Advances in Clinical Medicine
Vol. 12  No. 10 ( 2022 ), Article ID: 57001 , 5 pages
10.12677/ACM.2022.12101368

脱矿牙本质基质作为rhBMP-2载体的研究进展

张迪1,达尔亚·俄尼木拜1,古丽努尔·阿吾提1,2*

1新疆医科大学第一附属医院(附属口腔医院)牙周病科,新疆 乌鲁木齐

2新疆维吾尔自治区口腔医学研究所,新疆 乌鲁木齐

收稿日期:2022年9月19日;录用日期:2022年10月11日;发布日期:2022年10月21日

摘要

骨形态发生蛋白-2 (bone morphogentic protein-2, BMP-2)是转化生长因子-β家族的成员,可促进骨髓间充质干细胞分化为成骨细胞和软骨细胞。脱矿牙本质基质(demineralized dentin matrix, DDM)是由牙本质经过粉碎、脱矿、灭菌等处理后制得,具有良好的骨诱导性、骨传导性和生物相容性等特性,是一种颇有前景的骨移植材料。DDM不仅是一种骨移植材料,也可作为重组人骨形态发生蛋白-2 (recombinant human bone morphogentic protein-2, rhBMP-2)的合适载体。DDM与rhBMP-2有着较好的亲和力,并能够缓释rhBMP-2。此外,外源性的rhBMP-2和DDM中内源性BMP具有协同效应,可产生更多的新骨。DDM用作rhBMP-2载体时,rhBMP-2的浓度可降低为0.2 mg/mL。

关键词

脱矿牙本质基质,骨移植材料,骨诱导,骨传导,重组人骨形态发生蛋白-2

Research Progress of Demineralized Dentin Matrix as rhBMP-2 Carrier

Di Zhang1, Daerya·Enimubai1, Gulinuer·Awuti1,2*

1Department of Periodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), Urumqi Xinjiang

2Institution of Stomatology of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang

Received: Sep. 19th, 2022; accepted: Oct. 11th, 2022; published: Oct. 21st, 2022

ABSTRACT

Bone morphogenetic protein-2 (BMP-2) is a transforming growth factor-β family member. It can promote bone marrow mesenchymal stem cells to differentiate into osteoblasts and chondrocytes. Demineralized dentin matrix (DDM) is prepared from dentin after grinding, demineralization, sterilization, etc. It has good osteoinductive, osteoconductive, biocompatibility, and is a promising bone graft material. DDM is not only a bone graft material, but also a suitable carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2). DDM has good affinity with rhBMP-2 and can slowly release rhBMP-2. In addition, exogenous rhBMP-2 and endogenous BMP in DDM have synergistic effects, which can produce more new bones. When DDM is used as rhBMP-2 carrier, the concentration of rhBMP-2 can be reduced to 0.2 mg/mL.

Keywords:Demineralized Dentin Matrix, Bone Graft Material, Osteoinductive, Osteoconductive, Recombinant Human Bone Morphogentic Protein-2

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

当今时代,牙周炎仍是一个重大的世界性的公共卫生问题,可造成牙槽骨的吸收 [1]。牙拔除后,由于失去了生理刺激,剩余牙槽嵴将不可避免地发生萎缩 [2]。缺失的牙齿通常使用口腔修复的方法进行治疗,近年来,口腔种植技术发展迅速,成为了口腔修复的首选方案 [3]。然而,骨量不足时会影响种植效果 [4]。目前对骨缺损修复的常规方法主要是植入骨移植材料。自体骨具有骨生成、骨诱导和骨传导能力,是一种理想的骨移植材料,但常需二次手术,收集的骨量有限,新骨还未来得及形成,自体骨已有较多的吸收。同种异体骨移植具有骨诱导能力,但面临病毒感染的风险。异种骨以及生物活性玻璃、羟基磷灰石等非骨移植材料仅具有骨传导性,缺乏骨诱导性 [5] [6]。

