﻿ 高超发动机涡轮离心泵的能量和汽蚀性能研究 Research on Power and Cavitation Performance on a High-Speed Engine Turbine Centrifugal Pump

Advances in Energy and Power Engineering
Vol.03 No.06(2015), Article ID:16734,8 pages
10.12677/AEPE.2015.36032

Research on Power and Cavitation Performance on a High-Speed Engine Turbine Centrifugal Pump

Chongyan Pei1, Linlin Li1, Honggui Cheng1, Qiangqiang Sun2, Jin Jiang2*, You Fu2

1Science and Technology on Scramjet Laboratory, The 31st Research Institute of CASIC, Beijing

2Key Lab. of Hydraulic Machinery Transient, MOE, School of Power and Mechanical Engineering, Wuhan University, Wuhan Hubei

Received: Dec. 5th, 2015; accepted: Dec. 28th, 2015; published: Dec. 31st, 2015

ABSTRACT

Inducer geometry has a significant effect on power and suction performance on a high-speed engine turbine centrifugal pump. In the present work, numerical simulation is performed on a high- speed engine turbine centrifugal pump without and with different variable pitch inducer and the RNG k-ε turbulent model and Schnerr-Sauer cavitation model are adopted to simulate the turbulent flow and mass transfer of working material. The result shows that the power and cavitation performance on a high-speed engine turbine centrifugal pump can be improved markedly by installing a variable pitch inducer before the impeller. The cavitation performance of pump with variable pitch inducer whose leaves diameter is constant is better than the one’s leaves diameter is variable.

Keywords:Power and Cavitation Performance, High-Speed Engine Turbine Centrifugal Pump, Variable Pitch Inducer, Numerical Simulation

1中国航天科工集团三十一研究所，高超声速冲压发动机技术重点实验室，北京

2武汉大学，动力与机械学院，水力机械过渡过程教育部重点实验室，湖北 武汉

1. 引言

2. 数值模型

(一) 控制方程

μi为i方向上的速度，p是混合压力，μm层流粘度，μt湍流粘度。

ρ为混合密度，l与ν分别代表液相与气相，a代表体积分数。

(二) 空化模型

R为相间质量传输率，Re、Rc分别为气相生成率及凝结生成率

r为气泡半径，Pν饱和蒸汽压力

3. 诱导轮设计

ξ1为进口轮毂比，ϕ1进口流量系数

(a) 诱导轮1 (b) 诱导轮2

Figure 1. Induced wheel model

Table 1. Design parameter of induced wheel

β1——诱导轮叶片在某一直径处叶片进口角；

β2——诱导轮叶片在某一直径处叶片出口角；

θ——诱导轮叶片包角；

m——螺距变化的特征数，此处取1。

4. 边界条件设定与计算结果分析

(一) 边界条件的设置

1) 进口边界条件：入口静压为0.5 atm。

2) 出口边界条件：泵的出口设置为流量边界条件，流量等于泵的额定流量。

3) 壁面边界条件：与旋转部件相邻的壁面设置为旋转壁面，转速与泵的转速一样。其他的壁面设置为静止壁面，转速为0。

4) 交界面边界条件：这种类型的边界条件用于进口流道和诱导轮、诱导轮和主叶轮、叶轮和蜗壳之间的相交平面。由于相交平面两侧的网格分布不一致，通过设置这种边界条件，可以将相交平面两侧的数据联系起来。

(二) 计算结果及分析

1、泵基本流道计算结果

2、前置两种不同的变螺距诱导轮离心泵的计算结果

(a) 叶轮气相体积分数(b) 叶轮叶片壁面压力分布

Figure 2. Gas phase volume fraction of the centrifugal pump impeller and the pressure distribution on the blade wall only

(a) 前置诱导轮1时泵主叶轮 (b) 前置诱导轮2时泵主叶轮

Figure 3. Gas phase volume fraction (0.1~1) of different models

(a) 前置诱导轮1时泵主叶轮 (b) 前置诱导轮2时泵主叶轮

Figure 4. Wall pressure distribution of different model impeller blades

5. 结论

(1) 仅具有基本流道的高速离心泵，其流道内汽化现象严重，泵的性能，包括扬程、流量等，不能够满足设计要求；

(2) 泵的主叶轮前置螺距、叶尖直径均线性变化的变螺距诱导轮，显著提高了叶轮进口截面与泵的出口压力，改善了泵的能量与汽蚀性能；

(3) 与主叶轮前置螺距、叶尖直径均线性变化的变螺距诱导轮相比，前置仅螺距线性变化的诱导轮，对泵能量与汽蚀性能的改善更为显著。

(a) 诱导轮1气相体积分数(0.1~1) (b) 诱导轮1气相体积分数(0.8~1) (c) 诱导轮2气相体积分数(0.1~1) (d) 诱导轮2气相体积分数(0.8~1)

