Visual Science, 59, 3858-3867. https://doi.org/10.1167/iovs.18-24710

  17. 17. Cuenca, N., Ortuño-Lizarán, I., Sánchez-Sáez, X., et al. (2020) Inter-pretation of OCT and OCTA Images from a Histological Approach: Clinical and Experimental Implications. Progress in Retinal and Eye Research, 77, Article ID: 100828. https://doi.org/10.1016/j.preteyeres.2019.100828

  18. 18. Zoungas, S., Woodward, M., Li, Q., Cooper, M.E., et al. (2014) Impact of Age, Age at Diagnosis and Duration of Diabetes on the Risk of Macrovascular and Microvascular Complications and Death in Type 2 Diabetes. Diabetologia, 57, 2465-2474. https://doi.org/10.1007/s00125-014-3369-7

  19. 19. Kim, D.Y., Fingler, J., Zawadzki, R.J., et al. (2012) Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 53, 85-92. https://doi.org/10.1167/iovs.11-8249

  20. 20. Ryu, G., Kim, I. and Sa-gong, M. (2021) Topographic Analysis of Retinal and Choroidal Microvasculature According to Diabetic Retinopathy Severity Using Optical Coherence Tomography Angiography. Graefe’s Archive for Clinical and Experimental Ophthal-mology, 259, 61-68. https://doi.org/10.1007/s00417-020-04785-7

  21. 21. Custo Greig, E., Brigell, M., Cao, F., et al. (2020) Macular and Peripapillary Optical Coherence Tomography Angiography Metrics Predict Progression in Diabetic Retinopathy: A Sub-Analysis of TIME-2b Study Data. American Journal of Ophthalmology, 219, 66-76. https://doi.org/10.1016/j.ajo.2020.06.009

  22. 22. Zafar, S., Sachdeva, M., Frankfort, B.J. and Channa, R. (2019) Ret-inal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies. Cur-rent Diabetes Reports, 194, Article No. 17. https://doi.org/10.1007/s11892-019-1134-5

  23. 23. Zhang, X., Bao, S., Lai, D., Rapkins, R.W. and Gillies, M.C. (2008) Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier through Differential Regu-lation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas. Diabetes, 574, 1026-1033. https://doi.org/10.2337/db07-0982

  24. 24. Qiu, B., Zhao, L., Zhang, X., et al. (2021) Associations between Diabetic Retinal Microvasculopathy and Neuronal Degeneration Assessed by Swept-Source OCT and OCT Angiography. Fron-tiers in Medicine (Lausanne), 8, Article ID: 778283. https://doi.org/10.3389/fmed.2021.778283

  25. 25. Vujosevic, S., Muraca, A., Alkabes, M., Villani, E., Cavarzeran, F., Rossetti, L., et al. (2019) Early Microvascular and Neural Changes in Patients with Type 1 and Type 2 Diabetes Mellitus without Clinical Signs of Diabetic Retinopathy. Retina, 39, 435-445. https://doi.org/10.1097/IAE.0000000000001990

  26. 26. Zheng, Y., Cheung, N., Aung, T., Mitchell, P., He, M. and Wong, T.Y. (2009) Relationship of Retinal Vascular Caliber with Retinal Nerve Fiber Layer Thickness: The Singapore Malay Eye Study. Investigative Ophthalmology & Visual Science, 50, 4091-4096. https://doi.org/10.1167/iovs.09-3444

  27. 27. Yu, P.K., Cringle, S.J. and Yu, D.Y. (2014) Correlation between the Ra-dial Peripapillary Capillaries and the Retinal Nerve Fibre Layer in the Normal Human Retina. Experimental Eye Research, 129, 83-92. https://doi.org/10.1016/j.exer.2014.10.020

  28. 28. Cao, D., Yang, D., Yu, H., et al. (2019) Optic Nerve Head Perfu-sion Changes Preceding Peripapillary Retinal Nerve Fibre Layer Thinning in Preclinical Diabetic Retinopathy. Clinical & Experimental Ophthalmology, 47, 219-225. https://doi.org/10.1111/ceo.13390

