Advances in Clinical Medicine
Vol. 12  No. 06 ( 2022 ), Article ID: 52674 , 8 pages
10.12677/ACM.2022.126807

MIF、MMP-9与慢性阻塞性肺疾病的 研究进展

张海刚1,久太2*

1青海大学研究生院,青海 西宁

2青海大学附属医院呼吸与危重症医学科,青海 西宁

收稿日期:2022年5月21日;录用日期:2022年6月11日;发布日期:2022年6月21日

摘要

慢性阻塞性肺疾病(COPD)是一种全球高发的肺部疾病。目前普遍认为慢性气道炎症和肺气肿是COPD主要疾病表现,肺组织损伤与修复失衡是COPD疾病进展的主要原因。初期炎症损伤中许多炎症因子参与COPD的病理生理过程,但他们不具有特异性。近年来发现MIF、MMP-9与COPD疾病发展最为密切,本文就炎症因子MIF、MMP-9与COPD发展作一综述。

关键词

慢性阻塞性肺疾病,炎症因子,MIF,MMP-9

Research Progress of MIF, MMP-9, and Chronic Obstructive Pulmonary Disease

Haigang Zhang1, Tai Jiu2*

1Qinghai University Graduate School, Xining Qinghai

2Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining Qinghai

Received: May 21st, 2022; accepted: Jun. 11th, 2022; published: Jun. 21st, 2022

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a global incidence of lung disease. It is currently widely believed that chronic airway inflammation and emphysema are the major disease manifestations of COPD, and the imbalance between lung tissue injury and repair is the main cause of disease progression in COPD. Many inflammatory factors in the initial inflammatory injury are involved in the pathophysiological process of COPD, but they are not specific. In recent years, MIF and MMP-9 were found to develop most closely with COPD diseases. Here, we review the development of inflammatory cytokines MIF, MMP-9 and COPD.

Keywords:Chronic Obstructive Pulmonary Disease, Inflammatory Factors, MIF, MMP-9

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)是一种以持续性气流受限为特征的慢性呼吸系统疾病,病理表现为慢性气道炎症和肺气肿,前者多因气道和肺对有害气体和颗粒的反应性增加,后者多与终末细支气管和肺泡的膨胀和过度充气有关。慢性阻塞性肺疾病是全球发病率和病死率的主要原因,预计到2030年,慢阻肺死因将是全世界最常见死因中第三位 [1]。COPD发病机制尚未完全阐明,目前仍认为慢性炎症反应在COPD发生、发展中占有重要地位。近年来许多研究证实COPD患者血清、痰液、肺泡灌洗液中炎症因子水平与慢性阻塞性肺疾病进展紧密相关,但诸多因子缺乏特异性,许多研究表明巨噬细胞移动抑制因子MIF、基质金属蛋白酶MMP-9与COPD发病密切相关,肺组织损伤与修复失衡在COPD发病中起重要作用。

2. MIF与COPD

巨噬细胞迁移抑制因子(Macrophage migration inhibitory factor, MIF)是一种多效能细胞因子,在多种急、慢性炎症性疾病和肿瘤中发挥重要作用,尤其在COPD中可能通过多种机制参与其发生发展过程,气道炎症细胞浸润和炎症介质释放是COPD发病的关键环节 [2]。大量试验研究表明,MIF作为宿主免疫反应的有机组成成分,当免疫细胞受到促炎症因子刺激或抗原特异性激活时,MIF可快速从免疫细胞中释放出来,同时通过自分泌和旁分泌的效应促进细胞的生长和存活 [3];此外COPD是以产生低氧血症为后果的慢性肺部疾病。缺氧本身可刺激MIF分泌及缺氧诱导因子-1α (HIF-1α)大量表达,两者相互作用 [4] 介导COPD机体适应缺氧并减缓对机体的进一步损伤;氧化应激可通过活化NF-kB信号通路增加炎症细胞激活和炎症介质释放,随着COPD病情加重MIF表达量增多后可通过调控Nrf-2减缓COPD氧化应激性肺损伤 [5] [6];在多项试验中 [7] [8] [9] MIF浓度在COPD患者中高度表达,且随病情严重程度而增加,这可能是由于随着COPD炎症反应的加重炎症细胞因子的增多,细胞坏死凋亡机制启动并加重,MIF的释放量增多有关,MIF增多刺激血管内皮生长因子(Vascular endothelial growth factor, VEGF)和一氧化氮(NO)的表达,促进血管内皮生长因子分泌和肺部毛细血管再生,改善肺组织细胞的缺氧缺血 [10]。MIF除了在以上机制中参与COPD发病过程,还被认为是基质金属蛋白酶(MMPs)的正调控因子。在氧化应激及炎症反应刺激下,单核巨噬细胞释放MIF增多,促进MMP-9的表达,在肺气肿、肺泡壁外基质中起到破坏作用:降解肺组织弹力纤维、参与气道重塑,加速病情恶化 [11]。