Figure 5. Gas phase volume fraction of different induction wheel model

Table 2. Comparison of the calculation results of the high speed centrifugal pump with the basic flow channel and the lead of different induction wheel

Research on Power and Cavitation Performance on a High-Speed Engine Turbine Centrifugal Pump[J]. 电力与能源进展, 2015, 03(06): 230-237. http://dx.doi.org/10.12677/AEPE.2015.36032

1. 1. Campos-Amezcua, R., Bakir, F., Campos-Amezcua, A., Khelladi, S., Palacios-Gallegos, M. and Rey, R. (2015) Nu-merical Analysis of Unsteady Cavitating Flow in an Axial Inducer. Applied Thermal Engineering, 75, 1302-1310. http://dx.doi.org/10.1016/j.applthermaleng.2014.07.063

2. 2. Brennen, C.E. (1995) Cavitation and Bubble Dy-namics. Oxford University Press, New York.

3. 3. Boyce, B.P. (2010) Tip Vortex Back Flow Cavitation and Suppres-sion in High Speed Pump Inducers. Mathematics Subject Classification: 76—Fluid Mechanics, 62, 57-68.

4. 4. Ji, B., Luo, X.W., Arndt, R.E.A. and Wu, Y.L. (2014) Numerical Simulation of Three Dimensional Cavitation Shedding Dy-namics with Special Emphasis on Cavitation-Vortex Interaction. Ocean Engineering, 87, 64-77. http://dx.doi.org/10.1016/j.oceaneng.2014.05.005

5. 5. Noguera, R., Rey, R., Massouh, F., Bakir, F. and Kouidri, S. (1993) Design and Analysis of Axial Pumps. In: Conference: Proc. ASME Fluids Engineering Division Summer Meeting, Second Pumping Machinery Symposium, Washington DC, 95-111.

6. 6. Bakir, F., Kouidri, S., Noguera, R. and Rey. R. (1998) Design and Analysis of Axial Inducser Performances. In: ASME Fluid Machinery Forum. Division Summer Meeting, Washington DC.

7. 7. Pouffary, B., Patella, R.F., Rebound, J.L. and Lambert, P.A. (2008) Numerical Analysis of Cavitaton Instabilities in Inducer Blade Cascade. ASME Journal of Fluids Engineering, 130, 041302. http://dx.doi.org/10.1115/1.2903823

8. 8. Lee, K., Choi, J. and Kang, S. (2012) Cavitation Performance and In-stability of a Two-Bladed Inducer. Journal of Propulsion and Power, 28, 1168-1175. http://dx.doi.org/10.2514/1.B34459

9. 9. Tamura, Y. and Matsumoto, Y. (2009) Improvement of Bubble Model for Cavitating Flow Simulations. Publishing House for Journal of Hydrodynamics, Series B, 21, 41-46.

10. 10. Choi, Y.-D., Kurokawa, J. and Imamura, H. (2007) Suppression of Cavitation in Inducers by J-Grooves. ASME Journal of Fluids Engineering, 129, 15-22. http://dx.doi.org/10.1115/1.2375126

11. 11. Kurokawa, J., Saha, S.L., Matsui, J. and Kitahora, T. (2000) Passive Control of Rotating Stall in a Parallel-Wall Vaneless Diffuser by Radial Grooves. ASME Journal of Fluids Engineering, 122, 90-96. http://dx.doi.org/10.1115/1.483230

12. 12. Saha, S.L., Kurokawa, J. and Imamura, H. (2000) Suppression of Performance Curve Instability of a Mixed Flow Pump by Use of J-Grooves. ASME Journal of Fluids Engineering, 122, 592-597. http://dx.doi.org/10.1115/1.1287855

13. 13. Saha, S.L., Kurokawa, J. and Imamura, H. (2001) Passive Control of Rotating Stall in a Parallel-Wall Vaned Diffuser by J-Grooves. ASME Journal of Fluids Engineering, 122, 507-515. http://dx.doi.org/10.1115/1.1374214

14. 14. Nagahara, T., Manabe, A., Mukai, H., Okamura, T. and Kurokawa (2003) An Improvement of Performance—Curve Instability in an Axial Flow Pump by Use of J-Grooves. ASME J. Turbomach., 31, 614-622.

15. 15. Orszag, S.A., Yakhot, V., Flannery, W.S. Boysan, F., Choudhury, D., Maruzewski, J. and Patel, B. (1993) Renormalization Group Modeling and Turbulence Simulations. International Conference on Near-Wall Turbulent Flows, Tempe.

16. 16. Schnerr, G.H. and Sauer, J. (2001) Physical and Numerical Modeling of Unsteady Cavitation Dynamics. Proceedings of 4th international Conference on Multi-Phase Flow, New Orleans.

*通讯作者