  29. 29. Rodrigues, T.M., Marques, J.P., Soares, M., et al. (2019) Peripapillary Neurovascular Coupling in the Early Stages of Diabetic Retinopathy. Retina, 39, 2292-2302. https://doi.org/10.1097/IAE.0000000000002328

  30. 30. Shin, Y.I., Nam, K.Y., Lee, S.E., et al. (2019) Peripapillary Microvasculature in Patients with Diabetes Mellitus: An Optical Coherence Tomography Angiography Study. Scientific Reports, 9, Article No. 15814. https://doi.org/10.1038/s41598-019-52354-8

  31. 31. Vujosevic, S., Muraca, A., Gatti, V., et al. (2018) Peripapillary Microvascular and Neural Changes in Diabetes Mellitus: An OCT-Angiography Study. Investigative Ophthalmology & Visual Science, 59, 5074-5081. https://doi.org/10.1167/iovs.18-24891

  32. 32. Yuan, M., Wang, W., Kang, S., et al. (2022) Peripapillary Microvascu-lature Predicts the Incidence and Development of Diabetic Retinopathy: An SS-OCTA Study. American Journal of Oph-thalmology, 243, 19-27. https://doi.org/10.1016/j.ajo.2022.07.001

  33. 33. Wilkinson-Berka, J.L., Agrotis, A. and Deliyanti, D. (2012) The Retinal Renin-Angiotensin System: Roles of Angiotensin II and Aldosterone. Peptides, 36, 142-150. https://doi.org/10.1016/j.peptides.2012.04.008

  34. 34. Ejaz, S., Chekarova, I., Ejaz, A., et al. (2008) Importance of Pericytes and Mechanisms of Pericyte Loss during Diabetes Retinopathy. Diabetes, Obesity and Metabolism, 10, 53-63.

  35. 35. Borrelli, E., Sacconi, R., Brambati, M., Bandello, F. and Querques, G. (2019) In Vivo Rotational Three-Dimensional OCTA Analysis of Microaneurysms in the Human Diabetic Retina. Scientific Reports, 9, Article No. 16789. https://doi.org/10.1038/s41598-019-53357-1

  36. 36. Couturier, A., Mané, V., Bonnin, S., et al. (2015) Capillary Plexus Anomalies in Diabetic Retinopathy on Optical Coherence Tomography Angiography. Retina, 35, 2384-2391. https://doi.org/10.1097/IAE.0000000000000859

  37. 37. Salz, D.A., de Carlo, T.E., Adhi, M., et al. (2016) Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared with Fluo-rescein Angiography and Normal Eyes. JAMA Ophthalmology, 134, 644-650. https://doi.org/10.1001/jamaophthalmol.2016.0600

  38. 38. Cui, Y., Zhu, Y., Wang, J.C., et al. (2021) Comparison of Widefield Swept-Source Optical Coherence Tomography Angiography with Ultra-Widefield Colour Fundus Photog-raphy and Fluorescein Angiography for Detection of Lesions in Diabetic Retinopathy. British Journal of Ophthalmology, 105, 577-581. https://doi.org/10.1136/bjophthalmol-2020-316245

  39. 39. Chen, R., Liang, A., Yao, J., et al. (2022) Fluorescein Leakage and Optical Coherence Tomography Angiography Features of Microaneurysms in Diabetic Retinopathy. Journal of Diabetes Research, 2022, Article ID: 7723706. https://doi.org/10.1155/2022/7723706

  40. 40. Parravano, M., De Geronimo, D., Scarinci, F., et al. (2019) Progression of Diabetic Microaneurysms According to the Internal Reflectivity on Structural Optical Coherence Tomography and Visibility on Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 198, 8-16. https://doi.org/10.1016/j.ajo.2018.09.031

  41. 41. Hatano, M., Higashijima, F., Yoshimoto, T., et al. (2022) Evaluation of Microaneurysms as Predictors of Therapeutic Response to Anti-VEGF Therapy in Patients with DME. PLOS ONE, 17, e0277920. https://doi.org/10.1371/journal.pone.0277920