3. MMP-9与COPD

基质金属蛋白-9 (MMP-9)又称明胶酶B。它存在于多种生物体并可表达于多种细胞 [12]。正常生理状态下,肺组织中并不能产生MMP-9,当有各种因素刺激时,支气管上皮细胞、II型肺泡细胞、成纤维细胞、及内皮细胞等均可产生,在体内以无活性的酶原形式分泌,当结构中的前肽区从核心蛋白切除后才被激活 [13]。COPD是以气道局部炎症和细胞外基质(CEM)破坏、肺组织纤维化为特点的慢性炎症性疾病。气道的炎症反应主要发生在肺气肿的早期阶段,常表现为气道黏膜慢性充血水肿、黏液腺增生肥大、黏膜下炎细胞以中性粒细胞和巨噬细胞为主。MMP-9通过介导炎性细胞聚集和破坏肺泡上皮和(或)内皮结构,参与炎性反应和组织重构。炎性细胞在呼吸道腔及呼吸道壁中聚集,导致局部炎症加重 [14]。COPD纤维化早期肺组织以MMP-9的表达增加为主,主要存在于渗出的中性粒细胞、巨噬细胞和支气管上皮细胞中。Calikoglu等 [15] 发现COPD稳定期患者MMP-9水平高于正常对照组,同时在许多COPD患者的血液、痰液、BALF、肺组织活检中MMP-9的表达水平与活性均增高。MMP-9的增加加速呼吸道壁ECM降解,并使基底膜崩解、断裂,炎性细胞游出,聚积于靶细胞,加重呼吸道的炎性反应 [16]。Montagnana [17] 等认为分泌细胞通过断裂的基底膜侵入肺泡,从而促进肺泡细支气管化,最终形成COPD肺气肿。在某些动物模型中 [18] - [24],疾病的发展表明细胞凋亡对于肺气肿变化的发展是必要的。众所周知,吸烟可导致血管内皮损伤,血管内皮生长因子VEGF通过VEGF受体(VEGFR)-2刺激血管生成。在香烟烟雾诱导的肺气肿动物模型中,VEGFR-2共受体NRP-1 (神经菌毛素-1)和VEGFR-165的表达下降。VEGFR-2的慢性抑制会导致肺泡腔的扩大,肺泡间隔细胞死亡,即是内皮细胞凋亡诱导肺气肿的一个特点。氧化应激、炎症和蛋白酶/抗蛋白酶失衡都被认为是COPD发展的机制,有可能促进内皮细胞凋亡,强调内皮细胞凋亡是COPD发病机制的潜在节点 [11]。

因此我们认为MIF、MMP-9在COPD中的致病过程可以概括为:以炎症细胞浸润和炎症介质释放为COPD发病的起始和关键环节。细胞衰老和细胞凋亡是COPD的发病过程,以肺及肺组织的破坏与修复失衡为结局,作为参与COPD发生、发展过程的炎症细胞因子MIF、MMP-9贯穿始终。

4. 炎症细胞浸润和炎症介质释放

单核巨噬细胞和T淋巴细胞是机体MIF产生的重要来源 [25] [26],同时也可由B淋巴细胞、内皮细胞、上皮细胞、内分泌细胞等合成及分泌。MIF作为前炎症因子及上游的促炎因子,参与了多种疾病的发生发展。目前已发现MIF的结构及生物学功能与多种肺部疾病有关,如:支气管哮喘、急性肺损伤(acute lung injury, ALI)/急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)、COPD、矽肺、肺间质纤维化等 [27]。MIF通过激活一系列细胞内信号通路与其受体结合后发挥生物学功能,包括PI3K/AKT、MAPKs和G蛋白偶联受体相关信号传导等 [28],激活后的信号通路通过启动相关转录因子如激活蛋白-1 (Activator protein-1, AP-1)、核因子-KB (nuclear transcription factor kappa B, NF-KB)等,促进下游细胞因子的表达及释放,从而调控MIF相关的炎症反应。郁昊达等 [9] 研究表明COPD急性加重期时,巨噬细胞MIF明显升高从而加速炎症反应的发生发展,COPD稳定期的患者MIF较对照组明显升高,且随COPD病情程度的增加MIF表达水平依次增加。但也有研究 [29] 显示:与对照组相比COPD患者血清中MIF水平较低,COPD患者血清中MIF低于健康吸烟者。诸如此类矛盾的研究假说,MIF多数情况下已经被描述为一种促炎因子,另有证据表明 [30] [31] [32] MIF可能发挥其他细胞生存和抗凋亡相关的功能。

