Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61342 , 8 pages
10.12677/ACM.2023.132257

中性粒细胞/淋巴细胞在脓毒症中的免疫病理 作用及诊断和预后价值

谭钓,彭鹏*

新疆医科大学第一附属医院,新疆 乌鲁木齐

收稿日期:2023年1月14日;录用日期:2023年2月7日;发布日期:2023年2月14日

摘要

脓毒症是对感染的反应失调引起的危及生命的器官功能障碍。在脓毒症的免疫病理机制中,先天免疫系统和适应性免疫系统都起到了重要作用。中性粒细胞/淋巴细胞(NLR)作为一种新兴的炎症标志物,反应了先天(中性粒细胞)和适应性细胞免疫反应(淋巴细胞)之间的关系。同时与其他生物标志物相比,NLR具有容易获得、易于重复且低成本的特点。本文将会就中性粒细胞/淋巴细胞在脓毒症中的免疫病理以及其在诊断、预后等方面的价值研究进行综述。

关键词

脓毒症,中性粒细胞/淋巴细胞,免疫病理,诊断,预后

Immunopathology of Neutrophil to Lymphocyte Ratio in Sepsis and Its Diagnostic and Prognostic Value

Diao Tan, Peng Peng*

The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jan. 14th, 2023; accepted: Feb. 7th, 2023; published: Feb. 14th, 2023

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by the imbalance of response to infection. In the immunopathological mechanism of sepsis, both the innate immune system and the adaptive immune system play an important role. As a new inflammatory marker, neutrophil to lymphocyte ratio (NLR) reflects the relationship between congenital (neutrophil) and adaptive cellular immune response (lymphocyte). At the same time, compared with other biomarkers, NLR is easy to obtain, easy to repeat and low cost. This article will review the immunopathology of neutrophils/lymphocytes in sepsis and its value in diagnosis and prognosis.

Keywords:Sepsis, Neutrophil to Lymphocyte Ratio, Immunopathology, Diagnosis, Prognosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脓毒症是一个全球性的公共健康问题,且具有重要的经济影响。根据一份全球疾病负担报告估计:在2017年全球有4890万脓毒症病例,其中有1100万死亡病例,占全球死亡人数的19.7% [1] 。在中国,五分之一的ICU患者患有脓毒症,其90天死亡率为35.5% [2] 。同时有研究显示中国30天脓毒症的平均死亡率29.5%,高于欧洲和北美24.4% [3] 。据估计,中国ICU收治的23万脓毒症患者每年的医疗费用约为46亿美元,这是一个巨大的医疗和社会负担 [4] 。脓毒症的早期诊断和治疗对于提高患者生存率和降低医疗费用至关重要。为此许多生物标志物都已被用于脓毒症的研究,但大部分都受到了限制,例如中等的诊断和预后准确性、检测时间长和高成本等 [5] 。

中性粒细胞/淋巴细胞(NLR)是一个由中性粒细胞绝对计数除以淋巴细胞绝对计数获得的比率 [6] 。NLR反映了先天性(中性粒细胞)和适应性(淋巴细胞)免疫反应之间的平衡,通常以中性粒细胞增加和淋巴细胞减少为特征 [6] [7] 。NLR是一种容易获得且低成本的生物标志物,目前它已被广泛地应用于评估多种疾病的诊断或者预后,例如脑出血 [8] 、心血管疾病 [9] 、实体肿瘤 [10] 、新冠肺炎 [11] 以及脓毒症等 [12] 。此外,血常规中的其它参数如红细胞分布宽度(RDW) [13] 、单核细胞分布宽度(MDW) [14] 、平均血小板体积(NPV) [15] 和血小板/淋巴细胞 [16] 等也都在脓毒症中得到了研究。

