Pure Mathematics
Vol. 13  No. 08 ( 2023 ), Article ID: 70345 , 8 pages
10.12677/PM.2023.138235

Fuzzifying拓扑中的 θ -半分离定理

贾文英,王瑞英

内蒙古师范大学数学科学学院,内蒙古 呼和浩特

收稿日期:2023年6月29日;录用日期:2023年7月31日;发布日期:2023年8月7日

摘要

本文首先引入不分明化拓扑空间中 T 0 S θ , T 1 S θ , T 2 S θ , R S θ , N 1 S θ , R 0 S θ , R 1 S θ 分离公理的定义,再利用Fuzzifying拓扑空间理论和连续值逻辑语义方法进行研究,得到不分明化 θ -半分离相关定理。

关键词

半分离公理,不分明化半 θ R 0 分离性,不分明化拓扑空间

θ -Semiseparation Axioms in Fuzzifying Topology

Wenying Jia, Ruiying Wang

College of Mathematics Science, Inner Mongolia Normal University, Hohhot Inner Mongolia

Received: Jun. 29th, 2023; accepted: Jul. 31st, 2023; published: Aug. 7th, 2023

ABSTRACT

We introduce the definitions of T 0 S θ , T 1 S θ , T 2 S θ , R S θ , N 1 S θ , R 0 S θ , R 1 S θ separation axioms in fuzzifying topology space, the fuzzy topological space theory and logical semantics of continuous values are used to prove main results, and fuzzifying θ -semiseparation axioms are obtained.

Keywords:Semiseparation Axioms, Fuzzifying Semi θ R 0 Separation Axioms, Fuzzifying Topology

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

1968年C.L. Chang提出不分明拓扑空间的概念,此后不分明拓扑学得到了迅速的发展,而且对问题的分析讨论也在逐步深化,各个不同方向的研究都得出了一些比较深刻的结果。应明生教授 [1] [2] [3] 提出了不分明化拓扑的概念,并从不同的角度发展了不分明集框架下的拓扑学。1982年,Dorsett C提出一般拓扑空间中的半 T 0 , T 1 , T 2 , R 0 , R 1 分离定理。1984年,胡庆平提出一般拓扑空间中 S 3 , S 4 分离定理。此后,张广济和F.H. Khedr提出Fuzzifying拓扑空间中的半 T 0 , T 1 , T 2 , T 3 , T 4 分离定理和半 R 0 , R 1 分离定理。同时Alkazragy A和Caldas M在一般拓扑中提出 θ s e m i T 0 θ s e m i T 1 θ s e m i T 2 θ s e m i R θ s e m i N θ s e m i R 0 θ s e m i R 1 分离定理,并展开相关研究。于是在前人基础上,如何将一般拓扑空间中 θ -半分离定理推广到不分明化拓扑空间中得到不分明化 θ -半分离定理,这对于丰富不分明化拓扑空间理论是重要的。

本文在前人工作的基础上在Fuzzifying拓扑空间中引入 θ -半分离定理,得到Fuzzifying θ -半分离定理的一些好的性质和结论。

2. 预备知识

定理1 [4] 设 ( X , T ) 是不分明化拓扑空间, A P ( X ) A N x θ A N x

定义1 [5] A的半闭包 A _ 定义为: x A _ : = B ( ( B A ) ( B F S ) x B )

定义2 [5] 设 Ω 是Fuzzifying拓扑空间类,一元模糊谓词 S i F ( Ω ) , i = 0 , 1 , 2 被称为是 S i 分离的,以下为一些等价定理:

S 0 ( X , T ) ( x ) ( y ) ( ( x y ) ¬ ( x { y } _ ) ¬ ( y { x } _ ) ) S 1 ( X , T ) ( x ) ( { x } F S ) S 2 ( X , T ) ( x ) ( y ) ( ( x y ) B ( B B x S ) ( y B _ ) )

定义3 [6] A的 θ -半闭包定义为对所有满足 x X U _ S A 的集合,表示为 A _ S θ U _ S 为U的半闭包。

定义4 [7] 当存在X的一个 θ -开集U满足 U A C l ( U ) ,则子集A称为 θ -半开集。其中 C l ( U ) 为U的闭包。

定义5 [8] 设 ( X , T ) 是一个拓扑空间, x X M X ,则M称为x的 θ -半邻域当存在一个包含x的 θ -半开集A满足 x A M

定义6 [9] 设 ( X , T ) 是一个Fuzzifying拓扑空间,则一元模糊谓词 T S F ( P ( X ) ) 称为Fuzzifying半开集,若 A T S : = ( B ) ( ( B T ) ( B A ) ( x ) ( x A x B ¯ ) )