5. 细胞衰老和细胞凋亡是COPD发生的两个过程

MIF抑制衰老基因的表达 [33],细胞衰老是衰老的一个重要标志,其特征是细胞周期停滞,要么来自重复的细胞分裂,要么来自氧化应激的累积损伤,细胞衰老发生在衰老相关的肺部疾病中,如特发性肺纤维化、肺癌和慢性阻塞性肺疾病。内皮细胞凋亡加重现今被认为是COPD肺破坏和导致肺气肿的重要早期决定因素。多项研究表明 [34] - [40] 与非吸烟者相比,吸烟者和COPD患者肺组织内皮细胞凋亡增加,最近,p53蛋白的表达在肺气肿吸烟者或非吸烟者的肺组织中显著高于无肺气肿的组织,这表明p53的表达与肺气肿的发展之间可能存在直接关系,而MIF正是通过拮抗P53介导的细胞凋亡来保护人血管内皮免受香烟烟雾(CS)的毒性作用;在多种COPD动物模型中,CS是肺气肿最常见的原因,且越来越多的证据表明内皮细胞的凋亡与肺气肿的发展呈因果关系。另有报道 [29] 称MIF缺乏的小鼠会自发发生相关肺气肿,这表明在肺组织中MIF可能保护组织免受破坏;此外,越来越多的证据表明MIF维持细胞内稳态相当重要 [41],如促进细胞生存、抗氧化信号转导和组织修复。就组织损伤而言,MIF在急性损伤情况下似乎是有害的,但在长期损伤的组织修复中更有益。在急性损伤期间,MIF似乎促进有害的炎症反应,而在组织修复中它可能通过抑制上皮细胞凋亡起到保护作用 [42]。事实上,虽然MIF被认为具有促进炎症,释放炎症因子使肺部疾病加重的活性,但它也显示在肺泡修复中起保护作用 [43],研究表明:肺气肿性COPD以异常肺泡修复为特征,MIF有助于肺泡修复。

6. 肺泡及肺组织的破坏与修复失衡

MIF作为促炎因子被认为是基质金属蛋白酶(MMPs)的正调控因子,在氧化应激及炎症反应刺激下单核巨噬细胞释放MIF增多 [11],促进基质金属蛋白酶-9 (MMP-9)的表达,当MMP-9增多时可使基底膜降解增加,同时增加了肺泡毛细血管的不稳定性导致单核细胞可以穿过血管,在降解的细胞外基质(Extracellular matrix, ECM)中游走。这样有利于单核巨噬细胞系统进入气道、肺泡间隔和肺泡腔内,加强炎症反应和组织损伤,同时气道、肺泡间隔和肺泡腔内单核巨噬细胞增多将产生更多MMP-9 [44]。MMP-9是基质金属蛋白酶家族中参与气道重塑的主要成员,主要降解IV型胶原,在正常肺组织中含量较少,而在慢性气道炎症等病理情况下其表达水平明显升高,研究发现 [13],MMP-9能够降解气道ECM,并在基底膜上打孔,释放炎性细胞,炎性细胞聚集于靶点,损坏组织器官;此外,MMP-9还可促进与ECM有关的生长因子的释放,诱导细胞增殖、分化,改变正常的肺泡结构,大量胶原沉积,参与气道重塑。

基质金属蛋白酶抑制剂(TIMPs)是MMPs的天然抑制剂,可以抑制MMPs的生物学效应 [45]。TIMP是一组内源性金属蛋白酶组织抑制剂,主要由内皮细胞和巨噬细胞分泌,广泛分布于组织和体液中。TIMP与活化的MMP以非共价键形式1:1结合,并且对MMP具有专一的抑制作用,从而维持呼吸道破坏与修复之间的某种平衡 [46]。目前发现组织金属蛋白酶抑制剂(TIMP)共有4个亚型,其中TIMP-1活性最强且MMPs家族中与COPD关系最密切的是MMP-9 [47],TIMP-1是MMP-9的重要内源性抑制剂,作为呼吸道重构的重要因子,它与MMP-9共同参与支气管和肺泡壁的进行性破坏和不可逆的呼吸道重构过程 [48]。目前普遍认为MMP-9与TIMP-1系统的失衡,是引起细胞外基质降解和气道重塑的重要原因,是COPD重要的发病机制。MMP-9/TIMP-1的平衡被认为是反映COPD气道组织破坏和修复动态平衡的标志,MMP-9/TIMP-1 比值升高,表明气道壁以炎症反应为主,引起组织降解破坏形成肺气肿,若MMP-9/TIMP-1比值下降,则表明以修复为主导致组织纤维化 [13]。近年来,蛋白酶–抗蛋白酶平衡的恶化被认为在COPD的发病机制中发挥了作用。影响基质金属蛋白酶(MMPs)的这种平衡,是组织重建 [49] [50] 不可或缺的元素。巨噬细胞释放的基质金属蛋白酶会导致弹性蛋白的破坏,并导致肺气肿 [51],COPD的发病机制可能是由于蛋白酶和抗蛋白酶活性升高或蛋白酶抑制剂 [52] [53] [54] [55] 功能障碍导致蛋白酶活性失衡时的蛋白酶活性失调引起的。研究发现,在COPD患者肺损伤后,MMP-9和TIMP-1的活性均可导致细胞外基质(ECM)的恢复或降解。在没有慢性阻塞性肺病的吸烟者中,MMP-9和TIMP-1的活性可导致恢复和缓解,而对于患有COPD的吸烟者,这可导致ECM破坏和肺气肿 [56]。

