Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51514 , 9 pages
10.12677/ACM.2022.125635

岩藻多糖对盆腔肿瘤放疗所致急性放射性肠炎的疗效研究

陈晓晗1*,孙立2,陆海军1#,孙占一3,姜进举3

1青岛大学附属医院肿瘤放疗科,山东 青岛

2菏泽市市立医院肿瘤科,山东 菏泽

3青岛明月海藻集团有限公司,海藻活性物质国家重点实验室,山东 青岛

收稿日期:2022年4月20日;录用日期:2022年5月15日;发布日期:2022年5月23日

摘要

目的:评估岩藻多糖治疗急性放射性肠炎的安全性及疗效,为急性放射性肠炎的治疗提供新方法。方法:选择于青岛大学附属医院放疗科行盆腔肿瘤放射治疗的患者120例(2018年6月至2019年10月)。随机平均分成两组,对照组(60例)患者给予对症治疗措施,实验组(60例)在对症治疗措施基础上加用岩藻多糖,比较两组的放射性肠炎发病率、功能状态评分及血清中炎性因子水平。结果:1) 实验组放射性肠炎发病率低于对照组(P < 0.05);2) 实验组在症状评分上低于对照组,在功能状态评分上高于对照组(P < 0.05);3) 比较两组放疗前后血清中炎性细胞因子表达水平,差异有统计学意义(P < 0.05)。结论:岩藻多糖治疗放射性肠炎疗效确切,有效改善患者生活质量,值得临床推广。

关键词

岩藻多糖,放射性肠炎,炎性因子,放射治疗

The Clinical Effects of Fucoidan on Radiation Enteritis Induced by Radiotherapy for Pelvic Tumor

Xiaohan Chen1*, Li Sun2, Haijun Lu1#, Zhanyi Sun3, Jinju Jiang3

1Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Shandong

2Department of Oncology, Heze Municipal Hospital, Heze Shandong

3State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao Shandong

Received: Apr. 20th, 2022; accepted: May 15th, 2022; published: May 23rd, 2022

ABSTRACT

Objective: To evaluate the safety and efficacy of fucoidan in the treatment of acute radiation enteritis and to provide a new method for the treatment of acute radiation enteritis. Methods: A total of 120 patients (from June 2018 to October 2019) were enrolled in the Department of Radiotherapy of the Affiliated Hospital of Qingdao University and received radiotherapy for pelvic tumors. The patients in the control group (60 cases) were given symptomatic treatment measures, and the patients in the experimental group (60 cases) were added with fucoidan on the basis of symptomatic treatment measures. The incidence of radioactive enteritis, the score of functional status and the level of inflammatory factors in serum were compared between the two groups. Results: 1) The incidence of radioactive enteritis in the experimental group was lower than that in the control group (P< 0.05); 2) The symptom score of the experimental group was lower than that of the control group, and the functional status score of the experimental group was higher than that of the control group (P < 0.05); 3) The expression levels of inflammatory cytokines in serum of the two groups before and after radiotherapy were compared, and the difference was statistically significant (P < 0.05). Conclusion: The effect of fucoidan on radioactive enteritis is definite, and it can effectively improve the quality of life of patients, which is worthy of clinical promotion.

Keywords:Fucoidan, Radiation Enteritis, Inflammatory Factors, Radiation Therapy

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

放射治疗在盆腔肿瘤治疗中发挥重要作用,尽管放疗技术在不断进步,辐射诱导的肠炎仍然是盆腔放疗患者的主要副作用 [1] [2],严重影响患者的生活质量及治疗依从性,提高治疗及护理成本。岩藻多糖是一种水溶性硫酸盐多糖,其在褐藻中含量丰富并且具有多种生物学活性 [3] - [8],本研究评估其对急性放射性肠炎的治疗效果,为临床治疗提供新的选择。

2. 材料与方法

2.1. 材料

入组接受盆腔肿瘤放射治疗的患者120例。(2018年6月至2019年10月)