2. 脓毒症的免疫病理机制

脓毒症是由宿主对感染的反应失调引起的危及生命的器官功能障碍,以过度炎症和免疫抑制为特征 [17] 。就其失调的免疫反应而言,先天性免疫系统和适应性免疫系统都受到了影响。感染后,先天免疫细胞如巨噬细胞、树突状细胞和中性粒细胞等通过模式识别受体(pattern recognition receptors, PRRs)识别病原体相关分子模式(pathogen-associated molecular patterns, PAMPs)和损伤相关分子模式(damage-associated molecular patterns, DAMPs)启动了不同的信号通路,进而多种转录因子如NF-KB和干扰素调节因子被激活 [18] 。最后这些转录因子通过转录相关靶基因如促炎细胞因子诱导炎症反应。免疫反应的程度取决于宿主(如年龄、遗传、合并症和药物等和病原体(如微生物载量和毒力等) [19] 。脓毒症与先天免疫系统过度激活导致的“细胞因子风暴”或者过度炎症相关,最终这可导致多器官功能障碍 [20] [21] 。此外,补体系统、凝血系统和内皮系统的激活也参与了脓毒症的炎症反应 [17] 。同时树突状细胞和其他免疫细胞通过向T淋巴和B淋巴细胞呈递抗原触发适应性免疫系统,进而导致病原体特异性的抗体和免疫记忆的产生 [19] 。脓毒症诱导的免疫抑制以T细胞、B细胞和树突状细胞的凋亡、T细胞的衰竭、调节性T细胞和髓源性抑制细胞的扩增以及抗原呈递细胞(如单核细胞和巨噬细胞)的重编程导致的HLA-DR表达降低和产生促炎细胞因子的能力降低为特征,这表明免疫抑制同样也影响了先天免疫系统和适应性免疫系统 [17] 。免疫抑制与脓毒症患者对由机会性病原体和病毒在活化引起的继发感染的易感性增加相关 [19] 。总之,脓毒症的免疫病理机制是非常复杂的,过度炎症和免疫抑制以及先天性和适应性免疫系统都是同样重要的,并代表了改善脓毒症结局的潜在免疫治疗靶点 [22] 。

3. 中性粒细胞/淋巴细胞在脓毒症中的免疫病理作用

3.1. 中性粒细胞在脓毒症中的免疫病理作用

在脓毒症中,中性粒细胞起着矛盾的作用。中性粒细胞是重要的先天免疫细胞,通过其快速迁移到感染部位的能力,提供宿主防御脓毒症的第一道防线 [23] 。中性粒细胞在体内的迁移包括四个不同的阶段:从骨髓中动员和释放、边缘和滚动、粘附和游出,这些阶段在脓毒症时都受到损害 [24] 。另外中性粒细胞还可以从炎症部位迁移回血液循环中,这一现象称为中性粒细胞逆向迁移(PMN rM) [25] 。PMN rM既可以通过促进先天免疫反应的有效解决起到保护作用,也可能通过炎症的播散造成组织损伤 [26] 。在到达感染部位后,中性粒细胞除了通过吞噬、脱粒和释放ROS外并能产生中性粒细胞外陷阱(NETs)消灭病原微生物 [26] 。NETs是由DNA-组蛋白复合物和活化的中性粒细胞释放的蛋白质组成的网状结构 [27] 。NETs可以杀死细菌、真菌、病毒和寄生虫等病原体来保护宿主免受感染 [28] 。除了杀死病原微生物外,越来越多的证据表明,NETs对脓毒症诱导的多器官损伤的发病机制有显著影响,包括动脉低血压、低氧血症、凝血病以及肾、神经和肝功能障碍 [29] 。中性粒细胞一种寿命比较短的免疫细胞,在人类中其循环半衰期为6~8小时 [30] 。在正常情况下,中性粒细胞通过凋亡死亡,这是一种程序性死亡 [31] 。但在脓毒症期间,中性粒细胞的自发凋亡受到抑制,并可能出现了一些其他类型的细胞死亡,包括坏死、坏死性凋亡、细胞焦亡和自噬等,同时这些细胞死亡类型并非都对宿主起到积极的保护作用,它们也有可能会加重炎症 [31] 。此外由于循环中未成熟中性粒细胞细胞的释放和循环中中性粒细胞凋亡的延迟,脓毒症患者通常具有不同程度的循环中性粒细胞数量显著增加 [32] 。