7. 小结

MIF既可作为促炎细胞因子诱导MMP-9释放,参与COPD患者的气道重塑,也可在肿瘤细胞生长、伤口愈合过程中扮演类似于生长因子的作用 [57]。MMP-9对基底膜及细胞外基质中的IV型胶原纤维具有降解作用可促进新生血管形成导致肿瘤细胞浸润、转移 [58]。研究发现MIF和MMP-9双高表达与肿瘤侵袭和复发密切相关,并且肿瘤来源的MIF促进中性粒细胞释放MMP-9促进头颈部肿瘤的进展 [59],MIF作为上游启动因子可通过快速启动激活MAPK/ERK通路,调节AP-1 转录活性,活化的AP-1可直接调控下游细胞因子和MMP-9的转录及表达 [25]。另一研究 [60] 发现MMP-9的另一转录因子AP-1是由核蛋白c-Fos与c-Jun通过形成亮氨酸拉链结构结合形成异二聚体,在鼻咽癌组织中MIF可以刺激癌细胞从而增加AP-1蛋白,加强了其对下游基因MMP-9的正性转录调控。有报道 [61] 称MIF和MMP-9在28个肿瘤中同时高表达,结果均印证了MIF是炎症细胞和多种肿瘤细胞中MMP-9表达的刺激因子。

综上所述,在炎症组织和肿瘤细胞内MIF可诱导MMP-9表达。在MIF/AP-1/MMP-9信号通路 [62] 中,MIF为上游的前炎因子和促炎因子使MMP-9表达增加,在COPD中破坏肺泡,降解肺组织弹力纤维、参与气道重塑。TIMP-1作为MMP-9的天然抑制剂 [45],当MMP-9表达增多时TIMP-1接受反馈从而抑制MMP-9,起到抑制肺泡破坏、修复肺组织的作用,而作为上游致炎因子MIF是否因为MMP-9受到抑制而表达减少,MIF与MMP-9的天然抑制剂TIMP-1的关系未被阐述,MIF/MMP-9/TIMP-1通路在COPD中也未见相关系统研究。

文章引用

张海刚,久 太. MIF、MMP-9与慢性阻塞性肺疾病的研究进展
Research Progress of MIF, MMP-9, and Chronic Obstructive Pulmonary Disease[J]. 临床医学进展, 2022, 12(06): 5583-5590. https://doi.org/10.12677/ACM.2022.126807

参考文献

  1. 1. Adeloye, D., Chua, S., Lee, C., Basquill, C., Papana, A., Theodoratou, E., et al. (2015) Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. Journal of Global Health, 5, Article ID: 020415.

  2. 2. Tangedal, S., Aanerud, M., Persson Louise, J.P., Brokstad, K.A, Bakke, P.S. and Eagan, T.M. (2014) Comparison of Inflammatory Markers in Induced and Spontaneous Sputum in a Cohort of COPD Patients. Respiratory Research, 15, Article No. 138. https://doi.org/10.1186/s12931-014-0138-6

  3. 3. 刘凌峰. 巨噬细胞移动抑制因子(MIF)调节细胞凋亡、细胞生长及周期的分子机制研究[D]: [博士学位论文]. 上海: 复旦大学, 2008.

  4. 4. Gaber, T., Schellmann, S., Erekul, K.B., Fangradt, M., Tykwinska, K., Hahne, M., et al. (2011) Macrophage Migration Inhibi-tory Factor Counterregulates Dexamethasone-Mediated Suppression of Hypoxia-Inducible Factor-1 Alpha Function and Differentially Influences Human CD4+ T Cell Proliferation under Hypoxia. The Journal of Immunology, 186, 764-774. https://doi.org/10.4049/jimmunol.0903421

  5. 5. Zuo, L., He, F., Sergakis, G.G., Koozehchian, M.S., Stimpfl, .J.N., Rong, Y., et al. (2014) Interrelated Role of Cigarette Smoking, Oxidative Stress, and Immune Response in COPD and Corresponding Treatments. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L205-L218. https://doi.org/10.1152/ajplung.00330.2013

  6. 6. Sun, H., Choo-Wing, R., Sureshbabu, A., Fan, J., Leng, L., Yu, S., et al. (2013) A Critical Regulatory Role for Macrophage Migration Inhibitory Factor in Hyperoxia-Induced Injury in the Developing Murine Lung. PLOS ONE, 8, Article ID: e60560. https://doi.org/10.1371/journal.pone.0060560

  7. 7. 刘琛琛, 高兴林, 罗泽如. 慢性阻塞性肺疾病患者诱导痰T细胞巨噬细胞移动抑制因子的表达及其意义[J]. 实用医学杂志, 2014, 30(8): 1238-1242.