当使用缺乏骨诱导性的骨移植材料时,可以添加具有骨诱导作用的生长因子以增强成骨效果。骨形态发生蛋白(bone morphogenetic protein, BMPs)属于转化生长因子-β家族的成员,可促进骨髓间充质干细胞分化为成骨细胞和软骨细胞 [7]。1991年,成功地从人类牙本质基质中分离出BMP。尽管人类牙本质衍生BMP不同于人类骨衍生BMP,但两种类型的BMP在体内表现出相同的作用 [8]。迄今为止,已经鉴定出15种BMP,其中BMP-2、BMP-3、BMP-4、BMP-6和BMP-7可诱导骨形成 [9]。

由于BMP只能从人类或动物的骨骼或牙齿中提取,而骨骼或牙齿中BMP的含量较少,故难以满足临床需求。随着基因工程的发展,使得通过基因重组技术大规模生产重组人骨形态发生蛋白-2 (recombinant human bone morphogentic protein-2, rhBMP-2)成为可能 [7]。

2. rhBMP-2载体的性能要求

rhBMP-2由于是液体的原因,很难在局部位置保留足够的时间,而且高度可溶,难以充分发挥骨诱导能力,需要一种能够容纳并充分释放它们的载体。rhBMP-2载体应满足若干要求:能够保证缺损区域在足够长的时间里保持一定浓度的rhBMP-2,以允许新骨形成;rhBMP-2与其载体之间具有良好的亲和力,使rhBMP-2缓慢持续释放;易于灭菌、良好的机械稳定性、生物相容性、生物降解性,无免疫原性;具有足够的孔隙率,允许细胞和血管进入;保持rhBMP-2的生物活性 [7] [8]。

已研究了一些可能合适的rhBMP-2的载体。例如,脱蛋白牛骨、磷酸钙,但它们只能部分满足rhBMP-2载体所需的性能要求 [10]。脱钙骨基质是通过对同种异体骨的脱矿处理而获得,其含有胶原蛋白和包括BMP在内的生长因子,但存在免疫原性和疾病传播风险,也并非合适的载体材料。对于颌面部商用rhBMP-2,唯一批准的载体是可吸收胶原海绵(absorbable collagen sponge, ACS)。2007年,美国食品和药物管理局批准了ACS作为浓度为1.5 mg/mL的rhBMP-2的载体。然而,ACS不具有骨传导性,机械性能差,有限的控释能力,在植入后的第二天便释放了大量的rhBMP-2,并且使用了超生理剂量的rhBMP-2,可导致面部水肿、异位骨形成等并发症 [8]。

3. 脱矿牙本质基质作为有效的rhBMP-2载体

脱矿牙本质基质(demineralized dentin matrix, DDM)是一种有效的rhBMP-2载体,其具有良好的机械稳定性、生物相容性、生物降解性、孔隙率,与rhBMP-2的亲和力,可灭菌,有着较高的释放率和较低的释放速度。已有多项研究证明了DDM用作rhBMP-2载体的安全性和有效性 [7] [8] [11] [12]。此外,DDM用作rhBMP-2载体时,rhBMP-2的浓度可降低为0.2 mg/mL,比ACS用作载体时,浓度降低了约7倍 [13]。

DDM是将牙根部的牙本质粉碎成颗粒,将牙本质颗粒进行脱水、脱脂、脱矿、冻干、灭菌等一系列处理后制得 [8]。一项动物研究表明,100~300 μm的牙本质颗粒与rhBMP-2结合的成骨效果优于1000~2000 μm的牙本质颗粒与rhBMP-2结合,小颗粒可提供更多的表面积,从而增强了骨诱导作用 [12]。