3.2. 淋巴细胞在脓毒症中的免疫病理作用

淋巴细胞是适应性免疫系统的重要细胞。在脓毒症中,淋巴细胞的数量和功能都受到了影响,同时正如前面所言,淋巴细胞参与了脓毒症诱导的免疫抑制。就淋巴细胞的数量而言,不仅在脓毒症患者的尸检研究中发现脾、肠等组织器官的淋巴细胞存在丢失,而且在脓毒症期间,循环淋巴细胞绝对计数也出现了减少 [33] 。脓毒症患者的严重或者持续的淋巴细胞减少与死亡率增加相关 [34] 。脓毒症患者的淋巴细胞减少通常是由细胞凋亡诱导的 [35] ,这种细胞凋亡可能与多种触发因素激活的死亡受体和线粒体途径相关 [36] 。脓毒症中细胞凋亡增加的病理生理学的重要性已在某些动物模型中得到体现,即通过抑制细胞凋亡的干预措施可以提高生存率 [37] 。值得注意的是,外渗和募集到炎症部位也可能是脓毒症中持续淋巴细胞减少的原因之一 [37] 。然而在脓毒症患者中,循环调节性T细胞的百分比显著增加,这在脓毒症诱导的免疫抑制中也起到重要作用 [38] 。另外就淋巴细胞的功能而言,T细胞衰竭是T细胞功能障碍的一种状态 [39] 。衰竭的T细胞具有受损的效应功能、增加的抑制性免疫检查点分子的表达和独特的转录状态 [40] 。其中临床前和临床研究表明,特异性细胞表面抑制性免疫检查点受体和配体,包括PD-1、PD-L1、CTLA4、BTLA、TIM3、OX40和2B4,通过介导宿主免疫能力和免疫抑制之间的良好平衡,在脓毒症的病理生理学中发挥重要作用 [41] 。同时针对免疫检查点的疗法在脓毒症患者的治疗中具有潜在的临床应用潜力 [41] 。

4. 中性粒细胞/淋巴细胞在脓毒症诊断和预后中价值

4.1. 中性粒细胞/淋巴细胞在脓毒症诊断中的价值

在急诊科,脓毒症的患病率约为1.2% [42] 。Ljungström等研究纳入425名急诊脓毒症患者,结果发现:NLR和PCT诊断菌血症的敏感性分别为80%、66%,诊断严重败血症伴菌血症的敏感性分别为85%、70%,诊断严重败血症但无菌血症的敏感性分别为71%、61 [43] 。Hou等人纳入了在急诊科就诊的脓毒血症患者296例和非脓毒血症患者1184例,结果显示:当NLR的截断值大于9时,其诊断脓毒症的AUC为0.707,敏感性为69.6,特异性为71.9。同时该研究构建了一个由NLR > 9时评分为2和qSOFA > 1、PLR > 210以及MDW > 20时评分为1组成的评分系统模型,且该模型显示出中度至高度的诊断准确性(AUC: 0.755, 95% CI: 0.726~0.784) [44] 。另外由于手术和侵入性操作,ICU患者也是脓毒症的高危人群 [42] 。Tian等共纳入ICU脓毒症患者194例对PCT、CRP、NLR、CRP*PCT等在脓毒症中诊断价值进行了研究,结果表明:NLR诊断脓毒症的价值属于中等水平(ROC:0.78敏感性:1.87%,特异性:72.84%),并同时发现CRP*PCT诊断价值最好(AUC:0.915敏感性:90.62%,特异性:81.48%) [45] 。然而Kim等人纳入了276例ICU脓毒症患者和388例ICU非脓毒症患者,研究发现:与CRP和PCT相比,NLR对于ICU患者脓毒症的诊断准确性较低(AUC:0.66,敏感性:65.7%,特异性:53.0%),但明显高于白细胞计数和中性粒细胞计数 [46] 。此外,在一项前瞻性观察性研究中发现第一天的NLR可作为脓毒症的一个有用的诊断标志物(敏感性:87.5%,特异性:90%) [47] 。同样在一项回顾性研究中也发现NLR具有良好的脓毒症诊断准确性,该研究结果显示:当NLR的最佳截断值为7.97时,其AUC、敏感性、特异性、PPV和NPV分别为0.74%、64.26%、80.16%、86.49%和53.18%,并且当其与其他生物标志物联合时能获得更好的诊断价值 [48] 。