  8. 8. 佘惟槟, 刘先胜, 倪望, 陈仕新, 徐永健. 吸烟患或未患慢性阻塞性肺疾病患者肺组织中巨噬细胞移动抑制因子表达[J]. 中华内科杂志, 2012, 51(11): 863-866.

  9. 9. 郁昊达, 范晓东, 殷波, 卞涛, 惠复新. 慢性阻塞性肺疾病患者血清巨噬细 胞移动抑制因子的表达[J]. 江苏医药, 2016, 42(4): 437-439.

  10. 10. 李冰, 杨元立, 王美霞, 曹枫, 刘先福, 张红璇. 巨噬细胞移动抑制因子在慢性阻塞性肺疾病患者肺组织中的表达及意义[J]. 中华急诊医学杂志, 2019, 28(9): 1123-1127.

  11. 11. Sng, J.H.J., Prazakova, S., Thomas, P.S. and Herbert, C. (2016) MMP-8, MMP-9 and Neutrophil Elastase in Peripheral Blood and Exhaled Breath Conden-sate in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 14, 238-244. https://doi.org/10.1080/15412555.2016.1249790

  12. 12. 谢俊瑞, 方泰华, 刘春明, 等. 基质金属蛋白酶-9在人血小板中的表达: 体外和体内研究中血小板活化的调节[J]. 英国药理学杂志, 2004, 143(1): 193-201.

  13. 13. 蒋辉, 朱清艺, 毕迎春, 常燕, 王师超, 武松. MMP-9/TIMP-1与COPD肺气肿关系研究进展[J]. 辽宁中医药大学学报, 2013, 15(6): 108-108.

  14. 14. Kim, C.H. (2006) Matrix Metalloproteinase-9 Inhibitor Containing Chlorogenic Acid. World Patent, Patent No. WO2006126747.

  15. 15. Calikoglu, M., Vnln, A., Tamer, L. and Ozgür, E. (2006) MMP-9 and TIMP-1 Levels in the Sputum of Patients with Chronie Obstructive Pulmonary Disease and Asthma. Tuberkuloz ve Toraks, 54, 114-121.

  16. 16. Lee, K.S., Jin, S.M., Lee, H. and Lee, Y.C. (2004) Imbalance between Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Toluene Diisocyanate-Induced Asthma. Clinical & Experimental Allergy, 34, 276-284. https://doi.org/10.1111/j.1365-2222.2004.01849.x

  17. 17. Montagnana, M., Lippi, G., Albiero, A., Scevarolli, S., Salvagno, G.L., Franchi, M., et al. (2009) Evaluation of Metalloproteinases 2 and 9 and Their Inhibitors in Physiologic and Pre-Eclamptic Pregnancy. Journal of Clinical Laboratory Analysis, 23, 88-92. https://doi.org/10.1002/jcla.20295

  18. 18. Tuder, R.M., Zhen, L., Cho, C.Y., Taraseviciene-Stewart, L., Kasahara, Y., Salvemini, D., Voelkel, N.F. and Flores, S.C. (2003) Oxidative Stress and Apoptosis Interact and Cause Emphysema Due to Vascular Endothelial Growth Factor Receptor Blockade. American Journal of Respiratory Cell and Molecular Bi-ology, 29, 88-97. https://doi.org/10.1165/rcmb.2002-0228OC

  19. 19. Kasahara, Y., Tuder, R.M., Taraseviciene-Stewart, L., Le Cras, T.D., Abman, S., Hirth, P.K., Waltenberger, J. and Voelkel, N.F. (2000) Inhibition of VEGF Receptors Causes Lung Cell Apoptosis and Emphysema. The Journal of Clinical Investigation, 106, 1311-1319. https://doi.org/10.1172/JCI10259

  20. 20. Nana-Sinkam, S.P., Lee, J.D., Sotto-Santiago, S., Stearman, R.S., Keith, R.L., Choudhury, Q., Cool, C., Parr, J., Moore, M.D., Bull, T.M., et al. (2007) Prostacyclin Prevents Pulmonary Endo-thelial Cell Apoptosis Induced by Cigarette Smoke. American Journal of Respiratory and Critical Care Medicine, 175, 676-685. https://doi.org/10.1164/rccm.200605-724OC