患者的一般临床特征见表1

2.2. 方法

2.2.1. 研究设计

本研究为前瞻性、单中心、随机对照临床研究,本研究通过青岛大学附属医院伦理委员会批准 (QYFYKYLL 55131190)。

2.2.2. 入组及排除标准

入组标准1) 年龄40~78岁,KPS (Karnofsky,卡氏评分) ≥ 70分(评估标准见表2);2) 初次接受盆腔

Table 1. General clinical characteristics of the patients

表1. 患者一般临床特征

Table 2. Karnofsky performance status standard

表2. 功能状态评分标准

肿瘤调强放射治疗;3) 预计生存期 > 6个月。

排除标准:1) 肠道肿瘤放疗患者;2) 合并慢性便秘、腹泻,合并肛周疾病及炎症性肠病者;3) 合并严重的呼吸、血液、心血管、神经系统严重疾病。

2.2.3. 研究方法

按随机数字表法随机分为实验组及对照组,每组60例。在放疗期间,对照组患者给予对症治疗措施(止泻、调节肠道菌群等),实验组在对症治疗措施基础上加用岩藻多糖,一次三粒(450 mg/粒),一天三次,疗程从放疗开始至放疗结束。(岩藻多糖由青岛明月海藻集团有限公司,海藻活性物质国家重点实验室提供)。

2.2.4. 放射治疗

1) 定位:患者取俯卧脚头位,使用热塑体模对患者进行体位固定并进行定位。2) CT扫描:采用PHILIPS公司大孔径CT模拟定位机对患者进行模拟定位扫描,扫描层厚3 mm,扫描范围上达第2腰椎上缘以上,下至肛门下缘以下。3) 勾画靶区,制定放疗计划:由两名副高级(或)以上职称的医生共同在已定位的图像 上进行放疗靶区勾画。全部患者均采用调强放疗技术(intensity modulated radiationtherapy, IMRT)并进行常规分割进行照射。使95%等剂量线水平为处方剂量。采取的处方剂量:50~54 Gy,1.8~2.0 Gy/次,5次/周,5周完成。OAR限制剂量:直肠V50 < 50%,小肠Dmax ≤ 52 Gy,V50 < 5%,股骨头V20 < 50%,V50 < 5%,脊髓Dmax < 40 Gy,马尾Dmax < 50 Gy。

2.2.5. 炎性因子测定

抽取患者治疗前后晨起空腹静脉血,采用ELISA法检测,具体检测步骤如下:

实验开始前,各试剂均应平衡至室温;试剂或样品配制时,均需充分混匀,并尽量避免起泡。

1) 加样:分别设空白孔、标准孔、待测样品孔。空白孔加标准品 & 样品稀释液100 μl,余孔分别加标准品或待测样品100 μl。给酶标板覆膜,37℃孵育90分钟。

2) 弃去孔内液体,甩干,不用洗板,每孔中加入生物素化抗体工作液100 μl (在使用前20分钟内配制),给酶标板加上覆膜,37℃温育1小时。

3) 弃去液体,洗板3次,每次浸泡30 S,大约350 μl/每孔,甩干并在吸水纸上轻拍将孔内液体拍干。

4) 每孔加酶结合物工作液(临用前20分钟内配制,避光放置)100 μl,加上覆膜,37℃温育30分钟。

5) 弃去孔内液体,甩干,洗板5次。

6) 每孔加显色剂(TMB) 90 μl,酶标板加上覆膜37℃避光孵育15分钟。

7) 每孔加终止液50 μl,终止反应,此时蓝色立转黄色。

8) 立即用酶标仪在450 nm波长测量各孔的光密度(OD值)。应提前打开酶标仪电源,预热仪器,设置好检测程序。

9) 实验完毕后,未使用完的试剂按规定保存温度放回冰箱保存。

(试剂盒:IL-1β (E-EL-H0149c)、IL-6 (E-EL-H0102c)、TNF-α (E-EL-H0109c)、IL-10 (E-EL-H0103c),购买于Elabscience (中国,武汉))。

2.3. 观察指标

1) 观察两组急性放射性肠炎发生率及严重程度,进行功能症状评分。

2) 检测两组患者放疗前后的血清中炎症因子IL-1β、IL-6、IL-10、TNF-α的变化。

2.4. 统计学方法

计量资料数据以均数±标准差(Mean ± SD)表示,采用独立样本t检验和配对样本t检验,计数资料行卡方检验,另外应用秩和检验及广义估计方程,P < 0.05认为差异有统计学意义,均采用Spss25.0软件进行数据分析。

3. 结果

3.1. 实验完成情况

实验组1人因腹泻严重退出实验,2人未按规定服用药物,实际完成人数117人,对照组60人,实验组57人。两组在性别、年龄、肿瘤类型、KPS评分以及手术、化疗人数、肠道实际受量方面差异无统计学意义(P > 0.05)见表3

3.2. 放射性肠炎发生情况

从放疗开始至放疗结束后2周,实验组发病率低于对照组,差异有统计学意义(Z = −2.081,P值= 0.037,P < 0.05),见表4

Table 3. Clinical data of the two groups

表3. 两组完成人数临床资料

Table 4. The occurrence of radiation enteritis (RE) in two groups (number)