  42. 42. Takamura, Y., Yamada, Y., Noda, K., et al. (2020) Characteris-tic Distribution of Microaneurysms and Capillary Dropouts in Diabetic Macular Edema. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1625-1630. https://doi.org/10.1007/s00417-020-04722-8

  43. 43. Pan, J., Chen, D., Yang, X., Zou, R., Zhao, K., Cheng, D., Huang, S., Zhou, T., Yang, Y. and Chen, F. (2018) Characteristics of Neovascularization in Early Stages of Proliferative Diabetic Retinopathy by Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 192, 146-156. https://doi.org/10.1016/j.ajo.2018.05.018

  44. 44. de Carlo, T.E., Bonini Filho, M.A., Baumal, C.R., et al. (2016) Evaluation of Preretinal Neovascularization in Proliferative Diabetic Retinopathy Using Optical Coherence To-mography Angiography. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 115-119. https://doi.org/10.3928/23258160-20160126-03

  45. 45. Arya, M., Sorour, O., Chaudhri, J., et al. (2020) Distin-guishing Intraretinal Microvascular Abnormalities from Retinal Neovascularization Using Optical Coherence Tomogra-phy Angiography. Retina, 40, 1686-1695. https://doi.org/10.1097/IAE.0000000000002671

  46. 46. Stino, H., Niederleithner, M., Iby, J., et al. (2022) Detection of Diabetic Neovascularisation Using Single-Capture 65˚-Widefield Optical Coherence Tomography Angiography. Brit-ish Journal of Ophthalmology. https://doi.org/10.1136/bjo-2022-322134

  47. 47. Zeng, Q.Z., Li, S.Y., Yao, Y.O., Jin, E.Z., Qu, J.F. and Zhao, M.W. (2022) Comparison of 24 × 20 mm2 Swept-Source OCTA and Fluorescein Angiography for the Evaluation of Lesions in Diabetic Retinopathy. International Journal of Ophthalmology, 15, 1798-1805.

  48. 48. Hirano, T., Hoshiyama, K., Takahashi, Y. and Murata, T. (2023) Wide-Field Swept-Source OCT Angiography (23 × 20 mm) for Detecting Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 261, 339-344. https://doi.org/10.1007/s00417-022-05878-1

  49. 49. Daruich, A., Matet, A., Moulin, A., Kowalczuk, L., Nicolas, M., Sellam, A., Rothschild, P.-R., Omri, S., Gélizé, E., Jonet, L., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. https://doi.org/10.1016/j.preteyeres.2017.10.006

  50. 50. Spaide, R.F. (2016) Retinal Vascular Cystoid Macular Edema: Review and New Theory. Retina, 36, 1823-1842. https://doi.org/10.1097/IAE.0000000000001158

  51. 51. Sun, Z., Tang, F., Wong, R., et al. (2019) OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology, 126, 1675-1684. https://doi.org/10.1016/j.ophtha.2019.06.016

  52. 52. Han, R., Gong, R., Liu, W. and Xu, G. (2022) Optical Coher-ence Tomography Angiography Metrics in Different Stages of Diabetic Macular Edema. Eye and Vision (London), 9, Ar-ticle No. 14. https://doi.org/10.1186/s40662-022-00286-2

  53. 53. Huang, W.H., Lai, C.C., Chuang, L.H., et al. (2021) Foveal Mi-crovascular Integrity Association with Anti-VEGF Treatment Response for Diabetic Macular Edema. Investigative Oph-thalmology & Visual Science, 62, Article No. 41.