  21. 21. Shigemura, N., Sawa, Y., Mizuno, S., Ono, M., Ohta, M., Nakamura, T., Kaneda, Y. and Matsuda, H. (2005) Amelioration of Pulmonary Emphysema by in Vivo Gene Transfec-tion with Hepatocyte Growth Factor in Rats. Circulation, 111, 1407-1414. https://doi.org/10.1161/01.CIR.0000158433.89103.85

  22. 22. Taraseviciene-Stewart, L., Scerbavicius, R., Choe K-H, Moore, M., Sullivan, A., Nicolls, M.R., Fontenot, A.P., Tuder, R.M. and Voelkel, N.F. (2005) An Animal Model of Autoimmune Emphysema. American Journal of Respiratory and Critical Care Medicine, 171, 734-742. https://doi.org/10.1164/rccm.200409-1275OC

  23. 23. Petrache, I., Fijalkowska, I., Zhen, L., Medler, T.R., Brown, E., Cruz, P., Choe, K.-H., Taraseviciene-Stewart, L., Scerbavicius, R., Shapiro, L., et al. (2006) A Novel Antiapoptotic Role for Falphag1-Antitrypsin in the Prevention of Pulmonary Emphysema. American Journal of Respiratory and Critical Care Medicine, 173, 1222-1228. https://doi.org/10.1164/rccm.200512-1842OC

  24. 24. Petrache, I., Natarajan, V., Zhen, L., Medler, T.R., Richter, A., Berdyshev, E.V. and Tuder, R.M. (2006) Ceramide Causes Pulmonary Cell Apoptosis and Emphysema: A Role for Sphingolipid Homeostasis in the Maintenance of Alveolar Cells. Proceedings of the American Thoracic Society, 3, Arti-cle No. 510.

  25. 25. David, J.R. (1966) Delayed Hypersensitivity In Vitro: Its Mediation by Cell-Free Substances Formed by Lymphoid Cell-Antigen Interaction. Proceedings of the National Academy of Sciences of the United States of America, 56, 72-77. https://doi.org/10.1073/pnas.56.1.72

  26. 26. Weiser, W.Y., Temple, P.A., Witek-Giannotti, J.S., Remold, H.G., Clark, S.C. and David, J.R. (1989) Molecular Cloning of a CDNA Encoding a Human Macrophage Migration Inhibitory Factor. Proceedings of the National Academy of Sciences of the United States of America, 86, 7522-7526. https://doi.org/10.1073/pnas.86.19.7522

  27. 27. 田王斌, 金发光, 顾兴, 张甜甜, 王惠琴. 巨噬细胞移动抑制因子在慢性阻塞性肺疾病发病中的作用及机制研究进展[J]. 中华肺部疾病杂志(电子版), 2019, 12(1): 112-114.

  28. 28. 吕清. 过敏性紫癜儿童外周血MIF、AP-1、MMP-9水平变化及其临床意义[D]: [硕士学位论文]. 青岛: 青岛大学, 2021. https://doi.org/10.27262/d.cnki.gqdau.2021.000507

  29. 29. Florez-Sampedro, L., Brandsma, C.A., De Vries, M., Timens, W., Bults, R., Vermeulen, C.J., et al. (2020) Genetic Regulation of Gene Expression of MIF Family Members in Lung Tissue. Scientific Reports, 10, Article No. 16980. https://doi.org/10.1038/s41598-020-74121-w

  30. 30. Fallica, J., Boyer, L., Kim, B., Serebreni, L., Varela, L., Hamdan, O., et al. (2014) Macrophage Migration Inhibitory Factor Is a Novel Determinant of Cigarette Smoke-Induced Lung Damage. American Journal of Respiratory Cell and Molecular Biology, 51, 94-103. https://doi.org/10.1165/rcmb.2013-0371OC

  31. 31. Damico, R., Simms, T., Kim, B.S., Tekeste, Z., Amankwan, H., Damarla, M., et al. (2011) P53 Mediates Cigarette Smoke-Induced Apoptosis of Pulmonary Endothelial Cells: Inhibitory Efects of Macrophage Migration Inhibitor Factor. American Journal of Respiratory Cell and Molecular Biology, 44, 323-332. https://doi.org/10.1165/rcmb.2009-0379OC

  32. 32. Lue, H., Thiele, M., Franz, J., Dahl, E., Speckgens, S., Leng, L., et al. (2007) Macrophage Migration Inhibitory Factor (MIF) Promotes Cell Survival by Activation of the Akt Pathway and Role for SN5/JAB1 in the Control of Autocrine MIF Activity. Oncogene, 26, 5046-5059. https://doi.org/10.1038/sj.onc.1210318

  33. 33. Sauler, M., Bucala, R. and Lee, P.J. (2015) Role of Macrophage Mi-gration Inhibitory Factor in Age-Related Lung Disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 309, L1-L10. https://doi.org/10.1152/ajplung.00339.2014