表4.两组患者放射性肠炎发生情况(例)

3.3. 两组每周增加放射性肠炎人数及累计人数

统计两组从放疗开始至放疗结束后2周,每周增长患者人数见表5,通过广义估计方程,可得χ2组别 = 3.898,P值 = 0.048,P < 0.05;χ2时间 = 16.543,P值 < 0.001;与第1周相比,两组在第2、3、4、5周及放疗后两周的P值为0.175、<0.001、<0.001、<0.001、0.003;可以得出实验组的发病率低于对照组,并且与第1周相比较,从第3周至放疗后2周每个时间点的发病率差异均有统计学意义。

Table 5. The number of new radioactive enteritis each week in two groups (number)

表5. 两组每周新增放射性肠炎人数(例)

3.4. 两组放疗后LENT-SOMA评分及KPS评分

实验组放疗后在症状评分上低于对照组,在功能状态评分上高于对照组,差异有统计学意义(P < 0.05)见表6

Table 6. The functional status scores of LENT-SOMA and KPS in the two groups after radiotherapy

表6. 两组放疗后LENT-SOMA及KPS功能状态评分

3.5. 两组放疗前后炎性因子变化情况

检测两组放疗前后IL-1β、IL-6、IL-10、TNF-α炎性因子变化,结果示:1) 放疗前两组四种炎性因子对比,P > 0.05,差异无统计学意义;2) 两组放疗前后炎性因子相比,两组IL-1β、IL-6、TNF-α均较放疗前升高,IL-10较放疗前下降,P < 0.05,差异有统计学意义;3) 实验组放疗后炎性因子与对照组放疗后相比较,IL-1β、IL-6、TNF-α均低于对照组,IL-10高于对照组,P < 0.05,差异有统计学意义,见表7~9。

Table 7. Levels of inflammatory factors in the two groups before radiotherapy (pg/ml)

表7. 放疗前两组炎性因子水平(pg/ml)

Table 8. Changes of inflammatory factors before and after radiotherapy in the two groups (pg/ml)

表8. 两组放疗前后炎性因子变化(pg/ml)

Table 9. Levels of inflammatory factors in the two groups after radiotherapy (pg/ml)

表9. 两组放疗后炎性因子(pg/ml)

4. 讨论

放射治疗是腹部盆腔肿瘤的重要治疗方式 [9],其引起肠壁的急性或慢性损伤称为放射性肠炎。尽管放射肿瘤学技术取得了进步,包括调强放射治疗和三维放射治疗,放射性肠炎仍然是接受盆腔放射治疗的患者的主要不良反应 [1] [2]。调强放射治疗中,2级及以上急性肠道毒性症状的发生率为30%~40% [10] [11],其发生在放射治疗后90天内或最多90天,主要表现为腹泻、便血、里急后重和感染等症状 [12],严重影响肿瘤患者的治疗依从性及生活质量。因此,临床上迫切需要针对急性放射性肠炎的预防治疗手段。目前研究认为 [13] 放射性肠炎发生的机制包括粘膜破坏及随后的炎症。在急性期,其特征是隐窝细胞凋亡,导致上皮屏障的破坏及炎症反应 [14]。炎性因子在肠道急性炎症反应中发挥着重要作用 [15],TNF-α是粘膜中产生促炎细胞因子的主要驱动因素,是炎症反应过程中出现最早、最重要的炎性介质 [16],促使IL-1、IL-6等因子的合成和释放。IL-1家族成员是先天免疫和炎症的中枢介质,其中IL-1β是重要的促炎细胞因子 [17]。IL-6 [18] 能诱导B细胞分化和产生抗体,是炎性反应的促发剂。IL-10 [19] 被认为是抑制免疫系统促炎反应的最重要的细胞因子。

岩藻多糖是一种水溶性硫酸性多糖,来源于棕色海藻和一些海洋无脊椎动物的细胞壁 [20]。研究证明岩藻多糖具有抗肿瘤 [3]、免疫调节 [4]、抗病毒 [5]、抗氧化 [6]、抗炎 [21] 等多种药理作用,其中对炎症性疾病的有益作用一直是深入研究的对象,体内 [7] [8] [22] 及体外 [23] [24] [25] 研究表明岩藻多糖的抗炎活性依赖于NO合成和iNOS表达下降;减少TNF-α、IL-1β、IL-6、IL-8、COX-2等的分泌;下调MAPK、NF-κB信号通路;提高IL-10表达。基于以上研究,我们首次进行了岩藻多糖在放射性肠炎的临床研究,结果表明岩藻多糖可以降低放射性肠炎的发生率,进一步证实了岩藻多糖的抗炎效应。此外,放疗后两组患者均出现IL-10表达下降,IL-1β、IL-6、TNF-α的表达均上升,说明放疗会导致患者体内出现免疫应答异常,同时观察到实验组IL-1β、IL-6、TNF-α的上升幅度以及IL-10的下降幅度均高于对照组,说明岩藻多糖能够抑制促炎因子的表达并且稳定抑炎因子,进而降低放疗患者急性肠道炎症反应。

