﻿ 以能力培养为导向的教学探索—以高等代数课程为例 The Search on Teaching Oriented by Ability—Taking Higher Algebra as an Example

Vol. 08  No. 06 ( 2018 ), Article ID: 27487 , 6 pages
10.12677/AE.2018.86096

The Search on Teaching Oriented by Ability

—Taking Higher Algebra as an Example

Guizhi Zhang1, Yonghong An2*

1Elementary Education College, Hulunbuir University, Hailar Inner Mongolia

2College of Mathematics and Statistics, Hulunbuir University, Hailar Inner Mongolia

Received: Oct. 15th, 2018; accepted: Nov. 1st, 2018; published: Nov. 9th, 2018

ABSTRACT

Local undergraduate colleges are in the period of transformation and development. Aiming at cultivating high quality applied talents and adapting to the needs of transformational development and the realization of training objectives, in the process of teaching higher algebra courses, by taking ability as the guidance and optimizing the innovative teaching mode, we will focus on developing and cultivating students’ associative thinking, discovery thinking and other mathematical thinking models;; and developing independent learning and self-exploration ability by guiding students to build effective self-learning mode.

Keywords:Associative Thinking, Discovery Thinking, Independent Learning

—以高等代数课程为例

1呼伦贝尔学院，初等教育学院，内蒙古 海拉尔

2呼伦贝尔学院，数学与统计学院，内蒙古 海拉尔

1. 引言

2. 引导发现知识结构规律，培养学生的联想思维能力

《高等代数》中的知识结构及内容间存在着很多内在关联规律，如图1，其中蕴含着极其丰富的可作联想的内容。运用横向联想、纵向联想、反向联想、双向联想、类比联想、关系联想等联想思维方式

Figure 1. Associative thinking mode

Table 1. Analogical association

3. 构建创设情境教学模式，培养学生的发现思维能力

Figure 2. Creating situation questions

1) 对情境的分析：问题情境源于线性方程组解的结构理论，在初等代数中学生都已接触到未知量较少情况下线性方程的求解问题，在此基础上依据上面的分析讨论，归纳总结出一般线性方程组的解的存在性问题。此问题的引入可以很好地帮助学生正确理解线性方程组可解的判别定理，如表2

Table 2. Problem introduction of linear equations

2) 在案例中学生思考问题的“心历路程”做出梳理和归纳，如图3，对学生提出的正确观点和闪光点要进行鼓励，因势利导，引入更深层次的思考和探究问题，激发学生讨论案例交互的灵感火花，营造开展积极探讨问题的课堂氛围；对学生提出的无效问题或观点，教师应持理性和包容的态度。耐心解答、认真分析，同时也刺激和警示学生塑造正确的全面感知能力和培养全方位仔细观察事物的良好的学习习惯，从而培养学生发现思维能力的各项应具备的能力因素。

Figure 3. Comb and summarize

4. 指导构建有效的自主学习模式，培养学生的自主学习能力

Figure 4. Self-learning process from “thin to thick”

Figure 5. Self-learning process from “thick to thin”

The Search on Teaching Oriented by Ability—Taking Higher Algebra as an Example[J]. 教育进展, 2018, 08(06): 599-604. https://doi.org/10.12677/AE.2018.86096

1. 1. 施良方. 学习论[M]. 北京: 人民教育出版社, 1994.

2. 2. 王元. 榜德庄. 华罗庚的数学生涯[M]. 北京: 科学出版社. 2000: 296.

3. 3. 饶鑫光, 孟道骥. 略论华罗庚的高校数学教学方法与讲解技能[J]. 数学教育学报, 2001, 10(4): 29-33.

4. 4. M. A. D达尼洛夫. 教学过程[M]//翟保奎. 教育学文编教学(中). 杜殿坤, 译. 北京: 人民出版社, 1988.

5. 5. 华罗庚. 华罗庚科普著作选集[M]. 上海: 上海教育出版社, 1984: 268.

6. 6. 邝孔秀. 华罗庚的数学“双基”教学思想及其启示[J]. 数学教育学报, 2012, 21(2): 5-7.