4.2. 中性粒细胞/淋巴细胞在脓毒症预后价值

NLR与脓毒症患者的相关死亡率有关,其中相对较少的研究发现NLR可预测住院死亡率 [49] [50] ,但是Chebl等人的一项前瞻性研究发现NLR的最佳临界值与脓毒症患者的住院死亡率无关 [51] 。此外较多的研究探讨了NLR与脓毒症患者28天死亡率的关系。Ye等人共纳入3043例脓毒症患者,根据NLR的四分位数分成4组,在多变量COX回归分析中发现第四个四分位数(NLR (>20.25)与成人脓毒症患者28天全因死亡率增加相关(HR 1.22, 95% Cl: 1.01~1.49, P = 0.046) [52] 。Li等人首次将NLR与SOFA评分结合来确定脓毒症患者的危险因素,结果发现SOFA评分 + NLR是脓毒症患者28天死亡率的危险因素(OR 1.455, 95%CI: 1.318~1.605, P < 0.001) [53] 。其他几项研究也都发现NLR是脓毒症患者28天死亡率的独立预测因子 [54] [55] [56] 。一项回顾性研究还探讨了NLR的动态变化(第1、3、5、7天)对腹腔感染所致脓毒症患者28天死亡率的的预测价值,在调整混杂因素后多变量COX回归显示:第7天的NLR是脓毒症患者28天死亡率的独立预测因子(HR: 0.773, 95%CI: 0.659~0.905, P = 0.001) [57] 。此外,一项前瞻性研究发现NLR与通过SOFA评分评估的脓毒症严重程度(R = 0.65)以及广泛研究的脓毒症预后标记物press sin (R = 0.56)显著相关,因此该研究认为NLR可能成为ICU脓毒症患者预后的有用工具 [58] 。更重要地是Huang等人进行的一项包括14项研究共有11,564名脓毒症患者的荟萃分析显示非存活者的NLR显著高于存活者的NLR (SMD: 1.18, 95% CI: 0.42~1.94, P = 0.002),而且较高的NLR与脓毒症患者的预后不良相关(HR: 1.75, 95% CI: 1.56~1.97) [59] 。

4.3. 中性粒细胞/淋巴细胞在脓毒症其他方面的研究

在并发症方面,已经研究表明NLR是脓毒症患者急性肾损伤的独立预测因子 [60] [61] [62] 。在治疗方面,有研究发现NLR可以预测脓毒症患者的抗生素反应性,且该研究建议使用前3天的NLR来评估抗生素治疗 [63] 。此外激素在脓毒症的治疗中常常起到了重要作用。那么有没有一种简单且快速的指标来判断什么情况下需要使用激素呢?在一项包括12,862名住院新冠肺炎患者的大样本回顾性分析中发现,入院NLR值 > 6.11的患者,皮质类固醇治疗与降低60天全因死亡率的风险相关,而在NLR ≤ 6.1的患者中,皮质类固醇治疗与死亡率降低无关 [64] 。这项研究说明NLR决定了皮质类固醇治疗新冠肺炎患者的临床疗效,该指标可能有助于做出开始皮质类固醇治疗的临床决策 [64] 。皮质类固醇在各种炎症性疾病中的使用是基于能够抑制系统性炎症和细胞因子风暴 [64] 。由此看来,NLR也可能成为脓毒症患者应用类固醇激素治疗的一个重要参考指标,但这就需要我们进一步通过研究来证实。

5. 结论

脓毒症具有较高的发病率和死亡率,且具有重要的经济负担,因此促进它的诊断和识别预后不良的患者对于改善脓毒症的管理和降低医疗成本是非常重要的。脓毒症的免疫病理机制涉及多种先天和适应性免疫细胞。NLR是一种容易获得且低成本的生物标志物,其本身或者联合其他指标在脓毒症的诊断和预后中具有重要的价值,但是还需要大样本量的前瞻性研究来进一步明确其临床意义。

文章引用

谭 钓,彭 鹏. 中性粒细胞/淋巴细胞在脓毒症中的免疫病理作用及诊断和预后价值
Immunopathology of Neutrophil to Lymphocyte Ratio in Sepsis and Its Diagnostic and Prognostic Value[J]. 临床医学进展, 2023, 13(02): 1860-1867. https://doi.org/10.12677/ACM.2023.132257

参考文献

  1. 1. Rudd, K.E., Johnson, S.C., Agesa, K.M., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/S0140-6736(19)32989-7

  2. 2. Xie, J., Wang, H., Kang, Y., et al. (2020) The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218. https://doi.org/10.1097/CCM.0000000000004155

  3. 3. Liu, Y.C., Yao, Y., Yu, M.M., et al. (2022) Frequency and Mortality of Sepsis and Septic Shock in China: A Systematic Review and Meta-Analysis. BMC Infectious Diseases, 22, Article No. 564. https://doi.org/10.1186/s12879-022-07543-8

  4. 4. Gao, Y.L., Yao, Y., Zhang, X., et al. (2022) Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Frontiers in Immunology, 13, Article ID: 829210. https://doi.org/10.3389/fimmu.2022.829210