定义7 [9] 设 x X N x S F ( P ( X ) ) 表示x的半邻域系,定义为:

A N x S : = B ( ( B T S ) ( x B A ) )

定理2 [10] (1) A A _ ;(2) A A _ A F S ;(3) ( A B ) ( A N x S B N x S )

3. 主要结果及其证明

首先,为了方便书写,下面给出一些简记记号:

S K x , y θ : = ( A ) ( ( A N x θ S ) ( y A ) ( ( A N y θ S ) ( x A ) ) ) S H x , y θ = ( A ) ( B ) ( ( A N x θ S ) ( y A ) ( B N y θ S ) ( x B ) ) S M x , y θ : = ( A ) ( B ) ( ( A N x θ S ) ( B N y θ S ) ( A B = ) )

定义1 设 ( X , T ) 是一个Fuzzifying拓扑空间,则称一元不分明谓词 T S θ F ( P ( X ) ) 为Fuzzifying θ -半开集,若 A T S θ : = ( B ) ( ( B T θ ) ( B A ) ( x ) ( x A x B ¯ ) )

定义2 设 x X N x θ S F ( P ( X ) ) 表示x的Fuzzifying θ -半邻域系,定义为:

A N x θ S : = B ( ( B N x S ) ( B _ A ) )

定理1 对 A P ( X ) ( A T S θ ) ( x ) ( x A A N x θ S )

定义3 设 Ω 是Fuzzifying拓扑空间类,分别称一元模糊谓词 T i S θ F ( Ω ) , i = 0 , 1 , 2 为是Fuzzifying T i S θ 分离的,定义为:

T 0 S θ ( X , T ) : = ( x ) ( y ) ( ( x y ) S K x , y θ ) T 1 S θ ( X , T ) : = ( x ) ( y ) ( ( x y ) S H x , y θ ) T 2 S θ ( X , T ) : = ( x ) ( y ) ( ( x y ) S M x , y θ )

定义4 A X ,Fuzzifying半 θ -闭包定义为:

x C l S θ ( A ) : = ( B ) ( ( B N x S ) ¬ ( A B _ ) )

定理2 T 0 S θ ( X , T ) ( x ) ( y ) ( ( x y ) ¬ ( x C l S θ { y } ) ¬ ( y C l S θ { x } ) )

证明

[ T 0 S θ ( X , T ) ] = inf x y max ( sup y A N x θ S ( A ) , sup x A N y θ S ( A ) ) = inf x y max ( N x θ S ( X ~ { y } ) , N y θ S ( Y ~ { x } ) ) = inf x y max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) = [ ( x ) ( y ) ( ( x y ) ¬ ( x C l S θ { y } ) ¬ ( y C l S θ { x } ) ) ]

定理3 x A _ x C l S θ ( A )

证明

A _ ( x ) = inf B P ( X ) min ( 1 , 1 N x S ( B ) + sup y A B ( y ) ) inf B P ( X ) min ( 1 , 1 N x S ( B ) + sup y A B _ ( y ) ) = C l S θ ( A ) ( x )

定理4 T 0 S θ ( X , T ) S 0 ( X , T )

证明 [ T 0 S θ ( X , T ) ] = inf x y max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) )

[ S 0 ( X , T ) ] = inf x y max ( ( 1 { y } _ ) ( x ) , ( 1 { x } _ ) ( y ) ) ,则 T 0 S θ ( X , T ) S 0 ( X , T )

定理5 T 1 S θ ( X , T ) ( x ) ( { x } F S θ )

证明 对任意 x 1 x 2

[ ( x ) ( { x } F S θ ) ] = inf x X T S θ ( X ~ { x } ) = inf x X inf y X ~ { x } N y θ S ( X ~ { x } ) inf x X ~ { x 2 } N y θ S ( X ~ { x 2 } ) N x 1 θ S ( X ~ { x 2 } ) = sup x 2 A N x 1 θ S ( A )

同理 [ ( x ) ( { x } F S θ ) ] N x 2 θ S ( X ~ { x 1 } ) = sup x 1 B N x 2 θ S ( B )