牙本质内无细胞、无血管,免疫原性极低。脱矿去除了牙本质的免疫原性。脱矿可使牙本质小管变宽,小管可容纳rhBMP-2溶液,小管内微孔结构的存在增加了表面接触面积,有利于rhBMP-2与DDM的结合及缓慢释放。脱矿去除了牙本质中大部分的无机物,剩余的无机物足以保持DDM的机械性能,大部分I型胶原蛋白和包含BMP在内的多种生长因子保留了下来 [8] [10] [11] [14]。DDM自身就具有骨传导性和骨诱导性,是一种性能良好的骨移植材料 [15] [16]。DDM已成功应用于位点保存术 [17] [18],即刻种植术 [19],牙槽嵴增宽术 [20] [21],上颌窦提升术 [22],较大囊肿导致的骨缺损的修复 [23],根分叉病变的植骨治疗 [24]。下颌第三磨牙拔除后下颌第二磨牙远中常会出现骨缺损、牙周袋等问题 [25] [26],在下颌第二磨牙远中植入DDM可有效预防牙周袋的形成 [27]。

4. rhBMP-2与DDM的协同作用

外源性的rhBMP-2和DDM中内源性BMP具有协同效应。rhBMP-2/DDM植入后的释放情况:第一阶段,释放吸附在DDM表面的rhBMP-2;第二阶段,释放包埋在DDM内部的rhBMP-2;第三阶段,rhBMP-2的释放促进了DDM的骨重塑,使DDM中内源性BMP的释放增强 [13] [28]。有动物实验表明,含有rhBMP-2的DDM是自体骨移植的可行替代方案 [7]。在一项随机对照试验中,评估了rhBMP-2结合DDM在位点保存术的疗效,并与单独使用DDM进行比较,结果显示rhBMP-2结合DDM组有更多的新骨形成 [10]。Um等 [29] 建立兔子颅骨缺损模型,评估比较了rhBMP-2结合DDM与单独使用DDM的成骨效果,分别在术后1周、2周、4周行组织学检测,结果显示DDM组新骨形成率分别为12.52%、16.59%和24.94%,DDM/rhBMP-2组分别为17.17%、21.77%和47.99%,在这三个时间点两组之间新骨形成率的差异均有统计学意义。

5. 展望

综上所述,DDM具有良好的骨诱导性、骨传导性、机械稳定性、生物相容性、生物降解性等特性,可容纳并缓释rhBMP-2,可作为rhBMP-2的合适载体,此外,rhBMP-2的添加也增强了DDM的成骨能力。但现有的研究样本量较少,随访期较短,需要更多高质量的随机对照试验。

文章引用

张 迪,达尔亚·俄尼木拜,古丽努尔·阿吾提. 脱矿牙本质基质作为rhBMP-2载体的研究进展
Research Progress of Demineralized Dentin Matrix as rhBMP-2 Carrier[J]. 临床医学进展, 2022, 12(10): 9456-9460. https://doi.org/10.12677/ACM.2022.12101368

参考文献

  1. 1. Wang, W., Jiang, Y., Wang, D., et al. (2022) Clinical Efficacy of Autoge-nous Dentin Grafts with Guided Bone Regeneration for Horizontal Ridge Augmentation: A Prospective Observational Study. International Journal of Oral and Maxillofacial Surgery, 51, 837-843. https://doi.org/10.1016/j.ijom.2021.06.012

  2. 2. Umebayashi, M., Ohba, S., Kurogi, T., et al. (2020) Full Regenera-tion of Maxillary Alveolar Bone Using Autogenous Partially Demineralized Dentin Matrix and Particulate Cancellous Bone and Marrow for Implant-Supported Full Arch Rehabilitation. Journal of Oral Implantology, 46, 122-127. https://doi.org/10.1563/aaid-joi-D-19-00315

  3. 3. Vares, Y., Binderman, I. and Galyant, K. (2022) Traumatic Man-dibular Cyst Defect Grafted with Autologous Dentin and Platelet-Rich Fibrin Composite: A Case Report. The Interna-tional Journal of Periodontics & Restorative Dentistry, 42, 253-259. https://doi.org/10.11607/prd.5215

  4. 4. 吴峥嵘, 左园林, 李朝晖. 自体牙本质颗粒结合富血小板纤维蛋白膜治疗93例下颌第一磨牙根分叉病变效果评价[J]. 上海口腔医学, 2020, 29(2): 213-216.

