﻿ 一类具有周期系数的脉冲种群模型稳定性分析 Stability Analysis of an Impulsively Population Control Model in Periodical Environment

Vol.05 No.01(2016), Article ID:16961,9 pages
10.12677/AAM.2016.51003

Stability Analysis of an Impulsively Population Control Model in Periodical Environment

Na Wang, Zhichun Yang

School of Mathematical Sciences, Chongqing Normal University, Chongqing

Received: Jan. 28th, 2016; accepted: Feb. 19th, 2016; published: Feb. 22nd, 2016

ABSTRACT

In the paper, we study the stability of pest-extinction periodic solutions of an impulsively population control model in periodical environment. First, we formulate a plant-pest-natural enemy model in periodical environment with harvesting, spraying and releasing at different moments. Then, we obtain pest-extinction periodic solutions. Some sufficient conditions for local stability and globally stability of pest-extinction periodic solutions are determined by the comparison technique of impulsive differential equations and the Floquet theory.

Keywords:Impulsively, Periodical Environment, Pest-Extinction Periodic Solution, Stability

1. 引言

(1)

2. 预备知识

(2)

(3)

(4)

(5)

(6)

(7)

(8)

3. 害虫灭绝周期解的稳定性

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Stability Analysis of an Impulsively Population Control Model in Periodical Environment[J]. 应用数学进展, 2016, 05(01): 15-23. http://dx.doi.org/10.12677/AAM.2016.51003

1. 1. Jiao, J.J., Chen, L.S. and Cai, S.H. (2012) Dynamical Analysis of a Biological Resource Management Model with Im-pulsive Releasing and Harvesting. Advances in Difference Equations, 9, 1-15.

2. 2. Singh Jatav, K. and Dhar, J. (2013) Hybrid Approach for Pest Control with Impulsive Releasing of Natural Enemies and Chemical Pesticides: A Plant-Pest-Natural Enemy Model. Nonlinear Analysis: Hybrid Systems, 9, 1-14.

3. 3. Georgescu, P. and Morosanu, G. (2008) Impulsive Perturbations of a Three-Trophic Prey-Dependent Food Chain System. Mathematical and Computer Modelling, 48, 975-997. http://dx.doi.org/10.1016/j.mcm.2007.12.006

4. 4. 杨志春. 具有脉冲和HollingⅢ类功能反应的捕食系统的持续生存和周期解[J]. Journal of Biomathematics, 2004, 19(4): 439-444.

5. 5. Liu, X.N. and Chen, L.S. (2004) Global Dynamics of the Periodic System with Periodic Impulsive Perturbations. Journal of Mathe-matical Analysis and Applications, 289, 279-291. http://dx.doi.org/10.1016/j.jmaa.2003.09.058

6. 6. Tang, S.Y. and Chen, L.S. (2002) The Periodic Predator-Prey Lokta-Volterra Model with Impulsive Effect. Journal of Mechanics in Medicine and Biology, 2, 267-296. http://dx.doi.org/10.1142/S021951940200040X

7. 7. Wang, W.M., Wang, X.Q. and Lin, Y.Z. (2008) Complicated Dynamics of a Predator-Prey System with Watt-Type Functional Response and Impulsive Control Strategy. Chaos Solitons and Fractals, 37, 1427-1441. http://dx.doi.org/10.1016/j.chaos.2006.10.032

8. 8. Song, X.Y. and Li, Y.F. (2007) Dynamics Complexities of a HollingⅡ Two-Prey One-Predator System with Impulsive Effect. Chaos Solitons and Fractals, 33, 463-478. http://dx.doi.org/10.1016/j.chaos.2006.01.019

9. 9. Liu, K.Y., Meng, X.Z. and Chen, L.S. (2008) A New Stage Structured Predator-Prey Gomportz Model with Time Delay and Impulsive Perturbations on the Prey. Applied Mathe-matics and Computation, 196, 705-719. http://dx.doi.org/10.1016/j.amc.2007.07.020

10. 10. Bainov, D. and Simeonov, P. (1993) Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, England, 39-53.

11. 11. 宋新宇, 郭红建, 师向云. 脉冲微分方程理论及其应用[M]. 北京: 科学出版社, 2011: 19-23, 98-109.