[ ( x ) ( { x } F S θ ) ] inf x 1 x 2 min ( sup x 2 A N x 1 θ S ( A ) , sup x 1 B N x 2 θ S ( B ) ) = inf x y min ( sup y A N x θ S ( A ) , sup x B N y θ S ( B ) ) = [ T 1 S θ ( X , T ) ]

反过来

[ T 1 S θ ( X , T ) ] = inf x 1 x 2 min ( sup x 2 A N x 1 θ S ( A ) , sup x 1 B N x 2 θ S ( B ) ) = inf x 1 x 2 min ( N x 1 θ S ( X ~ { x 2 } ) , N x 2 θ S ( X ~ { x 1 } ) ) inf x 1 x 2 ( N x 1 θ S ( X ~ { x 2 } ) ) = inf x 2 x 1 inf x 1 X ~ { x 2 } ( N x 1 θ S ( X ~ { x 2 } ) ) = inf x 2 X T S θ ( X ~ { x 2 } )

所以, T 1 S θ ( X , T ) ( x ) ( { x } F S θ )

定义5 设 Σ 是一类不分明化拓扑空间,一元模糊谓词 F S θ ( T S θ ) F ( P ( X ) ) 称为Fuzzifying θ -半闭集,定义为: A F S θ : = A C l S θ ( A ) ,即 F S θ ( A ) = P ( X ) inf x X A ( 1 C l S θ ( A ) ( x ) ) / A

定理6 A F S θ A F

证明 由定义5和定理3易证。

定理7 T 1 S θ ( X , T ) S 1 ( X , T )

证明 [ T 1 S θ ( X , T ) ] = inf x F S θ ( { x } ) inf x F S ( { x } ) = [ S 1 ( X , T ) ]

定理8 (1) T 1 S θ ( X , T ) T 0 S θ ( X , T ) ;(2) T 2 S θ ( X , T ) T 1 S θ ( X , T )

证明 (1) (2)由定义显然得证。

定义6 设 Ω 是不分明化拓扑空间类,一元模糊谓词 R S θ F ( Ω ) 称为Fuzzifying半 θ R 分离的,定义为:

R S θ ( X , T ) : = ( x ) ( D ) ( ( D F S θ ) ( x D ) ( A ) ( ( A N x θ S ) ( C l S θ ( A ) D = ) ) )

定理9 R S θ ( X , T ) ( x ) ( A ) ( ( A T S θ ) ( x A ) B ( ( B N x S θ ) ( C l S θ ( B ) A ) ) )

证明

[ R S θ ( X , T ) ] = inf x D min ( 1 , 1 F S θ ( D ) + sup B P ( X ) min ( N x θ S ( B ) , inf y D N y θ S ( B c ) ) ) = inf x A min ( 1 , 1 T S θ ( A ) + sup B P ( X ) min ( N x θ S ( B ) , inf y A c N y θ S ( B c ) ) ) = [ ( x ) ( A ) ( ( A T S θ ) ( x A ) B ( ( B N x S θ ) ( C l S θ ( B ) A ) ) ) ]

定理10 R S θ ( X , T ) ˙ T 1 S θ ( X , T ) T 2 S θ ( X , T )

证明

[ R S θ ( X , T ) + T 1 S θ ( X , T ) ] = inf x A c min ( 1 , 1 T S θ ( A c ) + sup B P ( X ) min ( N x θ S ( B ) , inf y A c N y θ S ( B c ) ) ) + inf z X T S θ ( { z } c ) inf x X , y x inf y X min ( 1 , 1 T S θ ( { y } c ) + sup B P ( X ) min ( N x θ S ( B ) , N y θ S ( B c ) ) ) + T S θ ( { y } c ) inf y x ( 1 , 1 + sup B P ( X ) min ( N x θ S ( B ) , N y θ S ( B c ) ) ) inf y x sup B C min ( N x θ S ( B ) , N y θ S ( C ) ) + 1 = [ T 2 S θ ( X , T ) ] + 1

所以, [ T 2 S θ ( X , T ) ] [ R S θ ( X , T ) ] + [ T 1 S θ ( X , T ) ] 1

定义7 设 Ω 是不分明化拓扑空间类,那么称一元模糊谓词 R S θ F ( Ω ) 为Fuzzifying半 θ N 分离的,定义为:

N S θ ( X , T ) : = ( A ) ( B ) ( ( A F S θ ) ( B F S θ ) ( A B = ) ( G ) ( ( G T S θ ) ( A G ) ( C l S θ ( G ) B = ) ) )