  5. 5. Li, Z.B., Qu, H.L., Zhou, L.N., et al. (2017) Nonimpacted Third Molars Affect the Periodontal Status of Adjacent Teeth: A Cross-Sectional Study. Journal of Oral and Maxillofacial Surgery, 75, 1344-1350. https://doi.org/10.1016/j.joms.2017.02.005

  6. 6. Sun, L.J., Qu, H.L., Tian, Y., et al. (2020) Impacts of Non-Impacted Third Molar Removal on the Periodontal Condition of Adjacent Second Molars. Oral Diseases, 26, 1010-1019. https://doi.org/10.1111/odi.13314

  7. 7. Mazzucchi, G., Lollobrigida, M., Lamazza, L., et al. (2022) Autologous Dentin Graft after Impacted Mandibular Third Molar Extraction to Prevent Periodontal Pocket Formation—A Split-Mouth Pilot Study. Materials (Basel), 15, Article No. 1431. https://doi.org/10.3390/ma15041431

  8. 8. Um, I.W., Ku, J.K., Lee, B.K., et al. (2019) Postulated Release Profile of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) from Demineralized Dentin Matrix. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 45, 123-128. https://doi.org/10.5125/jkaoms.2019.45.3.123

  9. 9. Chen, M.X., Zhong, Y.J., Dong, Q.Q., et al. (2021) Global, Regional, and National Burden of Severe Periodontitis, 1990-2019: An Analysis of the Global Burden of Disease Study 2019. Journal of Clinical Periodontology, 48, 1165-1188. https://doi.org/10.1111/jcpe.13506

  10. 10. 刘欢, 王宁, 仲维剑, 等. 部分脱矿自体牙本质颗粒联合PRF在拔牙位点保存中的应用1例[J]. 口腔医学研究, 2022, 38(1): 90-91.

  11. 11. Wu, D., Zhou, L., Lin, J., et al. (2019) Immediate Implant Placement in Anterior Teeth with Grafting Material of Autogenous Tooth Bone vs Xenogenic Bone. BMC Oral Health, 19, Article No. 266. https://doi.org/10.1186/s12903-019-0970-7

  12. 12. Jo, S.H., Kim, Y.K. and Choi, Y.H. (2018) Histological Evalua-tion of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body. Materials (Basel), 11, Article No. 714. https://doi.org/10.3390/ma11050714

  13. 13. Korsch, M. and Peichl, M. (2021) Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. International Journal of Environmental Research and Public Health, 18, Article No. 3174. https://doi.org/10.3390/ijerph18063174

  14. 14. Zhang, S., Li, X., Qi, Y., et al. (2021) Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Engineering and Regenerative Medicine, 18, 327-341. https://doi.org/10.1007/s13770-021-00333-4

  15. 15. Kim, S.Y., Kim, Y.K., Park, Y.H., et al. (2017) Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts. Materials (Basel), 10, Article No. 1049. https://doi.org/10.3390/ma10091049

  16. 16. Um, I.W. (2018) Demineralized Dentin Matrix (DDM) as a Carrier for Recombinant Human Bone Morphogenetic Proteins (rhBMP-2). Advances in Experimental Medicine and Biology, 1077, 487-499. https://doi.org/10.1007/978-981-13-0947-2_26

  17. 17. Kim, B.J., Kim, S.K. and Lee, J.H. (2021) Bone Regeneration of Demineralized Dentin Matrix with Platelet-Rich Fibrin and Recombinant Human Bone Morphogenetic Protein-2 on the Bone Defects in Rabbit Calvaria. Maxillofacial Plastic and Reconstructive Surgery, 43, Article No. 34. https://doi.org/10.1186/s40902-021-00320-8