  5. 5. Agnello, L., Giglio, R.V., Bivona, G., et al. (2021) The Value of a Complete Blood Count (CBC) for Sepsis Diagnosis and Prognosis. Diagnostics (Basel), 11, Article 1881. https://doi.org/10.3390/diagnostics11101881

  6. 6. Buonacera, A., Stancanelli, B., Colaci, M., et al. (2022) Neutro-phil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Interna-tional Journal of Molecular Sciences, 23, Article 3636. https://doi.org/10.3390/ijms23073636

  7. 7. Azab, B., Camacho-Rivera, M. and Taioli, E. (2014) Average Values and Racial Differences of Neutrophil Lymphocyte Ratio among a Nationally Representative Sample of United States Subjects. PLOS ONE, 9, e112361. https://doi.org/10.1371/journal.pone.0112361

  8. 8. Lattanzi, S., Brigo, F., Trinka, E., et al. (2019) Neutro-phil-to-Lymphocyte Ratio in Acute Cerebral Hemorrhage: A System Review. Translational Stroke Research, 10, 137-145. https://doi.org/10.1007/s12975-018-0649-4

  9. 9. Kim, S., Eliot, M., Koestler, D.C., et al. (2018) Associa-tion of Neutrophil-to-Lymphocyte Ratio with Mortality and Cardiovascular Disease in the Jackson Heart Study and Modification by the Duffy Antigen Variant. JAMA Cardiology, 3, 455-462. https://doi.org/10.1001/jamacardio.2018.1042

  10. 10. Templeton, A.J., McNamara, M.G., Šeruga, B., et al. (2014) Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute, 106, dju124. https://doi.org/10.1093/jnci/dju124

  11. 11. Alkhatip, A.A.A.M.M., Kamel, M.G., Hamza, M.K., et al. (2021) The Diagnostic and Prognostic Role of Neutrophil-to-Lymphocyte Ratio in COVID-19: A Systematic Review and Me-ta-Analysis. Expert Review of Molecular Diagnostics, 21, 505-514. https://doi.org/10.1080/14737159.2021.1915773

  12. 12. Addaì, M.F., Haposan, J.H., Kusumawardani, H.T., et al. (2020) The Prognostic Role of Neutrophil to Lymphocyte Ratio (NLR) on Sepsis and Related Mortality. International Journal of Infectious Diseases (S1), 101, 276. https://doi.org/10.1016/J.IJID.2020.09.723

  13. 13. Sadaka, F., O’Brien, J. and Prakash, S. (2013) Red Cell Distribu-tion width and Outcome in Patients with Septic Shock. Journal of Intensive Care Medicine, 28, 307-313. https://doi.org/10.1177/0885066612452838

  14. 14. Hausfater, P., Robert Boter, N., Morales Indiano, C., et al. (2021) Monocyte Distribution width (MDW) Performance as an Early Sepsis Indicator in the Emergency Department: Compar-ison with CRP and Procalcitonin in a Multicenter International European Prospective Study. Critical Care, 25, Article No. 227. https://doi.org/10.1186/s13054-021-03622-5

  15. 15. Vélez-Páez, J.L., Legua, P., Vélez-Páez, P., et al. (2022) Mean Platelet Volume and Mean Platelet Volume to Platelet Count Ratio as Predictors of Severity and Mortality in Sepsis. PLOS ONE, 17, e0262356. https://doi.org/10.1371/journal.pone.0262356

  16. 16. Wang, G., Mivefroshan, A., Yaghoobpoor, S., et al. (2022) Prognostic Value of Platelet to Lymphocyte Ratio in Sepsis: A Systematic Review and Meta-Analysis. BioMed Research International, 2022, Article ID: 9056363. https://doi.org/10.1155/2022/9056363

  17. 17. van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P., et al. (2017) The Immunopathology of Sepsis and Potential Therapeutic Targets. Nature Reviews Immunology, 17, 407-420. https://doi.org/10.1038/nri.2017.36

  18. 18. Kumar, S., Ingle, H., Prasad, D.V., et al. (2013) Recognition of Bacterial Infection by Innate Immune Sensors. Critical Reviews in Microbiology, 39, 229-246. https://doi.org/10.3109/1040841X.2012.706249

  19. 19. van der Poll, T., Shankar-Hari, M. and Wiersinga, W.J. (2021) The Immunology of Sepsis. Immunity, 54, 2450-2464. https://doi.org/10.1016/j.immuni.2021.10.012