  34. 34. Calabrese, F., Giacometti, C., Beghe, B., Rea, F., Loy, M., Zuin, R., Marulli, G., Baraldo, S., Saetta, M. and Valente, M. (2005) Marked Alveolar Apoptosis/proliferation Imbalance in End-Stage Emphysema. Respiratory Research, 6, Article No. 14. https://doi.org/10.1186/1465-9921-6-14

  35. 35. Yokohori, N., Aoshiba, K., Nagai, A. and Respiratory Failure Re-search Group in Japan (2004) Increased Levels of Cell Death and Proliferation in Alveolar Wall Cells in Patients with Pulmonary Emphysema. Chest, 125, 626-632. https://doi.org/10.1378/chest.125.2.626

  36. 36. Marwick, J.A., Stevenson, C.S., Giddings, J., MacNee, W., Butler, K., Rahman, I. and Kirkham, P.A. (2006) Cigarette Smoke Disrupts VEGF165-VEGFR-2 Receptor Signaling Complex in Rat Lungs and Patients with COPD: Morphological Impact of VEGFR-2 Inhibition. The American Journal of Physiolo-gy-Lung Cellular and Molecular Physiology, 290, L897-L908. https://doi.org/10.1152/ajplung.00116.2005

  37. 37. Henson, P.M., Cosgrove, G.P. and Vandivier, R.W. (2006) State of the Art: Apoptosis and Cell Homeostasis in Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 3, 512-516.

  38. 38. Henson, P.M., Vandivier, R.W. and Douglas, I.S. (2006) Cell Death, Remodeling, and Repair in Chronic Obstructive Pulmonary Disease? Proceedings of the American Thoracic Society, 3, 713-717.

  39. 39. Demedts, I., Demoor, T., Bracke, K., Joos, G. and Brusselle, G. (2006) Role of Apoptosis in the Patho-genesis of COPD and Pulmonary Emphysema. Respiratory Research, 7, Article No. 53. https://doi.org/10.1186/1465-9921-7-53

  40. 40. Imai, K., Mercer, B.A., Schulman, L.L., Sonett, J.R. and D’Armiento, J.M. (2005) Correlation of Lung Surface Area to Apoptosis and Proliferation in Human Emphysema. European Respir-atory Journal, 25, 250-258. https://doi.org/10.1183/09031936.05.00023704

  41. 41. Song, S., Xiao, Z., Dekker, F.J., Poelarends, G.J. and Melgert, B.N. (2022) Macrophage Migration Inhibitory Factor Family Proteins Are Multitasking Cytokines in Tissue Injury. Cel-lular and Molecular Life Sciences, 79, Article No. 105. https://doi.org/10.1007/s00018-021-04038-8

  42. 42. Makita, H., Nishimura, M., Miyamoto, K., Nakano, T., Tanino, Y., Hirokawa, J., et al. (1998) Efect of Anti Macrophage Migra-tion Inhibitory Factor Antibody on Lipopoly Saccharide-Induced Pulmonary Neutrophil Accumulation. American Jour-nal of Respiratory and Critical Care Medicine, 158, 573-579. https://doi.org/10.1164/ajrccm.158.2.9707086

  43. 43. Song, S., Liu, B., Habibie, H., van den Bor, J., Smit, M.J., Gosens, R., et al. (2021) D-Dopachrome Tautomerase Contributes to Lung Epithelial Repair via Atypical Chemokine Receptor 3-Dependent Akt Signaling. eBioMedicine, 68, Article ID: 103412. https://doi.org/10.1016/j.ebiom.2021.103412

  44. 44. Betsuyaku, T., Fukuda, Y., Parks, W.C., Shipley, J.M. and Sen-ior, R.M. (2000) Gelatinase B Is Required for Alveolar Bronchiolization After Intratracheal Bleomycin. The American Journal of Pathology, 157, 525-535. https://doi.org/10.1016/S0002-9440(10)64563-4

  45. 45. 郭贵州, 宋文龙, 甘桃梅, 兰智慧. 基于MMP-9/TIMP-1失衡研究补益宗气方干预慢性阻塞性肺疾病大鼠气道重塑的机制[J]. 中华中医药杂志, 2016, 31(11): 4678-4680.

  46. 46. 李蕾, 林松娟, 冯海霞, 邹志伟. 不同严重度COPD患者血清MMP-9、TIMP-1浓度变化及相关性研究[J]. 现代医药卫生, 2011, 27(9): 1289-1290.

  47. 47. 赵华. 蛋白酶/抗蛋白酶系统与慢性阻塞性肺疾病[J]. 临床肺科杂志, 2010, 15(8): 1149-1151.