定理11 设 ( X , T ) 是Fuzzifying空间,则

N S θ ( X , T ) ( A ) ( B ) ( ( A F S θ ) ( B T S θ ) ( A B ) ( G ) ( ( G T S θ ) ( A G ) ( C l S θ ( G ) B ) ) )

证明

[ N S θ ( X , T ) ] = inf A B c = min ( 1 , 1 F S θ ( A ) F S θ ( B c ) + sup A G min ( T S θ ( G ) , inf x B c N x θ S ( G c ) ) ) = inf A B min ( 1 , 1 F S θ ( A ) T S θ ( B ) + sup A G min ( T S θ ( G ) , inf x B N x θ S ( G c ) ) ) = inf A B min ( 1 , 1 F S θ ( A ) T S θ ( B ) + sup A G min ( T S θ ( G ) , inf x B ( 1 C l S θ ( G ) ( x ) ) ) ) = [ ( A ) ( B ) ( ( A F S θ ) ( B T S θ ) ( A B ) G ( ( G T S θ ) ( A G ) ( C l S θ ( G ) B ) ) ) ]

定理12 N S θ ( X , T ) ˙ T 1 S θ ( X , T ) R S θ ( X , T )

证明

[ N S θ ( X , T ) ] + [ T 1 S θ ( X , T ) ] = inf A D c min ( 1 , 1 T S θ ( A c ) T S θ ( D c ) + sup A G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) ) + inf z X T S θ ( { z } c ) inf x B min ( 1 , 1 min ( T S θ ( { x } c ) , T S θ ( D c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) ) + inf z X T S θ ( { z } c )

= inf x B min ( 1 , 1 max ( 1 T S θ ( { x } c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) , 1 T S θ ( D c ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) ) + inf z X T S θ ( { z } c ) inf x B max ( min ( 1 , 1 ( T S θ ( { x } c ) ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + inf z X T S θ ( { z } c ) , min ( 1 , 1 T S θ ( D c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + inf z X T S θ ( { z } c ) )

inf x B max ( 1 + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) , min ( 1 , 1 T S θ ( D c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + inf z X T S θ ( { z } c ) ) inf x B max ( 1 + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) , min ( 1 , 1 T S θ ( D c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + 1 ) inf x B ( min ( 1 , 1 T S θ ( D c ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + 1 ) inf x B ( min ( 1 , 1 F S θ ( D ) ) + sup x G min ( T S θ ( G ) , inf y D N y θ S ( G c ) ) + 1 ) = [ R S θ ( X , T ) ] + 1

定义8 设 Ω 是不分明化拓扑空间类,那么称一元模糊谓词 R 0 S θ F ( Ω ) 为Fuzzifying θ R 0 分离的,定义为: R 0 S θ ( X , T ) : = ( x ) ( y ) ( ( x y ) ( S K x , y θ S H x , y θ ) )

定义9 设 Ω 是不分明化拓扑空间类,一元模糊谓词 R 1 S θ F ( Ω ) 称为Fuzzifying半 θ R 1 分离的,定义为: R 1 S θ ( X , T ) : = ( x ) ( y ) ( ( x y ) ( S K x , y θ S M x , y θ ) )

定理13 R 1 S θ ( X , T ) R 0 S θ ( X , T )

证明

[ R 0 S θ ( X , T ) ] = inf x y min ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf x F S θ ( { x } ) ) inf x y min ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf x y min ( sup y A N x θ S ( A ) , sup x B N y θ S ( B ) ) ) inf x y ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf x y sup A B min ( N x θ S ( A ) , N x θ S ( B ) ) ) = [ R 1 S θ ( X , T ) ]

定理14 T 1 S θ ( X , T ) R 0 S θ ( X , T )

证明

[ R 0 S θ ( X , T ) ] = inf x y min ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf F S θ ( { x } ) ) inf x y min ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf x y min ( sup y A N x θ S ( A ) , sup x B N y θ S ( B ) ) ) inf x y min ( sup y A N x θ S ( A ) , sup x B N y θ S ( B ) ) = [ T 1 S θ ( X , T ) ]

定理15 R 0 S θ ( X , T ) ˙ T 0 S θ ( X , T ) T 1 S θ ( X , T )

证明

[ R 0 S θ ( X , T ) ] + [ T 0 S θ ( X , T ) ] = inf x y min ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf F S θ ( { x } ) ) + inf x y max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) inf x y min ( 1 , 1 + inf F S θ ( { x } ) ) 1 + [ T 1 S θ ( X , T ) ]

