﻿ 一个正定不等式的最佳参数 A Sharp Parameter Value of a Positive Definite Inequality

Vol.05 No.01(2016), Article ID:16966,4 pages
10.12677/AAM.2016.51006

A Sharp Parameter Value of a Positive Definite Inequality

Beiye Feng

Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing

Received: Jan. 30th, 2016; accepted: Feb. 20th, 2016; published: Feb. 23rd, 2016

ABSTRACT

In this paper, we solved an open problem proposed in [1] . We get a sharp parameter value of a positive definite inequality by elementary method.

Keywords:Sharp Parameter Value, Positive Definite, Inequality

。其中。Murray Marshall在 [1] 中用微积分方法证明了如下断言：“Claim 1. When, on”。然后他做了一个注记；“is on when is ‘large enough’. Claim 1. shows that is ‘large enough’ in this sense. There is no claim that is in any way optimal”。本文用初等方法证明了在中使这一不等式成立的最佳参数是

1)在这种情况下，设，那么

2)。在这种情况下，设，那么

A Sharp Parameter Value of a Positive Definite Inequality[J]. 应用数学进展, 2016, 05(01): 41-44. http://dx.doi.org/10.12677/AAM.2016.51006

1. 1. Marshall, M. (2008) Positive Polynomials and Sums of Squares. American Mathematical Society, SURV Vol. 146.

2. 2. Rajwade, A.R. (1993) London Mathematical Society Lecture Note Series. Cambridge University Press, London. http://dx.doi.org/10.1017/CBO9780511566028

3. 3. Scheiderer, C. (2000) Sums of Squares of Regular Functions on Real Algebraic Varieties. Transactions of the American Mathematical Society, 352, 1039-1069. http://dx.doi.org/10.1090/S0002-9947-99-02522-2

4. 4. Cassels, J.W.S. (1964) On the Representation of Rational Functions as Suns of Squares. Acta Arithmetica, 9, 79-82.

5. 5. 冯贝叶. 四次函数实零点的完全判据和正定条件[J]. 应用数学学报, 2006, 29(3): 454-466.