综上所述,口服岩藻多糖能够显著降低患者放射性肠炎的发生率,改善了患者的临床症状,提高患者的生存质量及治疗依从性,是有效的预防及治疗放射性肠炎的手段,值得进行临床推广。

基金项目

海藻活性物质国家重点实验室开放基金资助项目编号:SKL-BASS1803。

文章引用

陈晓晗,孙 立,陆海军,孙占一,姜进举. 岩藻多糖对盆腔肿瘤放疗所致急性放射性肠炎的疗效研究
The Clinical Effects of Fucoidan on Radiation Enteritis Induced by Radiotherapy for Pelvic Tumor[J]. 临床医学进展, 2022, 12(05): 4381-4389. https://doi.org/10.12677/ACM.2022.125635

参考文献

  1. 1. Ni, L., Wang, L., Fu, X., et al. (2020) In Vitro and in Vivo An-ti-Inflammatory Activities of a Fucose-Rich Fucoidan Isolated from Saccharina japonica. International Journal of Bio-logical Macromolecules, 156, 717-729. https://doi.org/10.1016/j.ijbiomac.2020.04.012

  2. 2. Hwang, P.A., Phan, N.N., Lu, W.J., et al. (2016) Low-Molecular-Weight Fucoidan and High-Stability Fucoxanthin from Brown Seaweed Exert Prebiotics and An-ti-Inflammatory Activities in Caco-2 Cells. Food & Nutrition Research, 60, 32033. https://doi.org/10.3402/fnr.v60.32033

  3. 3. Murai, T., Hattori, Y., Sugie, C., et al. (2017) Comparison of Multileaf Collimator and Conventional Circular Collimator Systems in Cyberknife Stereotactic Radiotherapy. Journal of Radiation Research, 58, 693-700. https://doi.org/10.1093/jrr/rrw130

  4. 4. Murai, T., Shibamoto, Y., Manabe, Y., et al. (2013) Intensity-Modulated Radiation Therapy Using Static Ports of Tomotherapy (TomoDirect): Comparison with the TomoHelical Mode. Radiation Oncology, 8, 68. https://doi.org/10.1186/1748-717X-8-68

  5. 5. Hsu, H.Y. and Hwang, P.A. (2019) Clinical Applications of Fu-coidan in Translational Medicine for Adjuvant Cancer Therapy. Clinical and Translational Medicine, 8, 15. https://doi.org/10.1186/s40169-019-0234-9

  6. 6. Hwang, P.A., Lin, H.V., Lin, H.Y., et al. (2019) Dietary Supple-mentation with Low-Molecular-Weight Fucoidan Enhances Innate and Adaptive Immune Responses and Protects against Mycoplasma pneumoniae Antigen Stimulation. Marine Drugs, 17, 175. https://doi.org/10.3390/md17030175

  7. 7. Li, H., Li, J., Tang, Y., et al. (2017) Fucoidan from Fucus Vesiculosus Suppresses Hepatitis B Virus Replication by Enhancing Extracellular Signal-Regulated Kinase Activation. Virology Journal, 14, 178. https://doi.org/10.1186/s12985-017-0848-8

  8. 8. Sanjeewa, K.K., Fernando, I.P., Kim, E.A., et al. (2017) An-ti-Inflammatory Activity of a Sulfated Polysaccharide Isolated from an Enzymatic Digest of Brown Seaweed Sargassum horneri in RAW 264.7 Cells. Nutrition Research and Practice, 11, 3-10. https://doi.org/10.4162/nrp.2017.11.1.3

  9. 9. Li, Y., Zhao, W., Wang, L., et al. (2019) Protective Effects of Fucoidan against Hydrogen Peroxide-Induced Oxidative Damage in Porcine Intestinal Epithelial Cells. Animals (Basel), 9, E1108. https://doi.org/10.3390/ani9121108