  48. 48. Jensen, S.A., Vainer, B., Bartels, A., Brünner, N. and Sørensen, J.B. (2010) Expression of Matrix Metalloproteinase 9 (MMP-9) and Tissue Inhibitor of Metalloproteinases 1 (TIMP-1) by Colorectal Cancer Cells and Adjacent Stroma Cells—Associations with Histopathology and Patients Outcome. European Journal of Cancer, 46, 3233-3242. https://doi.org/10.1016/j.ejca.2010.07.046

  49. 49. Demedts, I.K., Brusselle, G.G., Bracke, K.R., Vermaelen, K.Y. and Pauwels, R.A. (2005) Matrix Metalloproteinases in Asthma and COPD. Current Opinion in Pharmacology, 5, 257-263. https://doi.org/10.1016/j.coph.2004.12.005

  50. 50. Culpitt, S.V., Rogers, D.F., Traves, S.L., Barnes, P.J. and Don-nelly, L.E. (2005) Sputum Matrix Metalloproteases: Comparison between Chronic Obstructive Pulmonary Disease and Asthma. Respiratory Medicine, 99, 703-710. https://doi.org/10.1016/j.rmed.2004.10.022

  51. 51. Sharafkhaneh, A., Hanania, N.A. and Kim, V. (2008) Pathogene-sis of Emphysema: From the Bench to the Bedside. Proceedings of the American Thoracic Society, 5, 475-477.

  52. 52. Navratilova, Z., Kolek, V. and Petrek, M. (2016) Matrix Metalloproteinases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. Archivum Immunologiae et Therapiae Experimentalis, 64, 177-193. https://doi.org/10.1007/s00005-015-0375-5

  53. 53. Somborac-Bačura, A., Popović-Grle, S., Zovko, V. and Žanić-Grubišić, T. (2018) Cigarette Smoke Induces Activation of Polymorphonuclear Leukocytes. Lung, 196, 27-31. https://doi.org/10.1007/s00408-017-0077-3

  54. 54. Pandey, K.C., De, S. and Mishra, P.K. (2017) Role of Proteases in Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 8, Article No. 512. https://doi.org/10.3389/fphar.2017.00512

  55. 55. Gilowska, I., Kasper, Ł., Bogacz, K., Szczegielniak, J., Szymasek, T., Kasper, M., Czerwinski, M., Sładek, K. and Majorczyk, E. (2018) Impact of Matrix Metalloproteinase 9 on COPD Development in Polish Patients: Genetic Polymorphism, Protein Level, and Their Relationship with Lung Function. Bio-Med Research International, 2018, Article ID: 6417415. https://doi.org/10.1155/2018/6417415

  56. 56. Uysal, P. and Uzun, H. (2019) Relationship between Circulating Serpina3g, Matrix Metalloproteinase-9, and Tissue Inhibitor of Met-alloproteinase-1 And-2 with Chronic Obstructive Pulmonary Disease Severity. Biomolecules, 9, Article No. 62. https://doi.org/10.3390/biom9020062

  57. 57. Corkins, M.R., Guenter, P., Di Maria-Ghalili, R.A., Jensen, G.L., Malone, A., Miller, S., et al. (2014) Malnutrition Diagnoses in Hospitalized Patients: United States, 2010. Journal of Parenteral and Enteral Nutrition, 38, 186-195. https://doi.org/10.1177/0148607113512154

  58. 58. 张洋, 李小军. 内皮抑素联合甘露聚糖肽胸腔灌注对非小细胞肺癌伴恶性胸水患者血清及胸水MMP-9、VEGF的影响[J]. 海南医学, 2020, 31(3): 302-305.

  59. 59. Dumitru, C.A., Gholaman, H., Trellakis, S., Bruderek, K., Dominas, N., Gu, X., et al. (2011) Tumor-Derived Macro Phage Mi-gration Inhibitory Factor Modulates the Biology of Head and Neck Cancer Cells via Neutrophil Activation. International Journal of Cancer, 129, 859-869. https://doi.org/10.1002/ijc.25991

  60. 60. 李智, 林素暇, 梁惠珍, 何洁华. 鼻咽癌组织中 MIF, c-Fos, NF-κB和MMP9的表达及意义[J]. 肿瘤, 2004, 24(3): 290-293.

  61. 61. Huang, Q., Zhao, S.L., Tian, X.Y., Li, B. and Li, Z. (2013) Increased Co-Expression of Macrophage Migration Inhibitory Factor and Matrix Metalloproteinase 9 Is Associated with Tumor Recurrence of Meningioma. International Journal of Medical Sciences, 10, 276-285. https://doi.org/10.7150/ijms.5185

  62. 62. Lan, H.Y., Bacher, M., Yang, N., van den Bor, J., Smit, M.J., Gosens, R., et al. (1997) The Pathogenic Role of Macrophage Migration Inhibitory Factor in Immunologically Induced Kidney Disease in the Rat. Journal of Experimental Medicine, 185, 1455-1465. https://doi.org/10.1084/jem.185.8.1455

  63. NOTES

    *通讯作者。

期刊菜单