  20. 20. Delano, M.J. and Ward, P.A. (2016) The Immune System’s Role in Sepsis Progression, Resolution, and Long-Term Outcome. Immunological Reviews, 274, 330-353. https://doi.org/10.1111/imr.12499

  21. 21. Nedeva, C. (2021) Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules, 11, Article 1011. https://doi.org/10.3390/biom11071011

  22. 22. Delano, M.J. and Ward, P.A. (2016) Sepsis-Induced Immune Dysfunction: Can Immune Therapies Reduce Mortality? Journal of Clinical Investigation, 126, 23-31. https://doi.org/10.1172/JCI82224

  23. 23. Tan, C., Gu, J., Chen, H., et al. (2020) Inhibition of Aerobic Glycolysis Promotes Neutrophil to Influx to the Infectious Site via CXCR2 in Sepsis. Shock, 53, 114-123. https://doi.org/10.1097/SHK.0000000000001334

  24. 24. Shen, X.F., Cao, K., Jiang, J.P., et al. (2017) Neutrophil Dysregulation during Sepsis: An Overview and Update. Journal of Cellular and Molecular Medicine, 21, 1687-1697. https://doi.org/10.1111/jcmm.13112

  25. 25. Ji, J. and Fan, J. (2021) Neutrophil in Reverse Migration: Role in Sepsis. Frontiers in Immunology, 12, Article ID: 656039. https://doi.org/10.3389/fimmu.2021.656039

  26. 26. Liu, L. and Sun, B. (2019) Neutrophil Pyroptosis: New Perspec-tives on Sepsis. Cellular and Molecular Life Sciences, 76, 2031-2042. https://doi.org/10.1007/s00018-019-03060-1

  27. 27. Masucci, M.T., Minopoli, M., Del Vecchio, S., et al. (2020) The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology, 11, Article 1749. https://doi.org/10.3389/fimmu.2020.01749

  28. 28. Mutua, V. and Gershwin, L.J. (2021) A Review of Neutrophil Ex-tracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinical Reviews in Allergy & Immunology, 61, 194-211. https://doi.org/10.1007/s12016-020-08804-7

  29. 29. Kumar, S., Payal, N., Srivastava, V.K., et al. (2021) Neutrophil Extracellular Traps and Organ Dysfunction in Sepsis. Clinica Chimica Acta, 523, 152-162. https://doi.org/10.1016/j.cca.2021.09.012

  30. 30. Liew, P.X. and Kubes, P. (2019) The Neutrophil’s Role during Health and Disease. Physiological Reviews, 99, 1223-1248. https://doi.org/10.1152/physrev.00012.2018

  31. 31. Zhu, C.L., Wang, Y., Liu, Q., et al. (2022) Dysregulation of Neutrophil Death in Sepsis. Frontiers in Immunology, 13, Article ID: 963955. https://doi.org/10.3389/fimmu.2022.963955

  32. 32. Hotchkiss, R.S., Monneret, G. and Payen, D. (2013) Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nature Reviews Immunology, 13, 862-874. https://doi.org/10.1038/nri3552

  33. 33. Francois, B., Jeannet, R., Daix, T., et al. (2018) Interleukin-7 Re-stores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight, 3, e98960. https://doi.org/10.1172/jci.insight.98960

  34. 34. Ammer-Herrmenau, C., Kulkarni, U., Andreas, N., et al. (2019) Sep-sis Induces Long-Lasting Impairments in CD4+ T-Cell Responses Despite Rapid Numerical Recovery of T-Lymphocyte Populations. PLOS ONE, 14, e0211716. https://doi.org/10.1371/journal.pone.0211716

  35. 35. Girardot, T., Rimmelé, T., Venet, F., et al. (2017) Apopto-sis-Induced Lymphopenia in Sepsis and Other Severe Injuries. Apoptosis, 22, 295-305. https://doi.org/10.1007/s10495-016-1325-3

  36. 36. Cheng, Z., Abrams, S.T., Toh, J., et al. (2020) The Critical Roles and Mechanisms of Immune Cell Death in Sepsis. Frontiers in Immunology, 11, Article 1918. https://doi.org/10.3389/fimmu.2020.01918

  37. 37. Torres, L.K., Pickkers, P. and van der Poll, T. (2022) Sep-sis-Induced Immunosuppression. Annual Review of Physiology, 84, 157-181. https://doi.org/10.1146/annurev-physiol-061121-040214