  10. 10. Fernando, I.P.S., Sanjeewa, K.K.A., Samarakoon, K.W., et al. (2017) A Fucoidan Fraction Purified from Chnoospora minima; a Potential Inhibitor of LPS-Induced Inflammatory Re-sponses. International Journal of Biological Macromolecules, 104, 1185-1193. https://doi.org/10.1016/j.ijbiomac.2017.07.031

  11. 11. Aleissa, M.S., Alkahtani, S., Abd Eldaim, M.A., et al. (2020) Fucoidan Ameliorates Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries in Diabetic Rats Intoxi-cated with Aflatoxin B(1). Oxidative Medicine and Cellular Longevity, 2020, Article ID: 9316751. https://doi.org/10.1155/2020/9316751

  12. 12. Allen, C., Her, S. and Jaffray, D.A. (2017) Radiotherapy for Cancer: Present and Future. Advanced Drug Delivery Reviews, 109, 1-2. https://doi.org/10.1016/j.addr.2017.01.004

  13. 13. Klopp, A.H., Yeung, A.R., Deshmukh, S., et al. (2018) Pa-tient-Reported Toxicity during Pelvic Intensity-Modulated Radiation Therapy: NRG Oncology-RTOG 1203. Journal of Clinical Oncology, 36, 2538-2544. https://doi.org/10.1200/JCO.2017.77.4273

  14. 14. Kwak, Y.K., Lee, S.W., Kay, C.S., et al. (2017) Intensi-ty-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Pelvic Radiation Therapy with Moderate Dose. PLoS ONE, 12, e0183339. https://doi.org/10.1371/journal.pone.0183339

  15. 15. Cao, X.P. (2020) Radiation Intestinal Injury in the Era of Preci-sion Radiotherapy. Chinese Journal of Gastrointestinal Surgery, 23, 734-736.

  16. 16. François, A., Milliat, F., Guipaud, O., et al. (2013) Inflammation and Immunity in Radiation Damage to the Gut Mucosa. BioMed Research International, 2013, Article ID: 123241. https://doi.org/10.1155/2013/123241

  17. 17. Shukla, P.K., Gangwar, R., Manda, B., et al. (2016) Rapid Disruption of Intestinal Epithelial Tight Junction and Barrier Dysfunction by Ionizing Radiation in Mouse Colon in Vivo: Protection by N-acetyl-l-cysteine. The American Journal of Physiology-Gastrointestinal and Liver Physi-ology, 310, G705-G715. https://doi.org/10.1152/ajpgi.00314.2015

  18. 18. Lu, L., Li, W., Chen, L., et al. (2019) Radiation-Induced Intestinal Damage: Latest Molecular and Clinical Developments. Future Oncology, 15, 4105-4118. https://doi.org/10.2217/fon-2019-0416

  19. 19. Annibaldi, A. and Meier, P. (2018) Checkpoints in TNF-Induced Cell Death: Implications in Inflammation and Cancer. Trends in Molecular Medicine, 24, 49-65. https://doi.org/10.1016/j.molmed.2017.11.002

  20. 20. Mantovani, A., Dinarello, C.A., Molgora, M., et al. (2019) In-terleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity, 50, 778-795. https://doi.org/10.1016/j.immuni.2019.03.012

  21. 21. Rose-John, S. (2018) Interleukin-6 Family Cytokines. Cold Spring Harbor Perspectives in Biology, 10, a028415. https://doi.org/10.1101/cshperspect.a028415

  22. 22. Wei, H.X., Wang, B. and Li, B. (2020) IL-10 and IL-22 in Mu-cosal Immunity: Driving Protection and Pathology. Frontiers in Immunology, 11, Article No. 1315. https://doi.org/10.3389/fimmu.2020.01315

  23. 23. Wang, Y., Xing, M., Cao, Q., et al. (2019) Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Marine Drugs, 17, E183. https://doi.org/10.3390/md17030183

  24. 24. Park, J., Cha, J.D., Choi, K.M., et al. (2017) Fucoidan Inhibits LPS-Induced Inflammation in Vitro and during the Acute Response in Vivo. International Immunopharmacology, 43, 91-98. https://doi.org/10.1016/j.intimp.2016.12.006

  25. 25. Hu, Y., Ren, D., Song, Y., et al. (2020) Gastric Protective Activities of Fucoidan from Brown Alga Kjellmaniella crassifolia through the NF-κB Signaling Pathway. International Journal of Biological Macromolecules, 149, 893-900. https://doi.org/10.1016/j.ijbiomac.2020.01.186

  26. NOTES

    *第一作者。

    #通讯作者Email: lhj82920608@163.com

期刊菜单