  18. 18. Jung, G.-U., Jeon, T.-H., Kang, M.-H., et al. (2018) Volumetric, Radiographic, and Histologic Analyses of Demineralized Dentin Matrix Combined with Recombinant Human Bone Morphogenetic Protein-2 for Ridge Preservation: A Prospective Randomized Controlled Trial in Comparison with Xeno-graft. Applied Sciences, 8, Article No. 1288. https://doi.org/10.3390/app8081288

  19. 19. Um, I.-W., Kim, Y.-K., Jun, S.-H., et al. (2018) Demineralized Dentin Matrix as a Carrier of Recombinant Human Bone Morphogenetic Proteins: In Vivo Study. Journal of Hard Tissue Biology, 27, 219-226. https://doi.org/10.2485/jhtb.27.219

  20. 20. Um, I.-W., Jun, S.-H., Yun, P.-Y., et al. (2017) Histological Comparison of Autogenous and Allogenic Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic Protein-2 for Alveolar Bone Repair: A Preliminary Report. Journal of Hard Tissue Biology, 26, 417-424. https://doi.org/10.2485/jhtb.26.417

  21. 21. Wadhwa, P., Lee, J.H., Zhao, B.C., et al. (2021) Microcomputed Tomog-raphy and Histological Study of Bone Regeneration Using Tooth Biomaterial with BMP-2 in Rabbit Calvarial Defects. Scanning, 2021, Article ID: 6690221. https://doi.org/10.1155/2021/6690221

  22. 22. Um, I.W., Kim, Y.K., Park, J.C., et al. (2019) Clinical Application of Autogenous Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic-2 for Socket Preser-vation: A Case Series. Clinical Implant Dentistry and Related Research, 21, 4-10. https://doi.org/10.1111/cid.12710

  23. 23. Um, I.W., Ku, J.K., Kim, Y.K., et al. (2020) Histological Review of Demin-eralized Dentin Matrix as a Carrier of rhBMP-2. Tissue Engineering Part B: Reviews, 26, 284-293. https://doi.org/10.1089/ten.teb.2019.0291

  24. 24. Um, I.W., Lee, J.K., Kim, J.Y., et al. (2021) Allogeneic Dentin Graft: A Review on Its Osteoinductivity and Antigenicity. Materials (Basel), 14, Article No. 1713. https://doi.org/10.3390/ma14071713

  25. 25. Li, Y., Zhou, W., Li, P., et al. (2022) Comparison of the Osteogenic Ef-fectiveness of an Autogenous Demineralised Dentin Matrix and Bio-Oss® in Bone Augmentation: A Systematic Review and Meta-Analysis. British Journal of Oral and Maxillofacial Surgery, 60, 868-876. https://doi.org/10.1016/j.bjoms.2022.03.009

  26. 26. Yüceer-Çetiner, E., Özkan, N. and Önger, M.E. (2021) Effect of Autogenous Dentin Graft on New Bone Formation. Journal of Craniofacial Surgery, 32, 1354-1360. https://doi.org/10.1097/SCS.0000000000007403

  27. 27. Elfana, A., El-Kholy, S., Saleh, H.A., et al. (2021) Alveolar Ridge Preservation Using Autogenous Whole-Tooth versus Demineralized Dentin Grafts: A Randomized Controlled Clinical Trial. Clinical Oral Implants Research, 32, 539-548. https://doi.org/10.1111/clr.13722

  28. 28. Li, P., Zhu, H. and Huang, D. (2018) Autogenous DDM versus Bio-Oss Granules in GBR for Immediate Implantation in Periodontal Postextraction Sites: A Prospective Clinical Study. Clinical Implant Dentistry and Related Research, 20, 923-928. https://doi.org/10.1111/cid.12667

  29. 29. Pang, K.M., Um, I.W., Kim, Y.K., et al. (2017) Autogenous Demineralized Dentin Matrix from Extracted Tooth for the Augmentation of Alveolar Bone Defect: A Prospective Randomized Clinical Trial in Comparison with Anorganic Bovine Bone. Clinical Oral Implants Research, 28, 809-815. https://doi.org/10.1111/clr.12885

期刊菜单