  38. 38. Nascimento, D.C., Alves-Filho, J.C., Sônego, F., et al. (2010) Role of Regulatory T Cells in Long-Term Immune Dysfunction Associated with Severe Sepsis. Critical Care Medicine, 38 1718-1725. https://doi.org/10.1097/CCM.0b013e3181e78ad0

  39. 39. Zhao, Y., Shao, Q. and Peng, G. (2020) Exhaustion and Senescence: Two Crucial Dysfunctional States of T Cells in the Tumor Microenvironment. Cellular & Molecular Immu-nology, 17, 27-35. https://doi.org/10.1038/s41423-019-0344-8

  40. 40. Shankar-Hari, M., Fish, M. and Azoulay, E. (2020) Should We Consider Blocking the Inhibitory Immune Checkpoint Molecules for Treating T Cell Exhaustion in Sepsis? Intensive Care Medicine, 46, 119-121. https://doi.org/10.1007/s00134-019-05814-8

  41. 41. McBride, M.A., Patil, T.K., Bohannon, J.K., et al. (2021) Im-mune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Frontiers in Immunol-ogy, 11, Article ID: 624272. https://doi.org/10.3389/fimmu.2020.624272

  42. 42. Wu, J., Li, L. and Luo, J. (2022) Diagnostic and Prognostic Value of Monocyte Distribution Width in Sepsis. Journal of Inflammation Research, 15, 4107-4117. https://doi.org/10.2147/JIR.S372666

  43. 43. Ljungström, L.L., Karlsson, D., Pernestig, A., et al. (2015) Neutrophil to Lymphocyte Count Ratio Performs Better than Procalcitonin as a Biomarker for Bacteremia and Severe Sepsis in the Emergency Department. Critical Care, 19, Article No. P66. https://doi.org/10.1186/cc14146

  44. 44. Hou, S.K., Lin, H.A., Chen, S.C., et al. (2021) Monocyte Distribution Width, Neutrophil-to-Lymphocyte Ratio, and Plate-let-to-Lymphocyte Ratio Improves Early Prediction for Sepsis at the Emergency. Journal of Personalized Medicine, 11, Article 732. https://doi.org/10.3390/jpm11080732

  45. 45. Tian, T., Wei, B. and Wang, J. (2021) Study of C-Reactive Protein, Procalcitonin, and Immunocyte Ratios in 194 Patients with Sepsis. BMC Emergency Medicine, 21, Article No. 81. https://doi.org/10.1186/s12873-021-00477-5

  46. 46. Westerdijk, K., Simons, K.S., Zegers, M., et al. (2019) The Value of the Neutrophil-Lymphocyte Count Ratio in the Diagnosis of Sepsis in Patients Admitted to the Intensive Care Unit: A Retrospective Cohort Study. PLOS ONE, 14, e0212861. https://doi.org/10.1371/journal.pone.0212861

  47. 47. Kaushik, R., Gupta, M., Sharma, M., et al. (2018) Diagnostic and Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Early and Late Phase of Sepsis. Indian Journal of Critical Care Medicine, 22, 660-663. https://doi.org/10.4103/ijccm.IJCCM_59_18

  48. 48. Spoto, S., Lupoi, D.M., Valeriani, E., Fogolari, M., et al. (2021) Diagnostic Accuracy and Prognostic Value of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in Septic Patients outside the Intensive Care Unit. Medicina (Kaunas), 57, Article 811. https://doi.org/10.3390/medicina57080811

  49. 49. Karamouzos, V., Paraskevas, T., Mulita, F., et al. (2022) Neutro-phil to Lymphocyte Ratio and Platelet to Lymphocyte Percentage Ratio as Predictors of In-Hospital Mortality in Sepsis. An Observational Cohort Study. Materia Socio-Medica, 34, 33-36. https://doi.org/10.5455/msm.2022.33.33-36

  50. 50. Ni, J., Wang, H., Li, Y., et al. (2019) Neutrophil to Lymphocyte Ratio (NLR) as a Prognostic Marker for In-Hospital Mortality of Patients with Sepsis: A Secondary Analysis Based on a Single-Center, Retrospective, Cohort Study. Medicine (Baltimore), 98, e18029. https://doi.org/10.1097/MD.0000000000018029

  51. 51. Chebl, R.B., Assaf, M., Kattouf, N., et al. (2022) The Asso-ciation between the Neutrophil to Lymphocyte Ratio and In-Hospital Mortality among Sepsis Patients: A Prospective Study. Medicine (Baltimore), 101, e29343. https://doi.org/10.1097/MD.0000000000029343