  54. 54. Lee, J., Moon, B.G., Cho, A.R. and Yoon, Y.H. (2016) Optical Coherence Tomography Angiography of DME and Its Association with Anti-VEGF Treatment Response. Ophthalmol-ogy, 123, 2368-2375. https://doi.org/10.1016/j.ophtha.2016.07.010

  55. 55. Bonfiglio, V., Rejdak, R., Nowomiejska, K., et al. (2022) Effi-cacy and Safety of Subthreshold Micropulse Yellow Laser for Persistent Diabetic Macular Edema after Vitrectomy: A Pilot Study. Frontiers in Pharmacology, 13, Article ID: 832448. https://doi.org/10.3389/fphar.2022.832448

  56. 56. Yoneya, S., Tso, M.O. and Shimizu, K. (1983) Patterns of the Choriocapillaris. A Method to Study the Choroidal Vasculature of the Enucleated Human Eye. International Ophthal-mology, 6, 95-99. https://doi.org/10.1007/BF00127637

  57. 57. Loria, O., Kodjikian, L., Denis, P., et al. (2021) Quan-titative Analysis of Choriocapillaris Alterations in Swept Optical Coherence Tomography Angiography in Diabetic Pa-tients. Retina, 41, 1809-1818. https://doi.org/10.1097/IAE.0000000000003102

  58. 58. Wang, W., Cheng, W., Yang, S., Chen, Y., Zhu, Z. and Huang, W. (2022) Choriocapillaris Flow Deficit and the Risk of Referable Diabetic Retinopathy: A Longitudinal SS-OCTA Study. British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2021-320704

  59. 59. Guo, X., Chen, Y., Bulloch, G., et al. (2023) Parapapillary Choroidal Microvasculature Predicts Diabetic Retinopathy Progression and Diabetic Macular Edema Development: A Three-Year Prospective Study. American Journal of Ophthalmology, 245, 164-173. https://doi.org/10.1016/j.ajo.2022.07.008

  60. 60. Nickla, D.L. and Wallman, J. (2010) The Multifunctional Choroid. Progress in Retinal and Eye Research, 29, 144-168. https://doi.org/10.1016/j.preteyeres.2009.12.002

  61. 61. Borrelli, E., Palmieri, M., Viggiano, P., Ferro, G. and Mastropasqua, R. (2020) Photoreceptor Damage in Diabetic Choroidopathy. Retina, 40, 1062-1069. https://doi.org/10.1097/IAE.0000000000002538

  62. 62. Barteselli, G., Chhablani, J., El-Emam, S., et al. (2012) Cho-roidal Volume Variations with Age, Axial Length, and Sex in Healthy Subjects: A Three-Dimensional Analysis. Oph-thalmology, 119, 2572-2578. https://doi.org/10.1016/j.ophtha.2012.06.065

  63. 63. Usui, S., Ikuno, Y., Akiba, M., Maruko, I., Sekiryu, T., Nishida, K. and Iida, T. (2012) Circadian Changes in Subfoveal Choroidal Thickness and the Relationship with Circulatory Fac-tors in Healthy Subjects. Investigative Ophthalmology & Visual Science, 53, 2300-2307. https://doi.org/10.1167/iovs.11-8383

  64. 64. Kim, M., Ha, M.J., Choi, S.Y. and Park, Y.H. (2018) Choroidal Vascu-larity Index in Type-2 Diabetes Analyzed by Swept-Source Optical Coherence Tomography. Scientific Reports, 8, Article No. 70. https://doi.org/10.1038/s41598-017-18511-7

  65. 65. Xu, F., Li, Z., Yang, X., et al. (2023) Assessment of Choroidal Structural Changes in Patients with Pre- and Early-Stage Clinical Diabetic Retinopathy Using Wide-Field SS-OCTA. Frontiers in Endocrinology (Lausanne), 13, Article ID: 1036625. https://doi.org/10.3389/fendo.2022.1036625

  66. 66. Foo, V.H.X., Gupta, P., Nguyen, Q.D., et al. (2020) Decrease in Choroidal Vascularity Index of Haller’s Layer in Diabetic Eyes Precedes Retinopathy. BMJ Open Diabetes Research & Care, 8, e001295. https://doi.org/10.1136/bmjdrc-2020-001295

  67. 67. Muir, E.R., Rentería, R.C. and Duong, T.Q. (2012) Reduced Ocular Blood Flow as an Early Indicator of Diabetic Retinopathy in a Mouse Model of Diabetes. Investigative Ophthal-mology & Visual Science, 53, 6488-6494. https://doi.org/10.1167/iovs.12-9758

  68. NOTES

    *通讯作者。

期刊菜单