所以, R 0 S θ ( X , T ) ˙ T 0 S θ ( X , T ) T 1 S θ ( X , T )

定理16 T 0 S θ ( X , T ) ( R 0 S θ ( X , T ) T 1 S θ ( X , T ) )

证明

[ T 0 S θ ( X , T ) ( R 0 S θ ( X , T ) T 1 S θ ( X , T ) ) ] = min ( 1 , 1 [ T 0 S θ ( X , T ) ] + min ( 1 , 1 [ R 0 S θ ( X , T ) ] + [ T 1 S θ ( X , T ) ] ) ) = min ( 1 , 1 ( [ T 0 S θ ( X , T ) ] + [ R 0 S θ ( X , T ) ] 1 ) + [ T 1 S θ ( X , T ) ] ) = 1

定理17 R 0 S θ ( X , T ) ( T 0 S θ ( X , T ) T 1 S θ ( X , T ) )

证明 证明类似于定理16。

定理18 T 2 S θ ( X , T ) R 1 S θ ( X , T )

证明

[ R 1 S θ ( X , T ) ] = inf x y ( 1 , 1 max ( ( 1 C l S θ { y } ) ( x ) , ( 1 C l S θ { x } ) ( y ) ) + inf x y sup A B min ( N x θ S ( A ) , N x θ S ( B ) ) ) inf x y sup A B = min ( N x 1 θ S ( A ) , N x 2 θ S ( B ) ) = [ T 2 S θ ( X , T ) ]

定理19 R 1 S θ ( X , T ) ˙ T 0 S θ ( X , T ) T 2 S θ ( X , T )

证明 证明类似于定理15。

定理20 T 0 S θ ( X , T ) ( R 1 S θ ( X , T ) T 2 S θ ( X , T ) )

证明 证明类似于定理16。

定理21 R 1 S θ ( X , T ) ( T 0 S θ ( X , T ) T 2 S θ ( X , T ) )

证明 证明类似于定理16。

文章引用

贾文英,王瑞英. Fuzzifying拓扑中的θ-半分离定理
θ-Semiseparation Axioms in Fuzzifying Topology[J]. 理论数学, 2023, 13(08): 2284-2291. https://doi.org/10.12677/PM.2023.138235

参考文献

  1. 1. Ying, M.S. (1991) A New Approach for Fuzzy Topology (I). Fuzzy Sets and Systems, 39, 303-321. https://doi.org/10.1016/0165-0114(91)90100-5

  2. 2. Ying, M.S. (1992) A New Approach for Fuzzy Topology (II). Fuzzy Sets and Systems, 47, 221-232. https://doi.org/10.1016/0165-0114(92)90181-3

  3. 3. Ying, M.S. (1993) A New Approach for Fuzzy Topology (III). Fuzzy Sets and Systems, 55, 193-207. https://doi.org/10.1016/0165-0114(93)90132-2

  4. 4. 马瑞华, 王瑞英. 不分明化拓扑中的θ-分离性[J]. 内蒙古师范大学学报(自然科学汉文版), 2018, 47(5): 369-372.

  5. 5. 张广济. 不分明化拓扑中的S-分离公理[J]. 辽宁师范大学学报(自然科学版), 2000(1): 29-31.

  6. 6. Alkazragy, A., Mayah, F. and Al-Hachami, A.K.H. (2021) On Semi θ-‘Axioms. Journal of Physics: Conference Series, 1999, Article ID: 012096. https://doi.org/10.1088/1742-6596/1999/1/012096

  7. 7. Caldas, M., Ganster, M., Georgiou, D.N., et al. (2008) On θ-Semiopen Sets and Separation Axioms in Topological Spaces. Carpathian Journal of Mathematics, 24, 13-22.

  8. 8. Abdul-Jabbar, A.M. (2012) Topological Property of θ-Semi-Open Sets. International Journal of Pure and Applied Sciences and Technology, 13, 7.

  9. 9. 张广济. 不分明化拓扑中的半开集和半连续函数[J]. 大连大学学报, 1997(2): 152-157.

  10. 10. Khedr, F.H. (1999) Fuzzy Semi-Continuity and Fuzzy Csemi-Continuity in Fuzzifying Topol-ogy. The Journal of Fuzzy Mathematics, 7, 105-124.

期刊菜单