  52. 52. Ye, W., Chen, X., Huang, Y., et al. (2020) The Association between Neutrophil-to-Lymphocyte Count Ratio and Mortality in Septic Patients: A Retrospective Analysis of the MIMIC-III Database. Journal of Thoracic Disease, 12, 1843- 1855. https://doi.org/10.21037/jtd-20-1169

  53. 53. Li, Y., Wang, J., Wei, B., et al. (2022) Value of Neutrophil:Lymphocyte Ratio Combined with Sequential Organ Failure Assessment Score in Assessing the Prognosis of Sepsis Patients. International Journal of General Medicine, 15, 1901-1908. https://doi.org/10.2147/IJGM.S348200

  54. 54. Li, J.Y., Yao, R.Q., Liu, S.Q., et al. (2021) Efficiency of Monocyte/High-Density Lipoprotein Cholesterol Ratio Combined with Neutrophil/Lymphocyte Ratio in Predicting 28-Day Mortality in Patients with Sepsis. Frontiers in Medicine (Lausanne), 8, Article 741015. https://doi.org/10.3389/fmed.2021.741015

  55. 55. Liu, S., Wang, X., She, F., et al. (2021) Effects of Neutro-phil-to-Lymphocyte Ratio Combined with Interleukin-6 in Predicting 28-Day Mortality in Patients with Sepsis. Frontiers in Immunology, 12, Article 639735. https://doi.org/10.3389/fimmu.2021.639735

  56. 56. Hwang, S.Y., Shin, T.G., Jo, I.J., et al. (2017) Neutro-phil-to-Lymphocyte Ratio as a Prognostic Marker in Critically-Ill Septic Patients. The American Journal of Emergency Medicine, 35, 234-239. https://doi.org/10.1016/j.ajem.2016.10.055

  57. 57. Liu, S., Li, Y., She, F., et al. (2021) Predictive Value of Immune Cell Counts and Neutrophil-to-Lymphocyte Ratio for 28-Day Mortality in Patients with Sepsis Caused by In-tra-Abdominal Infection. Burns & Trauma, 9, tkaa040. https://doi.org/10.1093/burnst/tkaa040

  58. 58. Drăgoescu, A.N., Pădureanu, V., Stănculescu, A.D., et al. (2022) Neu-trophil to Lymphocyte Ratio (NLR)—A Useful Tool for the Prognosis of Sepsis in the ICU. Biomedicines, 10, Article 75. https://doi.org/10.3390/biomedicines10010075

  59. 59. Huang, Z., Fu, Z., Huang, W., et al. (2020) Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Sepsis: A Meta-Analysis. The American Journal of Emergency Medicine, 38, 641-647. https://doi.org/10.1016/j.ajem.2019.10.023

  60. 60. Yilmaz, H., Cakmak, M., Inan, O., et al. (2015) Can Neutrophil-Lymphocyte Ratio Be Independent Risk Factor for Predicting Acute Kidney Injury in Patients with Severe Sepsis? Renal Failure, 37, 225-229. https://doi.org/10.3109/0886022X.2014.982477

  61. 61. Bu, X., Zhang, L., Chen, P., et al. (2019) Relation of Neu-trophil-to-Lymphocyte Ratio to Acute Kidney Injury in Patients with Sepsis and Septic Shock: A Retrospective Study. International Immunopharmacology, 70, 372-377. https://doi.org/10.1016/j.intimp.2019.02.043

  62. 62. Victor, P., Connor, W., Afsana, A., et al. (2020) Association of Neutrophil-Lymphocyte Ratio and Acute Kidney Injury in Septic Patients in the ICU. Chest, 158, A603-A603. https://doi.org/10.1016/j.chest.2020.08.568

  63. 63. Sarı, R., Karakurt, Z., Ay, M., et al. (2019) Neutrophil to Lym-phocyte Ratio as a Predictor of Treatment Response and Mortality in Septic Shock Patients in the Intensive Care Unit. Turkish Journal of Medical Sciences, 49, 1336-1349. https://doi.org/10.3906/sag-1901-105

  64. 64. Cai, J., Li, H., Zhang, C., et al. (2021) The Neutrophil-to-Lymphocyte Ratio Determines Clinical Efficacy of Corticosteroid Therapy in Patients with COVID-19. Cell Metabolism, 33, 258-269.e3. https://doi.org/10.1016/j.cmet.2021.01.002

  65. NOTES

    *通讯作者。

期刊菜单